Jeffrey J Iliff

University Center Rochester, Rochester, Minnesota, United States

Are you Jeffrey J Iliff?

Claim your profile

Publications (29)174.33 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Traumatic brain injury (TBI) is an established risk factor for the early development of dementia, including Alzheimer's disease, and the post-traumatic brain frequently exhibits neurofibrillary tangles comprised of aggregates of the protein tau. We have recently defined a brain-wide network of paravascular channels, termed the "glymphatic" pathway, along which CSF moves into and through the brain parenchyma, facilitating the clearance of interstitial solutes, including amyloid-β, from the brain. Here we demonstrate in mice that extracellular tau is cleared from the brain along these paravascular pathways. After TBI, glymphatic pathway function was reduced by ∼60%, with this impairment persisting for at least 1 month post injury. Genetic knock-out of the gene encoding the astroglial water channel aquaporin-4, which is importantly involved in paravascular interstitial solute clearance, exacerbated glymphatic pathway dysfunction after TBI and promoted the development of neurofibrillary pathology and neurodegeneration in the post-traumatic brain. These findings suggest that chronic impairment of glymphatic pathway function after TBI may be a key factor that renders the post-traumatic brain vulnerable to tau aggregation and the onset of neurodegeneration. Copyright © 2014 the authors 0270-6474/14/3416180-14$15.00/0.
    Journal of Neuroscience 12/2014; 34(49):16180-93. · 6.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alexander disease (AxD) is the only known human pathology caused by mutations in an astrocyte-specific gene, glial fibrillary acidic protein (GFAP). These mutations result in abnormal GFAP accumulations that promote seizures, motor delays and, ultimately, death. The exact contribution of increased, abnormal levels of astrocytic mutant GFAP in the development and progression of the epileptic phenotype is not clear, and we addressed this question using two mouse models of AxD. Comparison of brain seizure activity spontaneously and after traumatic brain injury (TBI), an effective way to trigger seizures, revealed that abnormal GFAP accumulation contributes to abnormal brain activity (increased interictal discharges) but is not a risk factor for the development of epilepsy after TBI. These data highlight the need to further explore the complex and heterogeneous response of astrocytes towards injury and the involvement of GFAP in the progression of AxD.
    Brain Research 09/2014; · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: In the brain, protein waste removal is partly performed by paravascular pathways that facilitate convective exchange of water and soluble contents between cerebrospinal and interstitial fluids. Several lines of evidence suggest that bulk flow drainage via the glymphatic system is driven by cerebrovascular pulsation, and is dependent on astroglial water channels that line paravascular cerebrospinal fluid (CSF) pathways. The Objective of this study was to evaluate whether the efficiency of CSF-ISF exchange and interstitial solute clearance is impaired in the aging brain.Methods: CSF-ISF exchange was evaluated by in vivo and ex vivo fluorescence microscopy while interstitial solute clearance was evaluated by radio-tracer clearance assays in young (2-3 month), middle age (10-12 month) and old (18-20 month) wild type mice. The relationship between age-related changes in the expression of the astrocytic water channel aquaporin-4 (AQP4) and changes in glymphatic pathway function were evaluated by immunofluorescence.Results: Advancing age was associated with a dramatic decline in the efficiency of exchange between the subarachnoid CSF and the brain parenchyma. Relative to the young, clearance of intraparechamally injected amyloid β was impaired by 40% in the old mice. A 27% reduction in the vessel wall pulsatility of intracortical arterioles and widespread loss of perivascular AQP4 polarization along the penetrating arteries accompanied the decline in CSF-ISF exchange.Interpretation: We propose that impaired glymphatic clearance contributes to cognitive decline among the elderly and may represent a novel therapeutic target for the treatment of neurodegenerative diseases associated with accumulation of mis-folded protein aggregates. ANN NEUROL 2014. © 2014 American Neurological Association
    Annals of Neurology 09/2014; · 11.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There has been an increased focus on the neurological sequelae of repetitive mild traumatic brain injury (TBI), particularly neurodegenerative syndromes such as chronic traumatic encephalopathy (CTE); however, no animal model exists that captures the behavioral spectrum of this phenomenon. We sought to develop an animal model of CTE. Our novel model is a modification and fusion of two of the most popular models of TBI and allows for controlled closed-head impacts to un-anesthetized mice. Two-hundred and eighty, 12-week old mice were divided into control, single mild-TBI, and repetitive mild-TBI groups. Repetitive mild-TBI mice received six concussive impacts daily, for seven days. Behavior was assessed at various time-points. Neurological severity score (NSS) was computed and vestibulo-motor function tested with the wire grip test (WGT). Cognitive function was assessed with Morris water maze (MWM); anxiety/risk-taking behavior with the elevated-plus-maze (EPM), and depression-like behavior with the forced swim/tail suspension tests. Sleep EEG/EMG studies were performed at one month. NSS was elevated compared to controls in both TBI groups and improved over time. Repetitive mild-TBI mice demonstrated transient vestibulo-motor deficits on WGT. Repetitive mild-TBI mice also demonstrated deficits in MWM testing. Both mild-TBI groups demonstrated increased anxiety at 2-weeks but repetitive mild-TBI mice develop increased risk-taking behaviors at 1-month that persist at 6-months. Repetitive mild-TBI mice exhibit depression-like behavior at 1-month. Both groups demonstrate sleep disturbances. We describe the neurological sequelae of repetitive mild-TBI in a novel mouse model, which resemble several of the neuro-psychiatric behaviors observed clinically in patients sustaining repetitive mild head injury.
