Asao Katsume

Kagoshima University, Kagosima, Kagoshima, Japan

Are you Asao Katsume?

Claim your profile

Publications (17)124.02 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Host cell lipid rafts form a scaffold required for replication of hepatitis C virus (HCV). Serine palmitoyltransferases (SPTs) produce sphingolipids-essential components of the lipid rafts that associate with HCV nonstructural proteins. Prevention of the de novo synthesis of sphingolipids by an SPT inhibitor disrupts the HCV replication complex and thereby inhibits HCV replication. We investigated the ability of the SPT inhibitor NA808 to prevent HCV replication in cells and mice. We tested the ability of NA808 to inhibit SPT's enzymatic activity in FLR3-1 replicon cells. We used a replicon system to select for HCV variants that became resistant to NA808 at concentrations 4- to 6-fold the 50% inhibitory concentration, after 14 rounds of cell passage. We assessed the ability of NA808 or telaprevir to inhibit replication of HCV genotypes1a, 1b, 2a, 3a, and 4a in mice with humanized livers (transplanted with human hepatocytes). NA808 was injected intravenously, with or without pegylated interferon alpha-2a (PEG-IFN) and HCV polymerase and/or protease inhibitors. NA808 prevented HCV replication via non-competitive inhibition of SPT; no resistance mutations developed. NA808 prevented replication of all HCV genotypes tested in mice with humanized livers. Intravenous NA808 significantly reduced viral load in the mice and had synergistic effects with PEG-IFN and HCV polymerase and protease inhibitors. The SPT inhibitor NA808 prevents replication of HCV genotypes 1a, 1b, 2a, 3a, and 4a in cultured hepatocytes and in mice with humanized livers. It might be developed for treatment of HCV infection or be used in combination with PEG-IFN or HCV polymerase or protease inhibitors.
    Gastroenterology 06/2013; · 12.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 4E Binding protein 1 (4E-BP1) suppresses translation initiation. The absence of 4E-BP1 drastically reduces the amount of adipose tissue in mice. To address the role of 4E-BP1 in adipocyte differentiation, we characterized 4E-BP1(-/-) mice in this study. The lack of 4E-BP1 decreased the amount of white adipose tissue and increased the amount of brown adipose tissue. In 4E-BP1(-/-) MEF cells, PPARγ coactivator 1 alpha (PGC-1α) expression increased and exogenous 4E-BP1 expression suppressed PGC-1α expression. The level of 4E-BP1 expression was higher in white adipocytes than in brown adipocytes and showed significantly greater up-regulation in white adipocytes than in brown adipocytes during preadipocyte differentiation into mature adipocytes. The amount of PGC-1α was consistently higher in HB cells (a brown preadipocyte cell line) than in HW cells (a white preadipocyte cell line) during differentiation. Moreover, the ectopic over-expression of 4E-BP1 suppressed PGC-1α expression in white adipocytes, but not in brown adipocytes. Thus, the results of our study indicate that 4E-BP1 may suppress brown adipocyte differentiation and PGC-1α expression in white adipose tissues.
    Genes to Cells 05/2013; · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-alcoholic steatohepatitis (NASH) is a progressive fibrotic disease, the pathogenesis of which has not been fully elucidated. One of the most common models used in NASH research is a nutritional model where NASH is induced by feeding a diet deficient in both methionine and choline. However, the dietary methionine-/choline-deficient model in mice can cause severe weight loss and liver atrophy, which are not characteristics of NASH seen in human patients. Exclusive, long-term feeding with a high-fat diet (HFD) produced fatty liver and obesity in mice, but the HFD for several months did not affect fibrosis. We aimed to establish a mouse model of NASH with fibrosis by optimizing the methionine content in the HFD. Male mice were fed a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) consisting of 60 kcal% fat and 0.1% methionine by weight. After 1-14 weeks of being fed CDAHFD, the mice were killed. C57BL/6J mice maintained or gained weight when fed CDAHFD, while A/J mice showed a steady decline in body weight (of up to 20% of initial weight). In both strains of mice, plasma levels of alanine aminotransferase increased from week 1, when hepatic steatosis was also observed. By week 6, C57BL/6J mice had developed enlarged fatty liver with fibrosis as assessed by Masson's trichrome staining and by hydroxyproline assay. Therefore, this improved CDAHFD model may be a mouse model of rapidly progressive liver fibrosis and be potentially useful for better understanding human NASH disease and in the development of efficient therapies for this condition.
