Alan A Wilson

Centre for Addiction and Mental Health, Toronto, Ontario, Canada

Are you Alan A Wilson?

Claim your profile

Publications (257)1156.7 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Results: Kinetic analysis of (11)C-GSK215083 uptake in human brain demonstrated the multilinear model, MA2, to represent the method of choice when a blood input was available and the full tissue reference method when no input was available. Pharmacological dissection of the in vivo (11)C-GSK215083 specific binding showed the ligand bound mostly the 5HT6 in the striatum (blocked by SB742457, but not by the selective 5HT2A antagonist ketanserin) and to 5HT2A in the frontal cortex (blocked by both ketanserin and SB742457). Repeated administration of SB742457 (3, 15 and 35mg/day) saturated the 5HT6 receptors at all doses. In cortex, 5HT2A receptors occupancy was 24±6% (3mg/day), 35±4% (15mg/day) and 58±19% (35mg/day; mean±SD), suggesting a progressive engagement of 5HT2A as the dose increased. Conclusion: Collectively, these data support the use of (11)C-GSK215083 as a 5HT6 clinical imaging tool, and suggest that blocking both the 5HT6 and 5HT2A receptors may be required for the optimal therapeutic action of SB742457 in AD.
    Journal of Nuclear Medicine 09/2015; DOI:10.2967/jnumed.115.162743 · 6.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated whether the second-generation translocator protein 18kDa (TSPO) radioligand, [18F]-FEPPA, could be used in neurodegenerative parkinsonian disorders as a biomarker for detecting neuroinflammation in the striatum. Neuroinflammation has been implicated as a potential mechanism for the progression of Parkinson's disease (PD). Positron Emission Tomography (PET) radioligand targeting for TSPO allows for the quantification of neuroinflammation in vivo. Based on genotype of the rs6791 polymorphism in the TSPO gene, 16 mixed-affinity binders (MABs) (8 PD and age-matched 8 healthy controls (HCs)), 16 high-affinity binders (HABs) (8 PD and age-matched 8 HCs) and 4 low-affinity binders (LABs) (3 PD and 1 HCs) were identified. Total distribution volume (VT) values in the striatum were derived from a two-tissue compartment model with arterial plasma as an input function. There was a significant main effect of genotype on [18F]-FEPPA VT values in the caudate nucleus (p = 0.001) and putamen (p < 0.001), but no main effect of disease or disease x genotype interaction in either ROI. In the HAB group, the percentage difference between PD and HC was 16% in both caudate nucleus and putamen; in the MAB group, it was -8% and 3%, respectively. While this PET study showed no evidence of increased striatal TSPO expression in PD patients, the current findings provide some insights on the possible interactions between rs6791 polymorphism and neuroinflammation in PD.
    PLoS ONE 09/2015; 10(9):e0138721. DOI:10.1371/journal.pone.0138721 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Monoamine oxidase inhibitors (MAOIs) are being developed for major depressive disorder, Alzheimer's, and Parkinson's Disease. Newer MAOIs have minimal sensitivity to tyramine, but a key limitation for optimizing their development is that standards for in vivo monoamine oxidase-A (MAO-A) occupancy in humans are not well established. The objectives were to determine the dose-occupancy relationship of moclobemide and the occupancy of phenelzine at typical clinical dosing. Major depressive episode (MDE) subjects underwent [(11)C]harmine positron emission tomography scanning prior to and following 6 weeks of treatment with moclobemide or phenelzine. Mean brain MAO-A occupancies were 74.23±8.32% for moclobemide at 300-600mg daily (n = 11), 83.75±5.52% for moclobemide at 900-1200mg daily (n = 9), and 86.82±6.89% for phenelzine at 45-60mg daily (n = 4). The regional dose-occupancy relationship of moclobemide fit a hyperbolic function [F(x) = a(x/[b + x]); F(1,18) = 5.57 to 13.32, p = 0.002 to 0.03, mean 'a': 88.62±2.38%, mean 'b': 69.88±4.36 mg]. Multivariate analyses of variance showed significantly greater occupancy of phenelzine (45-60mg) and higher-dose moclobemide (900-1200mg) compared to lower-dose moclobemide [300-600mg; F(7,16) = 3.94, p = 0.01]. These findings suggest that for first-line MDE treatment, daily moclobemide doses of 300-600mg correspond to a MAO-A occupancy of 74%, whereas for treatment-resistant MDE, either phenelzine or higher doses of moclobemide correspond to a MAO-A occupancy of at least 84%. Therefore, novel MAO inhibitor development should aim for similar thresholds. The findings provide a rationale in treatment algorithm design to raise moclobemide doses to inhibit more MAO-A sites, but suggest switching from high-dose moclobemide to phenelzine is best justified by binding to additional targets. © The Author 2015. Published by Oxford University Press on behalf of the American Association for Public Opinion Research.
