M Tokuda

Kagawa University, Takamatu, Kagawa, Japan

Are you M Tokuda?

Claim your profile

Publications (224)622.76 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study we investigated the combined effects of docetaxel and d-allose in HSC3 human oral carcinoma cells. The dose enhancement ratios at the 25% survival level were 1.3 and 1.71 for combined treatment with 10 or 25 mM D-allose, respectively. Apoptosis was significantly increased by addition of D-allose. Additionally, a synchronous increase in the G2/M-phase population was observed after docetaxel plus D-allose treatment. In vivo experiments revealed that docetaxel plus D-allose was more effective than either agent alone. Thus, D-allose enhanced the anticancer effects of docetaxel, and combined treatment may be useful to achieve clinical efficacy with reduced toxicity.
    International journal of oncology. 08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous reports showed the presence of limited numbers of stem cells in neonatal murine cochlear sensory epithelia and these cells are progressively lost during the postnatal development. The goal of this study was to investigate whether stem cells can be derived from mature mouse cochleae under suspension culture conditions, and to analyze the expression of the stem cell and inner ear progenitor cell markers in cells dissociated from neonatal and adult mouse organs of Corti.
    Journal of translational medicine. 05/2014; 12(1):150.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angiotensin (Ang) II receptor blockers (ARBs) alleviate obesity-related insulin resistance, which suggests an important role for the Ang II type 1 receptor (AT1R) in the regulation of adipocytokines. Therefore, we treated mature 3T3-L1 adipocytes with 50 μmol l(-1) of valsartan, a selective AT1R blocker without direct agonism to peroxisome proliferator-activated receptor (PPAR)-γ. In the absence of effective concentrations of Ang II, unstimulated mature adipocytes expressed and secreted high levels of interleukin (IL)-6. This constitutive proinflammatory activity was attenuated by the suppression of extracellular signal-regulated kinase phosphorylation by valsartan but was unaffected by the Ang II type 2 receptor blocker PD123319. COS7 cells co-transfected with AT1R and IL-6, which expressed NF-κB but lacked PPAR-γ, showed no constitutive but substantial ligand-dependent IL-6 reporter activity, which was counteracted by valsartan. Valsartan preserved cytosolic IκB-α and subsequently reduced nuclear NF-κB1 protein expression in mature adipocytes. Interestingly, valsartan did not increase PPAR-γ messenger RNA expression per se but enhanced the transcriptional activity of PPAR-γ in mature adipocytes; this enhancement was accompanied by upregulation of the PPAR coactivator (PGC)-1α. Moreover, T0090907, a PPAR-γ inhibitor, increased IL-6 expression, and this increase was attenuated by valsartan. Indeed, addition of valsartan without direct PPAR-γ agonism increased adiponectin production in mature adipocytes. Together, the findings indicate that valsartan blocks the constitutive AT1R activity involving the NF-κB pathway that limits PPAR-γ activity in mature adipocytes. Thus, inverse agonism of AT1R attenuates the spontaneous proinflammatory response and enhances the constitutive insulin-sensitizing activities of mature adipocytes, which may underlie the beneficial metabolic impacts of ARBs.Hypertension Research advance online publication, 6 March 2014; doi:10.1038/hr.2014.51.
    Hypertension Research 03/2014; · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High fructose intake is associated with increased plasma triglyceride concentration, hepatic steatosis, impaired glucose tolerance, insulin resistance, and high blood pressure. In addition, increased fructose intake has recently been supposed to be a risk factor for dementia. However, direct effects of fructose on the brain function remain to be clarified. The localization of glucose transporter 5 (Glut5), a representative transporter of fructose, was immunohistochemically examined in brains of humans, rats, and mice to clarify whether fructose was transported from the blood into the brain. Glut5 immunoreactivity was demonstrated to be located in the epithelial cells of choroid plexus and the ependymal cells in the brains of humans and rats using commercial antibodies for Glut5. In addition, mRNA expression of mouse Glut5 was confirmed in the brains of mice. Immunohistochemical examination using a custom-made antibody against two regions of amino acid sequences of mouse Glut5 revealed that Glut5 immunoreactivity was also seen in the epithelial cells of choroid plexus and the ependymal cells in the brains of mice. These findings show that Glut5 immunoreactivity is located in the epithelial cells of choroid plexus and the ependymal cells, suggesting the possibility of the direct transportation of intravascular fructose into the brain parenchyma.