    International Journal of Experimental Pathology 01/2013; · 2.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) infection represents a serious health-care problem. Previously we reported the identification of NA255 from our natural products library using a HCV sub-genomic replicon cell culture system. Herein, we report how the absolute stereochemistry of NA255 was determined and an enantioselective synthetic method for NA255 derivatives was developed. The structure-activity relationship of the NA255 derivatives and rat pharmacokinetic profiles of the representative compounds are disclosed.
    Bioorganic & medicinal chemistry letters 10/2012; · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipids are key components in the viral life cycle that affect host-pathogen interactions. In this study, we investigated the effect of HCV infection on sphingolipid metabolism, especially on endogenous SM levels, and the relationship between HCV replication and endogenous SM molecular species. We demonstrated that HCV induces the expression of the genes (SGMS1 and 2) encoding human SM synthases 1 and 2. We observed associated increases of both total and individual sphingolipid molecular species, as assessed in human hepatocytes and in the detergent-resistant membrane (DRM) fraction in which HCV replicates. SGMS1 expression had a correlation with HCV replication. Inhibition of sphingolipid biosynthesis with a hepatotropic serine palmitoyltransferase (SPT) inhibitor, NA808, suppressed HCV-RNA production while also interfering with sphingolipid metabolism. Further, we identified the SM molecular species that comprise the DRM fraction and demonstrated that these endogenous SM species interacted with HCV nonstructural 5B polymerase to enhance viral replication. Our results reveal that HCV alters sphingolipid metabolism to promote viral replication, providing new insights into the formation of the HCV replication complex and the involvement of host lipids in the HCV life cycle.
    PLoS Pathogens 08/2012; 8(8):e1002860. · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most acute hepatitis C virus (HCV) infections become chronic and some progress to liver cirrhosis or hepatocellular carcinoma. Standard therapy involves an interferon (IFN)-α-based regimen, and efficacy of therapy has been significantly improved by the development of protease inhibitors. However, several issues remain concerning the injectable form and the side effects of IFN. Here, we report an orally available, small-molecule type I IFN receptor agonist that directly transduces the IFN signal cascade and stimulates antiviral gene expression. Like type I IFN, the small-molecule compound induces IFN-stimulated gene (ISG) expression for antiviral activity in vitro and in vivo in mice, and the ISG induction mechanism is attributed to a direct interaction between the compound and IFN-α receptor 2, a key molecule of IFN-signaling on the cell surface. Our study highlights the importance of an orally active IFN-like agent, both as a therapy for antiviral infections and as a potential IFN substitute.
    Scientific Reports 01/2012; 2:259. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lack of a small-animal model has hampered the analysis of hepatitis C virus (HCV) pathogenesis. The tupaia (Tupaia belangeri), a tree shrew, has shown susceptibility to HCV infection and has been considered a possible candidate for a small experimental model of HCV infection. However, a longitudinal analysis of HCV-infected tupaias has yet to be described. Here, we provide an analysis of HCV pathogenesis during the course of infection in tupaias over a 3-year period. The animals were inoculated with hepatitis C patient serum HCR6 or viral particles reconstituted from full-length cDNA. In either case, inoculation caused mild hepatitis and intermittent viremia during the acute phase of infection. Histological analysis of infected livers revealed that HCV caused chronic hepatitis that worsened in a time-dependent manner. Liver steatosis, cirrhotic nodules, and accompanying tumorigenesis were also detected. To examine whether infectious virus particles were produced in tupaia livers, naive animals were inoculated with sera from HCV-infected tupaias, which had been confirmed positive for HCV RNA. As a result, the recipient animals also displayed mild hepatitis and intermittent viremia. Quasispecies were also observed in the NS5A region, signaling phylogenic lineage from the original inoculating sequence. Taken together, these data suggest that the tupaia is a practical animal model for experimental studies of HCV infection.