    Journal of neurotrauma 04/2014; · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Subarachnoid hemorrhage (SAH) is a neurologic catastrophe and poor outcome is typically attributed to vasospasm; however, there is also evidence that SAH causes a pro-inflammatory state and these two phenomena may be interrelated. SAH causes activation of microglia, but the time course and degree of microglial activation after SAH and its link to poor patient outcome and vasospasm remains unknown. Transgenic mice expressing eGFP under the control of the CX3CR1 locus, in which microglia are endogenously fluorescent, were randomly assigned to control or SAH groups. Immunohistochemistry for CD-68 and CD-31 was performed at different time points after SAH. Using confocal microscopy and MatLab software, we have developed a novel technique to detect and quantify the stages of microglial activation and return to quiescence using an automated computerized morphometric analysis. We detected a statistically significant decrease in microglial process complexity 2 and 7 days following SAH. In addition, we detected a statistically significant increase in microglial domain volume 1 day following SAH; however, microglial domain volume returned to baseline by 2 days. Most techniques for microglia assessment are qualitative, not quantitative, and are therefore inadequate to address the effects of anti-inflammatory drug treatment or other therapies after SAH. Using novel image analysis techniques we were able to reproducibly quantify activation of microglia following SAH, which will improve our ability to study the biology of microglial activation, and may ultimately improve management of disease progression and response to therapies directed at microglial activation.
    Journal of neuroscience methods 04/2014; · 2.30 Impact Factor
  • Anthony L Petraglia, Benjamin A Plog, Samantha Dayawansa, Matthew L Dashnaw, Katarzyna Czerniecka, Corey T Walker, Michael Chen, Ollivier Hyrien, Jeffrey J Iliff, Rashid Deane, Jason H Huang, Maiken Nedergaard
    [Show abstract] [Hide abstract]
    ABSTRACT: An animal model of chronic traumatic encephalopathy (CTE) is essential for further understanding the pathophysiological link between repetitive head injury and the development of chronic neurodegenerative disease. We previously described a model of repetitive mild traumatic brain injury (mTBI) in mice that encapsulates the neurobehavioral spectrum characteristic of patients with CTE. We aimed to study the pathophysiological mechanisms underlying this animal model. Our previously described model allows for controlled, closed head impacts to unanesthetized mice. Briefly, 12-week-old mice were divided into three groups: Control, single, and repetitive mTBI. Repetitive mTBI mice received six concussive impacts daily, for 7 days. Mice were then subsequently sacrificed for macro- and micro-histopathologic analysis at 7 days, 1 month, and 6 months after the last TBI received. Brain sections were immunostained for glial fibrillary acidic protein (GFAP) for astrocytes, CD68 for activated microglia, and AT8 for phosphorylated tau protein. Brains from single and repetitive mTBI mice lacked macroscopic tissue damage at all time-points. Single mTBI resulted in an acute rea ctive astrocytosis at 7 days and increased phospho-tau immunoreactivity that was present acutely and at 1 month, but was not persistent at 6 months. Repetitive mTBI resulted in a more marked neuroinflammatory response, with persistent and widespread astrogliosis and microglial activation, as well as significantly elevated phospho-tau immunoreactivity to 6-months. The neuropathological findings in this new model of repetitive mTBI resemble some of the histopathological hallmarks of CTE, including increased astrogliosis, microglial activation, and hyperphosphorylated tau protein accumulation.