    Neuroscience 12/2013; · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene that regulates various cell processes including proliferation, growth, synaptogenesis, neural and glioma stem/progenitor cell renewal. In addition, PTEN can regulate sensory cell proliferation and differentiation of hair bundles in the mammalian cochlea. In this study we use immunofluorescence, western blot and RT-PCR to reveal the expression of PTEN in the developing cochlear lateral wall, which is crucial for regulating K(+) homeostasis. Relatively high levels of PTEN are initially expressed in the marginal cells (MCs) of the lateral wall at embryonic day (E) 17.5 when they start to differentiate. Similarly high levels are subsequently expressed in differentiating root cells (RCs) at postnatal day (P) 3 and then in spiral ligament fibrocytes (SLFs) at postnatal day (P) 10. In the mature cochlea, PTEN expression is low or undetectable in MCs and SLFs but it remains high in RCs and their processes. The expression pattern for PTEN in the developing lateral wall suggests that it plays a critical role in the differentiation of the cellular pathways that regulate K(+) homeostasis in the cochlea.
    Neuroscience 11/2013; · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence has suggested the importance of glutamate signaling in cancer growth, yet the signaling pathway has not been fully elucidated. N-methyl-D-aspartic acid (NMDA) receptor activates intracellular signaling pathways such as the extracellular-signal-regulated kinase (ERK) and forkhead box, class O (FOXO). Suppression of lung carcinoma growth by NMDA receptor antagonists via the ERK pathway has been reported. However, series of evidences suggested the importance of FOXO pathways for the regulation of normal and cancer cell growth. In the liver, FOXO1 play important roles for the cell proliferation such as hepatic stellate cells as well as liver metabolism. Our aim was to investigate the involvement of the FOXO pathway and the target genes in the growth inhibitory effects of NMDA receptor antagonist MK-801 in human hepatocellular carcinoma. Expression of NMDAR1 in cancer cell lines from different tissues was examined by Western blot. NMDA receptor subunits in HepG2, HuH-7, and HLF were examined by reverse transcriptase polymerase chain reaction (RT-PCR), and growth inhibition by MK-801 and NBQX was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of MK-801 on the cell cycle were examined by flow cytometry and Western blot analysis. Expression of thioredoxin-interacting protein (TXNIP) and p27 was determined by real-time PCR and Western blotting. Activation of the FOXO pathway and TXNIP induction were examined by Western blotting, fluorescence microscopy, Chromatin immunoprecipitation (ChIP) assay, and reporter gene assay. The effects of TXNIP on growth inhibition were examined using the gene silencing technique. NMDA receptor subunits were expressed in all cell lines examined, and MK-801, but not NBQX, inhibited cell growth of hepatocellular carcinomas. Cell cycle analysis showed that MK-801 induced G1 cell cycle arrest by down-regulating cyclin D1 and up-regulating p27. MK-801 dephosphorylated Thr24 in FOXO1 and induced its nuclear translocation, thus increasing transcription of TXNIP, a tumor suppressor gene. Knock-down of TXNIP ameliorated the growth inhibitory effects of MK-801. Our results indicate that functional NMDA receptors are expressed in hepatocellular carcinomas and that the FOXO pathway is involved in the growth inhibitory effects of MK-801. This mechanism could be common in hepatocellular carcinomas examined, but other mechanisms such as ERK pathway could exist in other cancer cells as reported in lung carcinoma cells. Altered expression levels of FOXO target genes including cyclin D1 and p27 may contribute to the inhibition of G1/S cell cycle transition. Induction of the tumor suppressor gene TXNIP plays an important role in the growth inhibition by MK-801. Our report provides new evidence that FOXO-TXNIP pathway play a role in the inhibition of the hepatocellular carcinoma growth by MK-801.
    BMC Cancer 10/2013; 13(1):468. · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Suramin is an activator of ryanodine receptors and competitively binds to the calmodulin-binding site. In addition, S100A1 and calmodulin compete for the same binding site on ryanodine receptors. We therefore studied the effects of suramin on protein phosphatase 5 (PP5) and S100-activated PP5. In the absence of S100 proteins, suramin bound to the tetratricopeptide repeat (TPR) domain of PP5 and activated the enzyme in a dose-dependent manner. In the presence of S100A2/Ca(2+), lower concentrations of suramin dose-dependently inhibited PP5 activity as an S100 antagonist, whereas higher concentrations of suramin reactivated PP5. Although the C-terminal fragment of heat shock protein 90 (HspC90) also weakly activated PP5, the binding site of suramin and HspC90 may be different, and addition of suramin showed no clear effect on the phosphatase activity of PP5. Similar biphasic effects of suramin were observed with S100A1-, S100B- or S100P-activated PP5. However, the inhibitory effects of lower concentrations of suramin on S100A6-activated PP5 are weak and high concentrations of suramin further activated PP5. SPR and the cross-linking study showed inhibition of the interaction between S100 protein and PP5 by suramin. Our results revealed that suramin is a novel PP5 activator and modulates S100-activated PP5 activity by competitively binding to the TPR domain.
