Marién Cobo

University of Granada, Granata, Andalusia, Spain

Are you Marién Cobo?

Claim your profile

Publications (12)53.05 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromatin insulators, such as the chicken β-globin locus control region hypersensitive site 4 (HS4), and scaffold/matrix attachment regions (SARs/MARs) have been incorporated separately or in combination into retroviral vectors (RVs) in order to increase transgene expression levels, avoid silencing and reduce expression variability. However, their incorporation into RVs either produces a reduction on titer and/or expression levels or do not have sufficient effect on stem cells. In order to develop an improved insulator we decided to combine SAR elements with HS4 insulators. We designed several synthetic shorter SAR elements containing 4 or 5 MAR/SARs recognition signatures (MRS) and studied their effects on a lentiviral vector (LV) expressing eGFP through the SFFV promoter (SE). A 388 bp SAR element containing 5 MRS, named SAR2, was as efficient or superior to the other SARs analyzed. SAR2 enhanced transgene expression and reduced silencing and variability on human embryonic stem cells (hESCs). We next compared the effect of different HS4-based insulators, the HS4-Core (250 bp), the HS4-Ext (400 bp) and the HS4-650 (650 bp). All HS4 elements reduced silencing and expression variability but they also had a negative effect on transgene expression levels and titer. In general, the HS4-650 element had a better overall effect. Based on these data we developed a chimeric insulator, IS2, combining the SAR2 and the HS4-650. When incorporated into the 3' LTR of the SE LV, the IS2 element was able to enhance expression, avoid silencing and reduce variability of expression on hESCs. Importantly, these effects were maintained after differentiation of the transduced hESCs toward the hematopoietic linage. Neither the HS4-650 nor the SAR2 elements had these effects. The IS2 element is therefore a novel insulator that confers expression stability and enhances expression of LVs on stem cells.
    PLoS ONE 01/2014; 9(1):e84268. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the WAS gene cause Wiskott-Aldrich syndrome (WAS), which is characterized by eczema, immunodeficiency and microthrombocytopenia. Although the role of WASP in lymphocytes and myeloid cells is well characterized, its role on megakaryocyte (MK) development is poorly understood. In order to develop a human cellular model that mimics the megakaryocytic-derived defects observed in WAS patients we used K562 cells, a well-known model for study of megakaryocytic development. We knocked out the WAS gene in K562 cells using a zinc-finger nuclease (ZFN) pair targeting the WAS intron 1 and a homologous donor DNA that disrupted WASP expression. Knockout of WASP on K562 cells (K562WASKO cells) resulted in several megakaryocytic-related defects such as morphological alterations, lower expression of CD41α, lower increments in F-actin polymerization upon stimulation, reduced CD43 expression and increased phosphatidylserine exposure. All these defects have been previously described either in WAS-knockout mice or in WAS patients, validating K562WASKO as a cell model for WAS. However, K562WASPKO cells showed also increased basal F-actin and adhesion, increased expression of CD61 and reduced expression of TGFβ and Factor VIII, defects that have never been described before for WAS-deficient cells. Interestingly, these phenotypic alterations correlate with different roles for WASP in megakaryocytic differentiation. All phenotypic alterations observed in K562WASKO cells were alleviated upon expression of WAS following lentiviral transduction, confirming the role of WASP in these phenotypes. In summary, in this work we have validated a human cellular model, K562WASPKO, that mimics the megakaryocytic-related defects found in WAS-knockout mice and have found evidences for a role of WASP as regulator of megakaryocytic differentiation. We propose the use of K562WASPKO cells as a tool to study the molecular mechanisms involved in the megakaryocytic-related defects observed in WAS patients and as a cellular model to study new therapeutic strategies.
    Disease Models and Mechanisms 01/2013; · 4.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Administration of in vitro expanded mesenchymal stromal cells (MSCs) represents a promising therapy for regenerative medicine and autoimmunity. Both mouse and human MSCs ameliorate autoimmune disease in syn-, allo- and xenogeneic settings. However, MSC preparations are heterogeneous which impairs their therapeutic efficacy and endorses variability between experiments. This heterogeneity has also been a main hurdle in translating experimental MSC data from mouse models to human patients. The objective of the present manuscript has been to further characterize murine MSCs (mMSCs) with the aim of designing more efficient and specific MSC-based therapies. We have found that mMSCs are heterogeneous for endoglin (CD105) expression and that this heterogeneity is not due to different stages of MSC differentiation. CD105 is induced on a subpopulation of mMSCs early upon in vitro culture giving rise to CD105(+) and CD105(-) MSCs. CD105(+) and CD105(-) mMSCs represent independent subpopulations that maintain their properties upon several passages. CD105 expression on CD105(+) mMSCs was affected by passage number and cell confluency while CD105(-) mMSCs remained negative. The CD105(+) and CD105(-) mMSC subpopulations had similar growth potential and expressed almost identical mMSC markers (CD29(+)CD44(+)Sca1 (+) MHC-I(+) and CD45(-)CD11b(-)CD31(-)) but varied in their differentiation and immunoregulatory properties. Interestingly, CD105(-) mMSCs were more prone to differentiate into adipocytes and osteocytes and suppressed the proliferation of CD4(+) T cells more efficiently compared to CD105(+) mMSCs. Based on these studies we propose to redefine the phenotype of mMSCs based on CD105 expression.