    Journal of Virology 10/2009; 84(1):303-11. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An estimated 170 million individuals worldwide are infected with hepatitis C virus (HCV), a serious cause of chronic liver disease. Current interferon-based therapy for treating HCV infection has an unsatisfactory cure rate, and the development of more efficient drugs is needed. During the early stages of HCV infections, various host genes are differentially regulated, and it is possible that inhibition of host proteins affords a therapeutic strategy for treatment of HCV infection. Using an HCV subgenomic replicon cell culture system, here we have identified, from a secondary fungal metabolite, a lipophilic long-chain base compound, NA255 (1), a previously unknown small-molecule HCV replication inhibitor. NA255 prevents the de novo synthesis of sphingolipids, major lipid raft components, thereby inhibiting serine palmitoyltransferase, and it disrupts the association among HCV nonstructural (NS) viral proteins on the lipid rafts. Furthermore, we found that NS5B protein has a sphingolipid-binding motif in its molecular structure and that the domain was able to directly interact with sphingomyelin. Thus, NA255 is a new anti-HCV replication inhibitor that targets host lipid rafts, suggesting that inhibition of sphingolipid metabolism may provide a new therapeutic strategy for treatment of HCV infection.
    Nature Chemical Biology 12/2005; 1(6):333-7. · 12.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in molecular cloning of hepatitis C virus (HCV) have enabled us to apply some available HCV molecular clones to experimental studies. However, these investigations have been restricted to chimpanzee models or 'isolated hepatocytes' from tree shrews. In this study, we engrafted 'human liver tissue' into immunodeficient mice and investigated HCV infection using an infectious molecular clone. Human liver tissues from normal (non-HCV-infected) liver were transplanted into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. We then inoculated the mice with sera from HCV-infected patients or an infectious HCV molecular clone. HCV RNA was assessed using nested reverse-transcription polymerase chain reaction (PCR), real-time detection PCR and in situ PCR. Without any growth support, normal human liver tissues survived in NOD/SCID mice while maintaining the original viable hepatic architecture. HCV RNA was detected in the mice serum until the fourth week after the inoculation. In situ PCR and immunohistochemistry clearly demonstrated positive signals for HCV in the cytoplasm of infected hepatocytes, while the engrafted human liver tissues showed no apparent morphological changes indicative of infection. Engraftment of human liver tissues into NOD/SCID mice and infection with HCV molecular clones could offer a reverse genetic strategy for HCV infection.
    Liver international: official journal of the International Association for the Study of the Liver 07/2004; 24(3):259-67. · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) causes persistent infection in hepatocytes, and this infection is, in turn, strongly associated with the development of hepatocellular carcinoma. To clarify the mechanisms underlying these effects, we established a Cre/loxP conditional expression system for the precisely self-trimmed HCV genome in human liver cells. Passage of hepatocytes expressing replicable full-length HCV (HCR6-Rz) RNA caused up-regulation of anchorage-independent growth after 44 days. In contrast, hepatocytes expressing HCV structural, nonstructural, or all viral proteins showed no significant changes after passage for 44 days. Only cells expressing HCR6-Rz passaged for 44 days displayed acceleration of CDK activity, hyperphosphorylation of Rb, and E2F activation. These results demonstrate that full genome HCV expression up-regulates the CDK-Rb-E2F pathway much more effectively than HCV proteins during passage.
    Journal of Biological Chemistry 05/2004; 279(15):14531-41. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pax6 is a transcription factor involved in brain patterning and neurogenesis. Expression of Pax6 is specifically observed in the developing cerebral cortex, where Lewis x epitope that is thought to play important roles in cell interactions is colocalized. Here we examined whether Pax6 regulates localization of Lewis x using Pax6 mutant rat embryos. The Lewis x epitope disappeared in the Pax6 mutant cortex, and activity of alpha1,3-fucosyltransferase, which catalyzed the last step of Lewis x biosynthesis, drastically decreased in the mutant cortex as compared with the wild type. Furthermore, expression of a fucosyltransferase gene, FucT-IX, specifically decreased in the mutant, while no change was seen for expression of another fucosyltransferase gene, FucT-IV. These results strongly suggest that Pax6 controls Lewis x expression in the embryonic brain by regulating FucT-IX gene expression.