    The International Journal of Neuropsychopharmacology 08/2015; DOI:10.1093/ijnp/pyv078 · 4.01 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular and hypothalamic pituitary axis (HPA) disturbances have been observed in individuals who are pathological gamblers (PGs). These may partly derive from chronic exposure to gambling. Response to amphetamine (AMPH) may reveal such disturbances while controlling for differential conditioned responses to gambling in PGs vs healthy controls (HCs). This study assessed heart rate (HR), systolic blood pressure (SBP) and diastolic blood pressure (DBP) and plasma cortisol following oral AMPH (0.4 mg/kg) in male PGs (n=12) and HCs (n=11) who underwent a positron emission tomography (PET) scan. The Stop Signal Task enabled assessment of the link between physiological and behavioral dysregulation. Trait moderating effects were explored. The responses of PGs to AMPH differed from those of HCs on every index. PGs displayed persistent elevation in DBP and concomitant reduction in HR (i.e. baroreflex) compared to HCs beyond 90 min post-dose. PGs displayed deficits in cortisol compared to HCs that were partially reversed by AMPH. Impairment on the Stop Signal Task correlated positively with HR in controls, but negatively with HR in PGs, suggesting that strong initial and compensatory cardiac responses to a stimulant may each predict disinhibition. Extraversion predicted greater disinhibition in PGs. Noradrenergic disturbances may contribute to sensitized responses to stimulant challenge and disinhibition in PGs. © The Author(s) 2015.
    Journal of Psychopharmacology 07/2015; 29(9). DOI:10.1177/0269881115592338 · 3.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is considerable interest in blocking the dopamine D3 receptor (DRD3), versus the D2 receptor (DRD2) to treat drug addiction. However, there are currently no selective DRD3 antagonists available in the clinic. The anxiolytic drug buspirone has been proposed as a potential strategy as findings suggest that this drug has high in vitro affinity for DRD3, binds to DRD3 in brain of living non-human primate and also disrupts psychostimulant self-administration in preclinical models. No study has explored the occupancy of DRD3 by buspirone in humans. Here, we used positron emission tomography (PET) and the D3 preferring probe, [(11)C]-(+)-PHNO, to test the hypothesis that buspirone will occupy (decreases [(11)C]-(+)-PHNO binding) the DRD3 more readily than the DRD2. Eight healthy participants underwent [(11)C]-(+)-PHNO scans after single oral dose administration of placebo and 30, 60 and 120 mg of buspirone in a single-blind within-subjects design. [(11)C]-(+)-PHNO binding in DRD2 and DRD3-rich areas was decreased by the highest (60-120 mg), but not the lowest (30mg), doses of buspirone. The maximal occupancy obtained was ~25% in both areas. Plasma levels of prolactin (a DRD2 marker) correlated with percentage occupancy after orally administered buspirone. Self-reported dizziness and drowsiness increased after buspirone but that did not correlate with receptor occupancy in any region. Overall, the modest occupancy of DRD2 and DRD3 even at high acute doses of buspirone, yielding high levels of metabolites, suggests that buspirone may not be a good drug to preferentially block DRD3 in humans.Neuropsychopharmacology accepted article preview online, 19 June 2015. doi:10.1038/npp.2015.177.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 06/2015; DOI:10.1038/npp.2015.177 · 7.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Positron emission tomography with [(11)C]CURB was recently developed to quantify fatty acid amide hydrolase (FAAH), the enzyme responsible for hydrolyzing the endocannabinoid anandamide. This study investigated the test-retest reliability of [(11)C]CURB as well as its in vivo specificity and the validity of the kinetic model by using the highly specific FAAH inhibitor, PF-04457845. Five healthy volunteers completed test-retest [(11)C]CURB scans 1 to 2 months apart and six subjects completed baseline and blocking scans on the same day after PF-04457845 (p.o.) administration (1, 4, or 20 mg; n=2 each). The composite parameter λk3 (an index of FAAH activity, λ=K1/k2) was estimated using an irreversible two-tissue compartment model with plasma input function. There were no clinically observable responses to oral PF-04457845 or [(11)C]CURB injection. Oral administration of PF-04457845 reduced [(11)C]CURB binding to a homogeneous level at all three doses, with λk3 values decreased by ⩾91%. Excellent reproducibility and good reliability (test-retest variability=9%; intraclass correlation coefficient=0.79) were observed across all regions of interest investigated. Our findings suggest that λk3/[(11)C]CURB is a reliable, highly sensitive, and selective tool to measure FAAH activity in human brain in vivo. Moreover, PF-04457845 is a highly potent FAAH inhibitor (>95% inhibition at 1 mg) in living human brain.Journal of Cerebral Blood Flow & Metabolism advance online publication, 17 June 2015; doi:10.1038/jcbfm.2015.133.