    PLoS ONE 01/2013; 8(10):e76979. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is a severe debilitating disorder characterised by progressive demyelination and axonal damage of the central nervous system (CNS). Current therapies for MS inhibit the immune response and demonstrate reasonable benefits if applied during the early phase of relapsing-remitting MS (RRMS) while there are no treatments for patients that progress neither to the chronic phase nor for the primary progressive form of the disease. In this manuscript we have studied the therapeutic efficacy of a cell and gene therapy strategy for the treatment of a mouse model of chronic MS (myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE)). We used allogenic mesenchymal stem cells (MSCs) as a therapeutic tool and also as vehicle to deliver fully processed 3.3 kDa vasoactive intestinal peptide (VIP) to the peripheral immune organs and to the inflamed CNS. Intra-peritoneal administrations of MSCs expressing VIP stopped progression and reduced symptoms when administered at peak of disease. The improvement in clinical score correlated with diminished peripheral T cell responses against MOG as well as lower inflammation, lower demyelination and higher neuronal integrity in the CNS. Interestingly, neither lentiviral vectors expressing VIP nor unmodified MSCs were therapeutic when administer at the peak of disease. The increased therapeutic effect of MSCs expressing VIP over unmodified MSCs requires the immunoregulatory and neuroprotective roles of both VIP and MSCs and the ability of the MSCs to migrate to peripheral lymph organs and the inflamed CNS.
    Cell Transplantation 10/2012; · 4.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic manipulation of human embryonic stem cells (hESCs) is instrumental for tracing lineage commitment and to studying human development. Here we used hematopoietic-specific Wiskott-Aldrich syndrome gene (WAS)-promoter driven lentiviral vectors (LVs) to achieve highly specific gene expression in hESCs-derived hematopoietic cells. We first demonstrated that endogenous WAS gene was not expressed in undifferentiated hESCs but was evident in hemogenic progenitors (CD45(-)CD31(+)CD34(+)) and hematopoietic cells (CD45(+)). Accordingly, WAS-promoter driven LVs were unable to express the eGFP transgene in undifferentiated hESCs. eGFP(+) cells only appeared after embryoid body (EB) hematopoietic differentiation. The phenotypic analysis of the eGFP(+) cells showed marking of different subpopulations at different days of differentiation. At days 10-15, AWE LVs tag hemogenic and hematopoietic progenitors cells (CD45(-)CD31(+)CD34(dim) and CD45(+)CD31(+)CD34(dim)) emerging from hESCs and at day 22 its expression became restricted to mature hematopoietic cells (CD45(+)CD33(+)). Surprisingly, at day 10 of differentiation, the AWE vector also marked CD45(-)CD31(low/-)CD34(-) cells, a population that disappeared at later stages of differentiation. We showed that the eGFP(+)CD45(-)CD31(+) population generate 5 times more CD45(+) cells than the eGFP(-)CD45(-)CD31(+) indicating that the AWE vector was identifying a subpopulation inside the CD45(-)CD31(+) cells with higher hemogenic capacity. We also showed generation of CD45(+) cells from the eGFP(+)CD45(-)CD31(low/-)CD34(-) population but not from the eGFP(-)CD45(-)CD31(low/-)CD34(-) cells. This is, to our knowledge, the first report of a gene transfer vector which specifically labels hemogenic progenitors and hematopoietic cells emerging from hESCs. We propose the use of WAS-promoter driven LVs as a novel tool to studying human hematopoietic development.
    PLoS ONE 01/2012; 7(6):e39091. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lentiviral vectors (LVs) are considered one of the most promising vehicles to efficiently deliver genetic information for basic research and gene therapy approaches. Combining LVs with drug-inducible expression systems should allow tight control of transgene expression with minimal side effect on relevant target cells. A new doxycycline-regulated system based on the original TetR repressor was developed in 1998 as an alternative to the TetR-VP16 chimeras (tTA and rtTA) to avoid secondary effects due to the expression of transactivator domains. However, previously described TetR-based systems required cell cloning and/or antibiotic selection of tetracycline-responsive cells in order to achieve good regulation. In the present manuscript we have constructed a dual Tet-ON system based on two lentiviral vectors, one expressing the TetR through the spleen focus forming virus (SFFV) promoter (STetR) and a second expressing eGFP through the regulatable CMV-TetO promoter (CTetOE). Using these vectors we have demonstrated that the TetR repressor, contrary to the reverse transactivator (rtTA), can be expressed in excess to bind and modulate a high number of TetO operons. We have also showed that this dual vector system can generate regulatable bulk cell lines (expressing high levels of TetR) that are able to modulate transgene expression either by varying doxycycline concentration and/or by varying the amount of CTetOE vector genomes per cell. Based on these results we have developed a new all-in-one lentiviral vector (CEST) driving the expression of TetR through the SFFV promoter and the expression of eGFP through the doxycycline-responsive CMV-TetO operon. This vector efficiently produced Tet-ON regulatable immortalized (293T) and primary (human mesenchymal stem cells and human primary fibroblasts) cells. Bulk doxycycline-responsive cell lines express high levels of the transgene with low amount of doxycycline and are phenotypically indistinct from its parental cells.
    PLoS ONE 01/2011; 6(8):e23734. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The application of new protocols for gene therapy against monogenic diseases requires the development of safer therapeutic vectors, particularly in the case of diseases in which expression of the mutated gene is subject to fine regulation, as it is with CD40L (CD154). CD40L, the gene mutated in the X-linked hyper-immunoglobulin M syndrome (HIGM1), is tightly regulated to allow surface expression of its product only on T cells stimulated by antigen encounter. Previous studies in an HIGM1 animal model showed that transduction of progenitor cells corrected the syndrome but caused a thymic lymphoproliferative disease because of the unregulated expression of the transgene by constitutive vectors. To develop a tissue-specific, activation-inducible, lentiviral vector (LV) for gene therapy to counter HIGM1, we have constructed two self-inactivating LVs, pCD40L-eGFP and pCD40L-CD40L, regulated by a 1.3 kb fragment of the human CD40L proximal promoter. The expression of pCD40L-eGFP LV is restricted to cells in which mRNA transcripts of the endogenous CD40L gene can be detected. Moreover, the expression of the reporter gene in primary T lymphocytes depends on the activation state of the cells. Remarkably, primary HIGM1 lymphocytes transduced with pCD40L-CD40L LV expressed CD40L only after T-cell stimulation. Therefore, the CD40L-promoter-driven vectors are able to achieve a near-physiological expression pattern that follows very closely that of the endogenous CD40L gene.
    Gene therapy 11/2010; 18(4):364-71. · 4.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After more than 1500 gene therapy clinical trials in the past two decades, the overall conclusion is that for gene therapy (GT) to be successful, the vector systems must still be improved in terms of delivery, expression and safety. The recent development of more efficient and stable vector systems has created great expectations for the future of GT. Impressive results were obtained in three primary immunodeficiencies and other inherited diseases such as congenital blindness, adrenoleukodystrophy or junctional epidermolysis bullosa. However, the development of leukemia in five children included in the GT clinical trials for X-linked severe combined immunodeficiency and the silencing of the therapeutic gene in the chronic granulomatous disease clearly showed the importance of improving safety and efficiency. In this review, we focus on the main strategies available to achieve physiological or tissue-specific expression of therapeutic transgenes and discuss the importance of controlling transgene expression to improve safety. We propose that tissue-specific and/or physiological viral vectors offer the best balance between efficiency and safety and will be the tools of choice for future clinical trials in GT of inherited diseases.
    Gene therapy 10/2010; 18(2):117-27. · 4.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exosome vesicles of endocytic origin are involved in communication between tumor and immune cells. In addition, membrane rafts (MR) may support the sorting of proteins associated with exosomes. CD38 is found at the plasma membrane and in recycling endosomes, which are both redistributed toward the immunological synapse (IS) upon T cell antigen receptor (TCR) engagement. The data of this study provide evidence that CD38 is expressed on the surface of secreted exosomes derived from lymphoblastoid B cells. Exosomic CD38 is associated with the signaling molecules CD81, Hsc-70 and Lyn. Likewise, in MR, CD38 is associated with CD81, CD19, Lyn, Galphai-2, Hsc-70 and actin. Therefore, a high degree of overlap in the pattern of signaling proteins associated with CD38 in exosomes and MR exists. Exosomic and MR CD38, by virtue of these interactions, have signaling potential. Indeed, CD38 is enzymatically active in both exosomes and MR, and CD38 ligation induces Akt/PKB and Erk activation, which is accompanied by increased translocation of CD38 into MR. In conclusion, the present study indicates that CD38 localizes to MR, where it promotes cell signaling, and it is exported out of the cells through the exosome-mediated exocytic pathway, where it may act as an intercellular messenger.