    Journal of Biological Chemistry 02/2002; 277(3):2033-9. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pax6 is a transcription factor involved in brain patterning and neurogenesis. Expression ofPax6 is specifically observed in the developing cerebral cortex, where Lewis x epitope that is thought to play important roles in cell interactions is colocalized. Here we examined whetherPax6 regulates localization of Lewis x usingPax6 mutant rat embryos. The Lewis x epitope disappeared in the Pax6 mutant cortex, and activity of α1,3-fucosyltransferase, which catalyzed the last step of Lewis x biosynthesis, drastically decreased in the mutant cortex as compared with the wild type. Furthermore, expression of a fucosyltransferase gene, FucT-IX, specifically decreased in the mutant, while no change was seen for expression of another fucosyltransferase gene,FucT-IV. These results strongly suggest thatPax6 controls Lewis x expression in the embryonic brain by regulating FucT-IX gene expression.
    Journal of Biological Chemistry 01/2002; 277(3):2033-2039. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: All nuclear-encoded mRNAs contain a 5' cap structure (m7GpppN, where N is any nucleotide), which is recognized by the eukaryotic translation initiation factor 4E (eIF4E) subunit of the eIF4F complex. The eIF4E-binding proteins constitute a family of three polypeptides that reversibly repress cap-dependent translation by binding to eIF4E, thus preventing the formation of the eIF4F complex. We investigated the biological function of 4E-BP1 by disrupting its gene (Eif4ebp1) in the mouse. Eif4ebp1-/- mice manifest markedly smaller white fat pads than wild-type animals, and knockout males display an increase in metabolic rate. The males' white adipose tissue contains cells that exhibit the distinctive multilocular appearance of brown adipocytes, and expresses the uncoupling protein 1 (UCP1), a specific marker of brown fat. Consistent with these observations, translation of the peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC1), a transcriptional co-activator implicated in mitochondrial biogenesis and adaptive thermogenesis, is increased in white adipose tissue of Eif4ebp1-/- mice. These findings demonstrate that 4E-BP1 is a novel regulator of adipogenesis and metabolism in mammals.
    Nature Medicine 11/2001; 7(10):1128-32. · 22.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) replicates in human and chimpanzee hepatocytes. To characterize the nature of HCV and evaluate antiviral agents, the development of an HCV replication system in a cell culture is essential. We developed a cell line derived from human hepatocytes by fusing them with a hepatoblastoma cell line, HepG2, and obtained several clones. When we tested the clones for their ability to support HCV replication by nested RT-PCR, we found 1 clone (IMY-N9) that was more susceptible to HCV replication than HepG2. The negative-strand HCV RNA was detected in IMY-N9 by strand-specific RT-PCR, and viral RNA was identified in culture supernatant during the culture. Then we monitored HCV RNA titers in IMY-N9 and HepG2, respectively, by real-time detection PCR throughout the culture. A significant increase in the HCV RNA titer was observed only in IMY-N9. Serial passages of HCV culture supernatant were shown in the culture system. Furthermore, we tested several infectious materials for viral infectivity by monitoring HCV RNA titers and/or 50% tissue culture infectious dose (TCID50) of HCV on IMY-N9. In each material, HCV showed various growth patterns and a different TCID50 even though the PCR titer in each material was identical. The results showed that HCV in each material served various growth patterns and different TCID50 even though PCR titer in each material was identical. This cell line is useful for estimating viral activity and for studying cellular factors that may be necessary to HCV replication in human hepatocytes.