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 06/2015; DOI:10.1038/jcbfm.2015.133 · 5.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antisocial personality disorder (ASPD) often presents with highly impulsive, violent behavior, and pathological changes in the orbitofrontal cortex (OFC) and ventral striatum (VS) are implicated. Several compelling reasons support a relationship between low monoamine oxidase-A (MAO-A), an enzyme that regulates neurotransmitters, and ASPD. These include MAO-A knockout models in rodents evidencing impulsive aggression and positron emission tomography (PET) studies of healthy subjects reporting associations between low brain MAO-A levels and greater impulsivity or aggression. However, a fundamental gap in the literature is that it is unknown whether brain MAO-A levels are low in more severe, clinical disorders of impulsivity, such as ASPD. To address this issue, we applied [(11)C] harmine PET to measure MAO-A total distribution volume (MAO-A VT), an index of MAO-A density, in 18 male ASPD participants and 18 age- and sex-matched controls. OFC and VS MAO-A VT were lower in ASPD compared to controls (MANOVA: F2,33=6.8, p=0.003; OFC and VS MAO-A VT each lower by 19%). Similar effects were observed in other brain regions: prefrontal cortex, anterior cingulate cortex, dorsal putamen, thalamus, hippocampus, and midbrain (MANOVA: F7,28=2.7, p=0.029). In ASPD, VS MAO-A VT was consistently negatively correlated with self-report and behavioral measures of impulsivity (r=-0.50 to -0.52, all p-values<0.05). This study is the first to demonstrate lower brain MAO-A levels in ASPD. Our results support an important extension of preclinical models of impulsive aggression into a human disorder marked by pathological aggression and impulsivity.Neuropsychopharmacology accepted article preview online, 17 June 2015. doi:10.1038/npp.2015.106.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 06/2015; 40(11). DOI:10.1038/npp.2015.106 · 7.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Positron emission tomography with antagonist radiotracers has showed that striatal dopamine D2/3 receptor (D2/3R) availability decreases with age. However, no study has specifically assessed whether D2/3R availability decreases with age in healthy persons as measured with agonist radiotracers. Moreover, it is unknown whether D3R availability changes with age in healthy humans. Thus, we explored the relationship between age and D2/3R availability in healthy humans using the D3 receptor (D3R)-preferential agonist radiotracer [(11)C]-(+)-PHNO (n=72, mean±s.d. age=40±15, range=18 to 73) and the antagonist [(11)C]-Raclopride (n=70, mean±s.d. age =40±14, range=18 to 73) (both, n=33). The contribution of D3R to the [(11)C]-(+)-PHNO signal varies across regions of interest; the substantia nigra and hypothalamus represent D3R-specific regions, the ventral pallidum, globus pallidus, and ventral striatum represent D2/3R-mixed regions, and the caudate and putamen represent D2 receptor (D2R)-specific regions. With [(11)C]-(+)-PHNO, a negative correlation was observed between age and nondisplaceable binding potential (BPND) in the caudate (r(70)=-0.32, P=0.005). No correlations were observed in the other regions. With [(11)C]-Raclopride, negative correlations were observed between age and BPND in the caudate (r(68)=-0.50, P<0.001), putamen (r(68)=-0.41, P<0.001), and ventral striatum (r(68)=-0.43, P<0.001). In conclusion, in contrast with the age-dependent decrease in D2R availability, these findings suggest that D3R availability does not change with age.Journal of Cerebral Blood Flow & Metabolism advance online publication, 10 June 2015; doi:10.1038/jcbfm.2015.129.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 06/2015; DOI:10.1038/jcbfm.2015.129 · 5.