    Surgical Neurology International 01/2014; 5:184. · 1.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CSF from the subarachnoid space moves rapidly into the brain along paravascular routes surrounding penetrating cerebral arteries, exchanging with brain interstitial fluid (ISF) and facilitating the clearance of interstitial solutes, such as amyloid β, in a pathway that we have termed the "glymphatic" system. Prior reports have suggested that paravascular bulk flow of CSF or ISF may be driven by arterial pulsation. However, cerebral arterial pulsation could not be directly assessed. In the present study, we use in vivo two-photon microscopy in mice to visualize vascular wall pulsatility in penetrating intracortical arteries. We observed that unilateral ligation of the internal carotid artery significantly reduced arterial pulsatility by ∼50%, while systemic administration of the adrenergic agonist dobutamine increased pulsatility of penetrating arteries by ∼60%. When paravascular CSF-ISF exchange was evaluated in real time using in vivo two-photon and ex vivo fluorescence imaging, we observed that internal carotid artery ligation slowed the rate of paravascular CSF-ISF exchange, while dobutamine increased the rate of paravascular CSF-ISF exchange. These findings demonstrate that cerebral arterial pulsatility is a key driver of paravascular CSF influx into and through the brain parenchyma, and suggest that changes in arterial pulsatility may contribute to accumulation and deposition of toxic solutes, including amyloid β, in the aging brain.
    Journal of Neuroscience 11/2013; 33(46):18190-9. · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The conservation of sleep across all animal species suggests that sleep serves a vital function. We here report that sleep has a critical function in ensuring metabolic homeostasis. Using real-time assessments of tetramethylammonium diffusion and two-photon imaging in live mice, we show that natural sleep or anesthesia are associated with a 60% increase in the interstitial space, resulting in a striking increase in convective exchange of cerebrospinal fluid with interstitial fluid. In turn, convective fluxes of interstitial fluid increased the rate of β-amyloid clearance during sleep. Thus, the restorative function of sleep may be a consequence of the enhanced removal of potentially neurotoxic waste products that accumulate in the awake central nervous system.
    Science 10/2013; 342(6156):373-7. · 31.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the brain, a paravascular space exists between vascular cells and astroglial end-foot processes, creating a continuous sheath surrounding blood vessels. Using in vivo two-photon imaging we demonstrate that the paravascular circulation facilitates selective transport of small lipophilic molecules, rapid interstitial fluid movement and widespread glial calcium signaling. Depressurizing the paravascular system leads to unselective lipid diffusion, intracellular lipid accumulation and pathological signaling in astrocytes. As the central nervous system is devoid of lymphatic vessels, the paravascular space may serve as a lymphatic equivalent that represents a separate highway for the transport of lipids and signaling molecules.
    Scientific Reports 09/2013; 3:2582. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Neurodegenerative diseases such as Alzheimer's are associated with the aggregation of endogenous peptides and proteins that contribute to neuronal dysfunction and loss. The glymphatic system, a brain-wide perivascular pathway along which cerebrospinal fluid (CSF) and interstitial fluid (ISF) rapidly exchange, has recently been identified as a key contributor to the clearance of interstitial solutes from the brain, including amyloid beta. These findings suggest that measuring changes in glymphatic pathway function may be an important prognostic for evaluating neurodegenerative disease susceptibility or progression. However, no clinically acceptable approach to evaluate glymphatic pathway function in humans has yet been developed. METHODS: Time-sequenced ex vivo fluorescence imaging of coronal rat and mouse brain slices was performed at 30--180 min following intrathecal infusion of CSF tracer (Texas Red- dextran-3, MW 3kD; FITC- dextran-500, MW 500 kD) into the cisterna magna or lumbar spine. Tracer influx into different brain regions (cortex, white matter, subcortical structures, and hippocampus) in rat was quantified to map the movement of CSF tracer following infusion along both routes, and to determine whether glymphatic pathway function could be evaluated after lumbar intrathecal infusion. RESULTS: Following lumbar intrathecal infusions, small molecular weight TR-d3 entered the brain along perivascular pathways and exchanged broadly with the brain ISF, consistent with the initial characterization of the glymphatic pathway in mice. Large molecular weight FITC-d500 remained confined to the perivascular spaces. Lumbar intrathecal infusions exhibited a reduced and delayed peak parenchymal fluorescence intensity compared to intracisternal infusions. CONCLUSION: Lumbar intrathecal contrast delivery is a clinically useful approach that could be used in conjunction with dynamic contrast enhanced MRI nuclear imaging to assess glymphatic pathway function in humans.