    Hepatology 10/2001; 34(3):566-72. · 12.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A line of hepatitis C virus (HCV) transgenic mice was established previously that was mediated by Cre/loxP system using HCV cDNA, including core, E1, E2 and NS2 genes. Intravenous infection of a recombinant adenovirus that expresses Cre DNA recombinase (AxCANCre) induced HCV structural protein expression in the liver of transgenic mice. HCV core protein production and transgene recombination in the mouse liver were serially evaluated after AxCANCre infusion. Core proteins were expressed efficiently and transgene was almost completely recombined in the liver of mice after 3 days and then the levels of both core protein production and transgene recombination decreased continuously for 28 days. However, 30.6% of the transgene recombination remained at 28 days and only 2.7% of core production remained at 28 days after infection. Compared with nontransgenic controls, the serum alanine aminotransferase levels in transgenic mice were significantly higher 10, 14, and 21 days after adenovirus infection. Histological scoring also indicated severe pathological changes in the liver of transgenic mice after adenovirus infection. AxCANCre infusion increased CD8+ lymphocyte infiltration into the liver of transgenic mice compared with that of non-transgenic controls. Furthermore, cytotoxic T lymphocytes (CTLs) isolated from transgenic mice during liver injury were specific for the HCV proteins. These results suggest that HCV structural proteins expressed in the liver of transgenic mice enhanced liver injury. HCV-specific CTLs may be to enhance hepatitis. Thus, the present HCV transgenic mouse model provides a useful model of liver injury due to HCV, and the host immune response may play a pivotal role(s) in the pathogenesis of HCV.
    Journal of Medical Virology 12/2000; 62(3):308-17. · 2.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background & Aims: For diagnosis of hepatitis C virus infection and monitoring of viral load in patients, a highly sensitive and accurate hepatitis C virus quantification system is essential. Methods: Hepatitis C virus genome was detected by real/time detection system using an ABI Prism 7700 sequence detector (Perkin Elmer Corp./Applied Biosystems, Foster City, CA). Results: As few as 10 copies of the genome were detected, and the quantification range was between 101 and 108 copies (r > 0.99). This system was 10–100-fold more sensitive than an Amplicor monitor (Roche Diagnostic Systems, Branchburg, NJ). The coefficient of variation values for both intra-assay precision and interassay reproducibility of identifying the genome quantification ranged from 0.37% to 2.00% and 0.88% to 4.66%, respectively. The system could detect the genome in 98% of patients with chronic hepatitis, 95.8% of patients with liver cirrhosis, and 100% of patients with hepatocellular carcinoma who had the antibody to hepatitis C virus, but could not detect the genome in patients without the antibody. Conclusions: The establishment of a real-time detection system enables more accurate diagnosis of infection and monitoring of viral load in interferon-treated patients via quantification of viral genome.GASTROENTEROLOGY 1999;116:636-642
    Gastroenterology 04/1999; · 12.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conditional gene expression has greatly facilitated the examination of the functions of particular gene products. Using the Cre/loxP system, we developed efficient conditional transgene activation of hepatitis C virus (HCV) cDNA (nucleotides 294-3435) in transgenic mice. Efficient recombination was observed in transgenic mouse liver upon intravenous administration of adenovirus that expresses Cre DNA recombinase. After transgene activation, most hepatocytes were stained with anti-core polyclonal antibody, and 21-, 37-, and 64-kDa proteins were detected by Western blot analysis in liver lysates using anti-core, E1, and E2 monoclonal antibodies, respectively. Serum core protein was detected in transgenic mice 7 days after transgene activation with concurrent increases in serum alanine aminotransferase levels. Subsequently, an anti-core antibody response was detected 14 days after infection. Furthermore, a CD4 and CD8 positive cell depletion assay normalized both the serum alanine aminotransferase increases and pathological changes in the liver. These results suggest that HCV proteins are not directly cytopathic and that the host immune response plays a pivotal role in HCV infection. Thus, this HCV cDNA transgenic mouse provides a powerful tool with which to investigate the immune responses and pathogenesis of HCV infection.
    Journal of Biological Chemistry 04/1998; 273(15):9001-6. · 4.65 Impact Factor

Publication Stats

675 Citations
124.02 Total Impact Points

Institutions

  • 2013
    • Kagoshima University
      Kagosima, Kagoshima, Japan
  • 1999–2013
    • Tokyo Metropolitan Institute of Medical Science
      Edo, Tōkyō, Japan
  • 1999–2009
    • Tokyo Metropolitan Komagome Hospital
      Edo, Tōkyō, Japan
  • 2005
    • Chugai pharmceutical
      Japan