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The common functional single-nucleotide polymorphism (rs324420, C385A) of the endocannabinoid inactivating enzyme fatty acid amide hydrolase (FAAH) has been associated with anxiety disorder relevant phenotype and risk for addictions. Here, we tested whether the FAAH polymorphism affects in vivo binding of the FAAH positron emission tomography (PET) probe [(11)C]CURB ([(11)C-carbonyl]-6-hydroxy-[1,10-biphenyl]-3-yl cyclohexylcarbamate (URB694)). Participants (n=24) completed one [(11)C]CURB/PET scan and were genotyped for rs324420. Relative to C/C (58%), A-allele carriers (42%) had 23% lower [(11)C]CURB binding (λk3) in brain. We report evidence that the genetic variant rs324420 in FAAH is associated with measurable differences in brain FAAH binding as per PET [(11)C]CURB measurement.Journal of Cerebral Blood Flow & Metabolism advance online publication, 3 June 2015; doi:10.1038/jcbfm.2015.119.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 06/2015; 35(8). DOI:10.1038/jcbfm.2015.119 · 5.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: No study has examined dopamine D2/3 receptor (D2/3R) availability in antipsychotic-free older patients with schizophrenia. We included patients with schizophrenia 50years or older who were antipsychotic-free for at least 3months. We compared non-displaceable binding potential (BPND) of [(11)C]-raclopride in the caudate, putamen, ventral striatum, and globus pallidus between patients and age- and sex-matched healthy controls. Ten patients participated (antipsychotic-naive=4). No differences in BPND were found between patients and controls in any ROIs (F(1, 72)=.42, p=.52). The preliminary results suggest no differences in D2/3R availability between antipsychotic-free older patients with schizophrenia and controls. Copyright © 2015 Elsevier B.V. All rights reserved.
    Schizophrenia Research 03/2015; 164(1-3). DOI:10.1016/j.schres.2015.02.020 · 3.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neuroinflammatory hypothesis of major depressive disorder is supported by several main findings. First, in humans and animals, activation of the immune system causes sickness behaviors that present during a major depressive episode (MDE), such as low mood, anhedonia, anorexia, and weight loss. Second, peripheral markers of inflammation are frequently reported in major depressive disorder. Third, neuroinflammatory illnesses are associated with high rates of MDEs. However, a fundamental limitation of the neuroinflammatory hypothesis is a paucity of evidence of brain inflammation during MDE. Translocator protein density measured by distribution volume (TSPO VT) is increased in activated microglia, an important aspect of neuroinflammation. To determine whether TSPO VT is elevated in the prefrontal cortex, anterior cingulate cortex (ACC), and insula in patients with MDE secondary to major depressive disorder. Case-control study in a tertiary care psychiatric hospital from May 1, 2010, through February 1, 2014. Twenty patients with MDE secondary to major depressive disorder and 20 healthy control participants underwent positron emission tomography with fluorine F 18-labeled N-(2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide ([18F]FEPPA). Patients with MDE were medication free for at least 6 weeks. All participants were otherwise healthy and nonsmokers. Values of TSPO VT in the prefrontal cortex, ACC, and insula. In MDE, TSPO VT was significantly elevated in all brain regions examined (multivariate analysis of variance, F15,23 = 4.5 [P = .001]). The magnitude of TSPO VT elevation was 26% in the prefrontal cortex (mean [SD] TSPO VT, 12.5 [3.6] in patients with MDE and 10.0 [2.4] in controls), 32% in the ACC (mean [SD] TSPO VT, 12.3 [3.5] in patients with MDE and 9.3 [2.2] in controls), and 33% in the insula (mean [SD] TSPO VT, 12.9 [3.7] in patients with MDE and 9.7 [2.3] in controls). In MDE, greater TSPO VT in the ACC correlated with greater depression severity (r = 0.63 [P = .005]). This finding provides the most compelling evidence to date of brain inflammation, and more specifically microglial activation, in MDE. This finding is important for improving treatment because it implies that therapeutics that reduce microglial activation should be promising for MDE. The correlation between higher ACC TSPO VT and the severity of MDE is consistent with the concept that neuroinflammation in specific regions may contribute to sickness behaviors that overlap with the symptoms of MDE.