    Journal of Translational Medicine 05/2013; 11(1):107. · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer's disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer's disease susceptibility and progression in the live human brain.
    The Journal of clinical investigation 03/2013; 123(3):1299-309. · 15.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral edema is a major contributor to morbidity associated with traumatic brain injury (TBI). The methods involved in most rodent models of TBI, including head fixation, opening of the skull, and prolonged anesthesia, likely alter TBI development and reduce secondary injury. We report the development of a closed-skull model of murine TBI, which minimizes time of anesthesia, allows the monitoring of intracranial pressure (ICP), and can be modulated to produce mild and moderate grade TBI. In this model, we characterized changes in aquaporin-4 (AQP4) expression and localization after mild and moderate TBI. We found that global AQP4 expression after TBI was generally increased; however, analysis of AQP4 localization revealed that the most prominent effect of TBI on AQP4 was the loss of polarized localization at endfoot processes of reactive astrocytes. This AQP4 dysregulation peaked at 7 days after injury and was largely indistinguishable between mild and moderate grade TBI for the first 2 weeks after injury. Within the same model, blood-brain barrieranalysis of variance permeability, cerebral edema, and ICP largely normalized within 7 days after moderate TBI. These findings suggest that changes in AQP4 expression and localization may not contribute to cerebral edema formation, but rather may represent a compensatory mechanism to facilitate its resolution.Journal of Cerebral Blood Flow & Metabolism advance online publication, 27 February 2013; doi:10.1038/jcbfm.2013.30.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 02/2013; · 5.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microinfarcts are a common clinical feature of the aging brain, particularly in patients with cognitive decline or vascular or Alzheimer's dementia. However, the natural history of these lesions remains largely unexplored. Here we describe a mouse (C57BL/6J) model of multiple diffuse microinfarcts induced by unilateral internal carotid artery injection of cholesterol crystals (40-70 μm). Microinfarcts were spread throughout the deep cortex, subcortical tissue, and hippocampus and were comprised of a core positive for CD68 (a marker for reactive microglia and macrophages), surrounded by large regions of glial fibrillary acidic protein-positive reactive astrogliosis. Widespread reactive gliosis, including mislocalization of the astrocytic water channel aquaporin 4 persisted long after injury, recovering only after 1 month after stroke. Within the cortex, neuronal cell death progressed gradually over the first month, from ∼35% at 3 d to 60% at 28 d after stroke. Delayed demyelination was also observed in lesions, beginning 28 d after stroke. These findings demonstrate that microinfarct development follows a distinct course compared to larger regional infarcts such as those induced by middle cerebral artery occlusion. The long-lasting gliosis, delayed neuronal loss, and demyelination suggest that the therapeutic window for microinfarcts may be much wider (perhaps days to weeks) than for larger strokes.
    Journal of Neuroscience 12/2012; 32(50):17948-60. · 6.75 Impact Factor
  • Jeffrey J Iliff, Maiken Nedergaard
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 12/2012; · 5.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Because it lacks a lymphatic circulation, the brain must clear extracellular proteins by an alternative mechanism. The cerebrospinal fluid (CSF) functions as a sink for brain extracellular solutes, but it is not clear how solutes from the brain interstitium move from the parenchyma to the CSF. We demonstrate that a substantial portion of subarachnoid CSF cycles through the brain interstitial space. On the basis of in vivo two-photon imaging of small fluorescent tracers, we showed that CSF enters the parenchyma along paravascular spaces that surround penetrating arteries and that brain interstitial fluid is cleared along paravenous drainage pathways. Animals lacking the water channel aquaporin-4 (AQP4) in astrocytes exhibit slowed CSF influx through this system and a ~70% reduction in interstitial solute clearance, suggesting that the bulk fluid flow between these anatomical influx and efflux routes is supported by astrocytic water transport. Fluorescent-tagged amyloid β, a peptide thought to be pathogenic in Alzheimer's disease, was transported along this route, and deletion of the Aqp4 gene suppressed the clearance of soluble amyloid β, suggesting that this pathway may remove amyloid β from the central nervous system. Clearance through paravenous flow may also regulate extracellular levels of proteins involved with neurodegenerative conditions, its impairment perhaps contributing to the mis-accumulation of soluble proteins.