    Experimental Cell Research 10/2010; 316(16):2692-706. · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The development of vectors that express a therapeutic transgene efficiently and specifically in hematopoietic cells (HCs) is an important goal for gene therapy of hematological disorders. We have previously shown that a 500-bp fragment from the proximal Was gene promoter in a lentiviral vector (LV) was sufficient to achieve more than 100-fold higher levels of Wiskott-Aldrich syndrome protein in HCs than in nonhematopoietic cells (non-HCs). We show now that this differential was reduced up to 10 times when the enhanced green fluorescent protein gene (eGFP) was expressed instead of Was in the same LV backbone. Insertion of Was cDNA sequences downstream of eGFP in these LVs had a negative effect on transgene expression. This effect varied in different cell types but, overall, Was cDNA sequences increased the hematopoietic specificity of Was promoter-driven LV. We have characterized the minimal fragment required to increase hematopoietic specificity and have demonstrated that the mechanism involves Was promoter regulation and RNA processing. In addition, we have shown that Was cDNA sequences interfere with the enhancer activity of the woodchuck posttranscriptional regulatory element. These results represent the first data showing the role of Was intragenic sequences in gene regulation.
    Human gene therapy 08/2009; 20(11):1279-90. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vasoactive intestinal peptide (VIP) has been shown to exert potent immunomodulatory activity, and the use of lentiviral vectors has been found to be an effective means of gene delivery. The present study was therefore undertaken to investigate the feasibility and efficiency of gene therapy using lentiviral vectors expressing VIP (LentiVIP) for the treatment of rheumatoid arthritis (RA). We evaluated the therapeutic potential of the gene therapy strategy in the collagen-induced arthritis (CIA) mouse model, administering the vectors at different phases of the disease. The inflammatory response was determined by measuring the levels of various inflammatory cytokines and chemokines in the joints and serum. The Th1-mediated response was evaluated by determining the proliferative response and cytokine profile of T cells stimulated with autoantigen. A single intraperitoneal injection of LentiVIP was highly effective in treating CIA. Mice with established, severe arthritis showed complete regression of the disease. The therapeutic effect of LentiVIP was associated with widespread biodistribution of the vector and increased VIP levels, especially in joints and lymphoid organs, and was mediated through a striking reduction of the 2 deleterious components of the disease, i.e., the autoimmune response (self-reactive Th1 cell activity and autoantibody production) and the inflammatory response. LentiVIP treatment also induced the generation and/or activation of CD4+,CD25+,FoxP3+ Treg cells in arthritic mice. Our findings show that in vivo administration of lentiviral vector expressing VIP produces one of the most potent therapeutic effects described so far in any animal model of RA. We propose that VIP gene transfer should be further investigated as a potential novel, effective treatment of RA and other chronic autoimmune disorders.
    Arthritis & Rheumatology 05/2008; 58(4):1026-37. · 7.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Efficient and safe gene modification of hematopoietic stem cells is a requirement for gene therapy of primary immunodeficiencies such as Wiskott-Aldrich syndrome. However, deregulated expression or ectopic expression in the progeny of transduced nonhematopoietic progenitor cells may lead to unwanted toxicity. We therefore analyzed the effect of ectopic expression of Wiskott-Aldrich syndrome protein (WASp) and the potential benefits of hematopoietic-specific lentiviral vectors (driven by the WAS proximal promoter). Overexpression of WASp by constitutive lentiviral vectors is highly toxic in nonhematopoietic cells because it causes dramatic changes in actin localization and polymerization that result in decreased cell viability, as evidenced by a significant growth disadvantage of WASp-overexpressing nonhematopoietic cells and increased cell death. These toxic effects do not affect cells of hematopoietic origin because, remarkably, we found that WASp cannot be readily overexpressed in T cells, even after multiple vector integrations per cell. The adverse cellular effects found after transduction of nonhematopoietic cells with constitutive lentiviral vectors are overcome by the use of transcriptionally targeted lentiviral vectors expressing WASp, which, at the same time, are efficient tools for gene therapy of WAS as demonstrated by their ability to reconstitute cellular defects from WASp-deficient mouse and human cells. We therefore postulate that transcriptionally regulated lentiviral vectors represent a safer and efficient alternative for the development of clinical protocols of WAS gene therapy.
    Human Gene Therapy 03/2008; 19(2):179-97. · 4.02 Impact Factor

Publication Stats

87 Citations
53.05 Total Impact Points

Institutions

  • 2011–2013
    • University of Granada
      Granata, Andalusia, Spain
  • 2012
    • Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica
      Granata, Andalusia, Spain
  • 2009
    • Parque Tecnológico de Ciencias de la Salud (PTS)
      Granata, Andalusia, Spain
  • 2008
    • Spanish National Research Council
      • Institute of Parasitology and Biomedicine "López-Neyra"
      Madrid, Madrid, Spain