    JAMA Psychiatry 01/2015; 72(3). DOI:10.1001/jamapsychiatry.2014.2427 · 12.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dopamine agonist medications with high affinity for the D3 dopamine receptor are commonly used to treat Parkinson's disease, and have been associated with pathological behaviors categorized under the umbrella of impulse control disorders (ICD). The aim of this study was to investigate whether ICD in Parkinson's patients are associated with greater D3 dopamine receptor availability. We used positron emission tomography (PET) radioligand imaging with the D3 dopamine receptor preferring agonist [(11) C]-(+)-propyl-hexahydro-naphtho-oxazin (PHNO) in Parkinson's patients with (n = 11) and without (n = 21) ICD, and age-, sex-, and education-matched healthy control subjects (n = 18). Contrary to hypotheses, [(11) C]-(+)-PHNO binding in D3 -rich brain areas was not elevated in Parkinson's patients with ICD compared with those without; instead, [(11) C]-(+)-PHNO binding in ventral striatum was 20% lower (P = 0.011), correlating with two measures of ICD severity (r = -0.8 and -0.9), which may reflect higher dopamine tone in ventral striatum. In dorsal striatum, where [(11) C]-(+)-PHNO binding is associated with D2 receptor levels, [(11) C]-(+)-PHNO binding was elevated across patients compared with controls. We conclude that although D3 dopamine receptors have been linked to the occurrence of ICD in Parkinson's patients. Our findings do not support the hypothesis that D3 receptor levels are elevated in Parkinson's patients with ICD. We also did not find ICD-related abnormalities in D2 receptor levels. Our findings argue against the possibility that differences in D2/3 receptor levels can account for the development of ICD in PD; however, we cannot rule out that differences in dopamine levels (particularly in ventral striatum) may be involved. © 2015 International Parkinson and Movement Disorder Society. © 2015 International Parkinson and Movement Disorder Society.