    Science translational medicine 08/2012; 4(147):147ra111. · 14.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epoxyeicosatrienoic acids (EETs) are bioactive eicosanoids produced from arachidonic acid by cytochrome P450 epoxygenases. We previously described the expression of cytochrome P450-2J epoxygenase in rat trigeminal ganglion neurons and that EETs signaling is involved in cerebrovascular dilation resulting from perivascular nerve stimulation. In this study, we evaluate the presence of the EETs signaling pathway in trigeminal ganglion neurons and their role in modulating the release of calcitonin gene-related peptide (CGRP) by trigeminal ganglion neurons. Liquid chromatography tandem mass spectrometry identified the presence of each of the four EETs regio-isomers within primary trigeminal ganglion neurons. Stimulation for 1 h with the transient receptor potential vanilloid-1 channel agonist capsaicin (100 nmol/L) or depolarizing K(+) (60 mmol/L) increased CGRP release as measured by ELISA. Stimulation-evoked CGRP release was attenuated by 30 min pre-treatment with the EETs antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, 10 μmol/L). K(+) stimulation elevated CGRP release 2.9 ± 0.3-fold above control levels, whereas in the presence of 14,15-EEZE K(+)-evoked CGRP release was significantly reduced to 1.1 ± 0.2-fold above control release (p < 0.01 anova, n = 6). 14,15-EEZE likewise attenuated capsaicin-evoked CGRP release from trigeminal ganglion neurons (p < 0.05 anova, n = 6). Similarly, pre-treatment with the cytochrome P450 epoxygenase inhibitor attenuated stimulation-evoked CGRP release. These data demonstrate that EETs are endogenous constituents of rat trigeminal ganglion neurons and suggest that they may act as intracellular regulators of neuropeptide release, which may have important clinical implications for treatment of migraine, stroke and vasospasm after subarachnoid hemorrhage.
    Journal of Neurochemistry 10/2010; 115(6):1530-42. · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Symptomatic ischemia following aneurysmal subarachnoid hemorrhage (SAH) is common but poorly understood and inadequately treated. Severe constriction of the major arteries at the base of the brain, termed vasospasm, traditionally has been thought to be a proximal event underlying these ischemias, although microvascular changes also have been described. The vast majority of studies aimed at understanding the pathogenesis of ischemic deficits, and vasospasm have focused on the interaction of the "spasmogen" of the extravasated blood with the smooth muscle and endothelium of the arteries. This has led to a comparative neglect of the contribution of the CNS to the maintenance of cerebral perfusion. In the present study, we focused on the role of the rostral ventromedial medulla (RVM) in modulating cerebral perfusion at rest and following an experimental SAH in the rat. Changes in cerebral blood flow (CBF) were measured using laser-Doppler flowmetry and three-dimensional optical microangiography. Focal application of a GABA(A) receptor agonist and antagonist was used to respectively inactivate and activate the RVM. We show here that the RVM modulates cerebral blood flow under resting conditions, and further, contributes to restoration of cerebral perfusion following a high-grade SAH. Failure of this brainstem compensatory mechanism could be significant for acute perfusion deficits seen in patients following subarachnoid hemorrhage.
    Neuroscience 07/2009; 163(2):719-29. · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites of cytochrome P450 epoxygenase enzymes recognized as key players in vascular function and disease, primarily attributed to their potent vasodilator, anti-inflammatory and pro-angiogenic effects. Although EETs' actions in the central nervous system (CNS) appear to parallel those in peripheral tissue, accumulating evidence suggests that epoxyeicosanoid signaling plays different roles in neural tissue compared to peripheral tissue; roles that reflect distinct CNS functions, cellular makeup and intercellular relationships. This is exhibited at many levels including the expression of EETs-synthetic and -metabolic enzymes in central neurons and glial cells, EETs' role in neuro-glio-vascular coupling during cortical functional activation, the capacity for interaction between epoxyeicosanoid and neuroactive endocannabinoid signaling pathways, and the regulation of neurohormone and neuropeptide release by endogenous EETs. The ability of several CNS cell types to produce and respond to EETs suggests that epoxyeicosanoid signaling is a key integrator of cell-cell communication in the CNS, coordinating cellular responses across different cell types. Under pathophysiological conditions, such as cerebral ischemia, EETs protect neurons, astroglia and vascular endothelium, thus preserving the integrity of cellular networks unique to and essential for proper CNS function. Recognition of EETs' intimate involvement in CNS function in addition to their multi-cellular protective profile has inspired the development of therapeutic strategies against CNS diseases such as cerebral ischemia, tumors, and neural pain and inflammation that are based on targeting the cellular actions of EETs or their biosynthetic and metabolizing enzymes. Based upon the emerging importance of epoxyeicosanoids in cellular function and disease unique to neural systems, we propose that the actions of "neuroactive EETs" are best considered separately, and not in aggregate with all other peripheral EETs functions.