    Movement Disorders 01/2015; 30(2). DOI:10.1002/mds.26135 · 5.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Monoamine oxidase-A (MAO-A) is a treatment target in neurodegenerative illness and mood disorders that increases oxidative stress and predisposition toward apoptosis. Increased MAO-A levels in prefrontal cortex (PFC) and anterior cingulate cortex (ACC) occur in rodent models of depressive behavior and human studies of depressed moods. Extreme dysphoria is common in borderline personality disorder (BPD), especially when severe, and the molecular underpinnings of severe BPD are largely unknown. We hypothesized that MAO-A levels in PFC and ACC would be highest in severe BPD and would correlate with symptom magnitude. [(11)C] Harmine positron emission tomography measured MAO-A total distribution volume (MAO-A VT), an index of MAO-A density, in severe BPD subjects (n = 14), moderate BPD subjects (n = 14), subjects with a major depressive episode (MDE) only (n = 14), and healthy control subjects (n = 14). All subjects were female. Severe BPD was associated with greater PFC and ACC MAO-A VT compared with moderate BPD, MDE, and healthy control subjects (multivariate analysis of variance group effect: F6,102 = 5.6, p < .001). In BPD, PFC and ACC MAO-A VT were positively correlated with mood symptoms (PFC: r = .52, p = .005; ACC: r = .53, p = .004) and suicidality (PFC: r = .40, p = .037; ACC: r = .38, p = .046), while hippocampus MAO-A VT was negatively correlated with verbal memory (r = -.44, p = .023). These results suggest that elevated MAO-A VT is associated with multiple indicators of BPD severity, including BPD symptomatology, mood symptoms, suicidality, and neurocognitive impairment. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
    Biological Psychiatry 12/2014; DOI:10.1016/j.biopsych.2014.11.024 · 10.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carbon-11 labeled SL25.1188 ((S)-5-(methoxymethyl)-3-(6-(4,4,4-trifluorobutoxy)benzo[d]isoxazol-3-yl)oxazolidin-2-one) is a reversible radiotracer for monoamine oxidase B that was recently evaluated in healthy volunteers by positron emission tomography (PET). Herein we report the preparation and ex vivo evaluation of a fluorinated SL25.1188 derivative as a candidate 18F-labeled PET radiotracer. (S)-3-(6-(3-fluoropropoxy)benzo[d]isoxazol-3-yl)-5-(methoxy methyl)oxazolidin-2-one (1) was labeled with fluorine-18 in 51% uncorrected radiochemical yield having high radiochemical purity (>98%) and specific activity (109 ± 26 GBq/μmol). Ex vivo biodistribution studies demonstrated low radioactivity retention specific binding and metabolic stability within rat brains. High uptake of radioactivity in bone is consistent with metabolic defluorination. In vitro binding assays of longer chain fluoroalkoxy derivatives revealed that the length of the carbon chain is an integral feature in MAO-B inhibitor potency and selectivity within this scaffold.
    Bioorganic & Medicinal Chemistry Letters 11/2014; 25(2). DOI:10.1016/j.bmcl.2014.11.048 · 2.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: (11)C-carbonyl-URB694 ((11)C-CURB) is a novel (11)C-labeled suicide irreversible radiotracer for PET developed as a surrogate measure of activity of the endocannabinoid metabolizing enzyme fatty acid amide hydrolase. The aim of the study was to investigate the whole-body biodistribution and estimate the radiation dosimetry from (11)C-CURB scans in humans. Six healthy volunteers (3 men and 3 women) completed a single whole-body scan (∼120 min, 9 time frames) on a PET/CT scanner after administration of (11)C-CURB (∼350 MBq and ∼2 μg). Time-radioactivity curves were extracted in 11 manually delineated organs and corrected for injected activity, specific organ density, and volume to obtain normalized cumulated activities. OLINDA/EXM 1.1 was used to estimate standard internal dose exposure in each organ. The mean effective dose was calculated using the male and female models for the full sample and female-only sample, respectively. (11)C-CURB was well tolerated in all subjects, with no radiotracer-related adverse event reported. The mean effective dose (±SD) was estimated to be 4.6 ± 0.3 μSv/MBq for all subjects and 5.2 ± 0.3 μSv/MBq for the female sample. Organs with the highest normalized cumulated activities (in h) were the liver (0.117), gallbladder wall (0.046), and small intestine (0.033), and organs with the highest dose exposure (in μGy/MBq) were the gallbladder wall (111 ± 60), liver (21 ± 7), kidney (14 ± 3), and small intestine (12 ± 2). Organ radiation exposure for the irreversible fatty acid amide hydrolase enzyme probe (11)C-CURB is within the same range as other radiotracers labeled with (11)C, thus allowing for safe, serial PET scans in the same individuals. Copyright © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