    Prostaglandins & other lipid mediators 07/2009; 91(3-4):68-84. · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Soluble epoxide hydrolase (sEH), a key enzyme in the metabolism of vasodilator eicosanoids called epoxyeicosatrienoic acids (EETs), is sexually dimorphic and suppressed by estrogen. We determined if the sex difference in blood flow during focal cerebral ischemia is linked to sEH. Soluble epoxide hydrolase expression in brain, hydrolase activity in cerebral vessels, and plasma 14,15-dihydroxyeicosatrienoic acid (14,15-DHET) were determined in male and female wild-type (WT) and sEH knockout (sEHKO) mice. Male, female, and ovariectomized female WT and sEHKO mice were subjected to 2-h middle cerebral artery occlusion (MCAO) and infarct size was measured at 24 h of reperfusion. Laser-Doppler cortical perfusion during MCAO was compared among groups and differences in cortical blood flow rates were confirmed using in vivo quantitative optical microangiography. Cerebrovascular expression and activity of sEH and plasma 14,15-DHET were lower in WT female than male mice, and blood flow during MCAO was higher and infarct size was smaller in WT female compared with male mice. Sex differences in cerebral blood flow and ischemic damage were abolished after ovariectomy and were absent in sEHKO mice. We conclude that sEH is an important mechanism underlying sex-linked differences in blood flow and brain damage after cerebral ischemia.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 06/2009; 29(8):1475-81. · 5.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epoxyeicosatrienoic acids (EETs) are potent vasodilators produced from arachidonic acid by cytochrome P-450 (CYP) epoxygenases and metabolized to vicinal diols by soluble epoxide hydrolase (sEH). In the brain, EETs are produced by astrocytes and the vascular endothelium and are involved in the control of cerebral blood flow (CBF). Recent evidence, however, suggests that epoxygenases and sEH are present in perivascular vasodilator nerve fibers innervating the cerebral surface vasculature. In the present study, we tested the hypothesis that EETs are nerve-derived relaxing factors in the cerebral circulation. We first traced these fibers by retrograde labeling in the rat to trigeminal ganglia (TG) and sphenopalatine ganglia (SPG). We then examined the expression of CYP epoxygenases and sEH in these ganglia. RT-PCR and Western blot analysis identified CYP2J3 and CYP2J4 epoxygenase isoforms and sEH in both TG and SPG, and immunofluorescence double labeling identified CYP2J and sEH immunoreactivity in neuronal cell bodies of both ganglia. To evaluate the functional role of EETs in neurogenic vasodilation, we elicited cortical hyperemia by electrically stimulating efferent cerebral perivascular nerve fibers and by chemically stimulating oral trigeminal fibers with capsaicin. Cortical blood flow responses were monitored by laser-Doppler flowmetry. Local administration to the cortical surface of the putative EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (30 mumol/l) attenuated CBF responses to electrical and chemical stimulation. These results suggest that EETs are produced by perivascular nerves and play a role in neurogenic vasodilation of the cerebral vasculature. The findings have important implications to such clinical conditions as migraine, vasospasm after subarachnoid hemorrhage, and stroke.
    AJP Heart and Circulatory Physiology 04/2009; 296(5):H1352-63. · 4.01 Impact Factor

Publication Stats

523 Citations
174.33 Total Impact Points


  • 2012–2014
    • University Center Rochester
      • Department of Neurosurgery
      Rochester, Minnesota, United States
    • University of Rochester
      • Center for Translational Neuromedicine
      Rochester, NY, United States
    • Tongji Hospital
      Wu-han-shih, Hubei, China
  • 2005–2010
    • Oregon Health and Science University
      • • Department of Anesthesiology & Perioperative Medicine
      • • Department of Neurological Surgery
      Portland, OR, United States
  • 2003–2005
    • University of Washington Seattle
      • Department of Neurological Surgery
      Seattle, Washington, United States