    Journal of Nuclear Medicine 11/2014; 55(12). DOI:10.2967/jnumed.114.146464 · 6.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuroinflammation and abnormal immune responses have been implicated in schizophrenia (SCZ). Past studies using positron emission tomography (PET) that examined neuroinflammation in patients with SCZ in vivo using the translocator protein 18kDa (TSPO) target were limited by the insensitivity of the first-generation imaging agent [(11)C]-PK11195, scanners used, and the small sample sizes studied. Present study uses a novel second-generation TSPO PET radioligand N-acetyl-N-(2-[(18)F]fluoroethoxybenzyl)-2-phenoxy-5-pyridinamine ([(18)F]-FEPPA) to evaluate whether there is increased neuroinflammation in patients with SCZ. A cross-sectional study was performed using [(18)F]-FEPPA and a high-resolution research tomograph (HRRT). Eighteen patients with SCZ with ongoing psychotic symptoms and 27 healthy volunteers (HV) were recruited from a tertiary psychiatric clinical setting and the community, respectively. All participants underwent [(18)F]-FEPPA PET and magnetic resonance imaging, and PET data were analyzed to obtain [(18)F]-FEPPA total volume of distribution (V T) using a 2-tissue compartment model with an arterial plasma input function, as previously validated. All subjects were classified as high-, medium- or low-affinity [(18)F]-FEPPA binders on the basis of rs6971 polymorphism, and genotype information was incorporated into the analyses of imaging outcomes. No significant differences in neuroinflammation indexed as [(18)F]-FEPPA V T were observed between groups in either gray (F (1,39) = 0.179, P = .674) or white matter regions (F (1,38) = 0.597, P = .445). The lack of significant difference in neuroinflammation in treated patients with SCZ in the midst of a psychotic episode and HV suggests that neuroinflammatory processes may take place early in disease progression or are affected by antipsychotic treatment.
    Schizophrenia Bulletin 11/2014; 41(1). DOI:10.1093/schbul/sbu157 · 8.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability to quantify translocator protein 18kDa (TSPO) in white matter (WM) is important to understand the role of neuroinflammation in neurological disorders with WM involvement. This article aims to extend the utility of TSPO imaging in WM using a second-generation radioligand, [18F]-FEPPA, and High-Resolution Research Tomograph (HRRT) positron emission tomography (PET) camera system. Four WM regions of interests (WM-ROI), relevant to the study of aging and neuroinflammatory diseases, were examined. The corpus callosum, cingulum bundle, superior longitudinal fasciculus, and posterior limb of internal capsule were delineated automatically onto subject’s T1-weighted magnetic resonance image using a Diffusion Tensor Imaging (DTI)-based WM template. The TSPO polymorphism (rs6971) stratified individuals to three genetic groups: high-affinity binders (HAB), mixed-affinity binders (MAB), and low-affinity binders (LAB). [18F]- FEPPA PET scans were acquired on 32 healthy subjects and analyzed using a full kinetic compartment analysis. The two-tissue compartment model showed moderate identifiability (coefficient of variation: 15-19%) for [18F]-FEPPA total volume distribution (VT) in WM-ROIs. Noise affects VT variability, although its effect on bias was small (6%). In a worst-case scenario, ≤ 6% of simulated data did not fit reliably. A simulation of increased TSPO density exposed minimal effect on variability and identifiability of [18F]-FEPPA VT in WM-ROIs. We found no association between age and [18F]-FEPPA VT in WM-ROIs. The VT values were 15% higher in HAB than in MAB, although the difference was not statistically significant. This study provides evidence for the utility and limitations of [18F]-FEPPA PET to measure TSPO expression in WM. Synapse, 2014. © 2014 Wiley Periodicals, Inc.
    Synapse 11/2014; 68(11). DOI:10.1002/syn.21765 · 2.13 Impact Factor
  • Timothy M Shoup · Ali A Bonab · Alan A Wilson · Neil Vasdev
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Fatty acid amide hydrolase (FAAH), a catabolic enzyme which regulates lipid transmitters in the endocannabinoid system, is an avidly sought therapeutic and positron emission tomography (PET) imaging target for studies involving addiction and neurological disorders. We report the synthesis of a new fluorine-18-labeled FAAH inhibitor, trans-3-(4, 5-dihydrooxazol-2-yl)phenyl-4-[(18)F]fluorocyclohexylcarbamate ([(18)F]FCHC), and its evaluation in rat brain. Procedures: The synthesis of [(18)F]FCHC was conducted via a 3-step, 1-pot reaction, resulting in uncorrected radiochemical yields between 10 and 20% (n = 5) relative to [(18)F]fluoride, with specific activities of >5 Ci/μmol at the end of the synthesis. The radiosynthesis was seamlessly automated using a commercial radiofluorination apparatus. Ex vivo biodistribution and preliminary PET imaging studies were carried out in male Sprague-Dawley rats. Results: Rat brain biodistribution at 2 min post-injection showed a standard uptake value of 4.6 ± 0.1 in the cortex, which increased to 7.8 ± 0.1 at 40 min. Pretreatment with the selective FAAH inhibitor URB597 reduced uptake of radioactivity in all brain regions by >90%, with 98 % blockade in the FAAH-rich cortex. PET imaging was consistent with biodistribution studies. Conclusions: [(18)F]FCHC appears to be a highly sensitive (18)F-labeled radiotracer for imaging FAAH in the central nervous system, and these results warrant further imaging in nonhuman primates.
    Molecular imaging and biology: MIB: the official publication of the Academy of Molecular Imaging 10/2014; 17(2). DOI:10.1007/s11307-014-0789-1 · 2.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) are the two primary enzymes that regulate the tone of endocannabinoid signaling. Although new PET radiotracers have been discovered for imaging FAAH in vivo, no such radiotracer exists for imaging MAGL. Here we report the radiosynthesis of five candidate MAGL radiotracers and their ex vivo evaluations in mice and rats. Methods Candidate carbamate and urea MAGL inhibitors were radiolabeled at the carbonyl position by [11C]CO2 fixation. Radiotracers were administered (tail-vein injection) to rodents and brain uptake of radioactivity measured at early and late time points ex vivo. Specificity of uptake was explored by pretreatment with unlabeled inhibitors (2 mg/kg, ip) 30 min prior to radiotracer administration. Results: All five candidate MAGL radiotracers were prepared in high specific activity (> 65 GBq/μmol) and radiochemical purity (> 98%). Moderate brain uptake (0.2 - 0.8 SUV) was observed for each candidate while pretreatment did not reduce uptake for four of the five tested. For two candidates ([11C]12 and [11C]14), high retention of radioactivity was observed in the blood (ca. 10 and 4 SUV at 40 min) which was blocked by pretreatment with unlabeled inhibitors. The most promising candidate, [11C]18, demonstrated moderate brain uptake (ca. 0.8 SUV) which showed 50% blockade by pretreatment with unlabeled 18. Conclusion One putative and four reported potent and selective MAGL inhibitors have been radiolabeled via [11C]CO2 fixation as radiotracers for this enzyme. Despite the promising in vitro pharmacological profile, none of the five candidate radiotracers exhibited in vivo behavior suitable for PET neuroimaging.
    Nuclear Medicine and Biology 09/2014; 41(8). DOI:10.1016/j.nucmedbio.2014.05.001 · 2.41 Impact Factor

Publication Stats

8k Citations
1,156.70 Total Impact Points


  • 1999–2015
    • Centre for Addiction and Mental Health
      • • Research Imaging Centre
      • • Schizophrenia Program
      Toronto, Ontario, Canada
  • 1994–2015
    • University of Toronto
      • • Department of Psychiatry
      • • Institute of Medical Sciences
      • • Faculty of Medicine
      Toronto, Ontario, Canada
  • 1985–2006
    • Johns Hopkins Medicine
      • • Division of Nuclear Medicine
      • • Department of Radiology and Radiological Science
      Baltimore, Maryland, United States
  • 2004
    • University of Vienna
      Wien, Vienna, Austria
  • 2002
    • New York State Psychiatric Institute
      • Anxiety Disorders Clinic
      New York, New York, United States
  • 1982–1995
    • Johns Hopkins University
      • • Division of Nuclear Medicine
      • • Department of Radiology
      • • Department of Chemistry
      Baltimore, Maryland, United States