    Applied biochemistry and biotechnology 09/2013; · 1.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Recently, one of the rare sugars, D-allose, has received attention from many researchers because of its availability for mass production and its various physiological functions. Among these, an antioxidative effect has been strongly suggested. In this study, we investigated whether this effect is also applicable to the field of skin surgery. METHODS: In ischemia-reperfusion injury model using the rat abdominal skin island flap (male Wistar rats, n = 110), D-allose was injected intravenously 15 min before 8-h ischemia. The survival area (%) was measured by digital photographic assessment 1 wk after surgery, and multiple comparisons (Fisher's protected least significant difference) were carried out. Histopathological examination (neutrophilic infiltration into dermis in hematoxylin and eosin stain) and immunostaining (of ectodermal dysplasia-1 (ED1)-positive cells/flap) were assessed. Myeloperoxidase (MPO) activity in the skin flap (sampling at the time of 8 h after reperfusion) was measured spectrophotometrically, and Student t-test was performed. RESULTS: D-allose extended the survival of the remaining flaps, and a dose greater than 30 mg (0.1 mg/g) was necessary to be effective. The flap survival rates in the 30, 60, and 150 mg groups were significantly higher than that in the control (saline) group: 75.87 ± 5.90, 79.27 ± 7.81, and 77.87 ± 6.20 versus 50.53 ± 9.66, respectively (P < 0.05). ED1-positive cells/flap in 60 mg of D-allose and control (saline) were 78 ± 25.7 versus 124 ± 15.8, respectively (P = 0.08). The MPO activity in the D-allose 60 mg group was 0.40 ± 0.04, and that in the control (saline) was 0.72 ± 0.12. D-allose significantly reduced the skin tissue MPO activity (P < 0.05) compared with that in the control (saline) group. CONCLUSIONS: We proved that D-allose has a reducing effect against ischemia-reperfusion injury on the skin island flap model, and the mechanism is related to inhibiting the activity of neutrophils in the skin tissues. Compared with chemo-synthetic materials, rare sugars are safer for our bodies as well as the environment; therefore, this rare sugar project is expected to lead to the development of a safer antioxidant for skin flap surgery.
    Journal of Surgical Research 03/2013; · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 3'-Deoxy-3'-[(18)F]-fluorothymidine ([(18)F]-FLT), a marker of cellular proliferation, has been used in positron emission tomography (PET) examination of gliomas. The aim of this study was to investigate whether the uptake of [(18)F]-FLT in glioma correlates with messenger RNA (mRNA) levels of the equilibrative nucleoside transporter 1 (ENT1), microvascular density (assessed by CD34 immunohistochemistry), and the blood-brain barrier (BBB) breakdown. A total of 21 patients with newly diagnosed glioma were examined with [(18)F]-FLT PET. Tumor lesions were identified as areas of focally increased [(18)F]-FLT uptake, exceeding that of surrounding normal tissue. Dynamic analysis of [(18)F]-FLT PET revealed correlations between the phosphorylation rate constant k (3) and ENT1 expression; however there was no correlation between the kinetic parameters and CD34 score. There was a good correlation between the gadolinium (Gd) enhancement score (evaluating BBB breakdown) and ENT1 expression, CD34 score, and Ki-67 index. This preliminary study suggests that ENT1 expression might not reflect accumulation of [(18)F]-FLT in vivo due to BBB permeability in glioma.
    Brain Tumor Pathology 02/2013; · 1.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: The thymidine analog 3'-deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT) has been developed as a positron emission tomography (PET) tracer to assess the proliferation activity of tumors in vivo. The present study investigated the relationship between the kinetic parameters of (18)F-FLT in vivo and thymidine kinase-1 (TK-1) expression and cell proliferation rate in vitro, and blood-brain barrier (BBB) breakdown in human brain gliomas. METHODS: A total of 21 patients with newly diagnosed gliomas were examined by (18)F-FLT PET kinetic analysis. Maximum standardized uptake value (SUVmax) and tumor-to-normal (T/N) ratio of (18)F-FLT in the tumor and (18)F-FLT kinetic parameters in the corresponding contralateral region were determined. The expression levels of TK-1 protein and mRNA were determined by immunohistochemistry (IHC) and real-time polymerase chain reaction (PCR), respectively, using surgical specimens. The cell proliferation rate of the tumor was determined in terms of the Ki-67 labeling index. BBB breakdown was evaluated on MR images with contrast enhancement. RESULTS: (18)F-FLT SUVmax and T/N ratio were significantly correlated with the influx rate constant (K (1); P = 0.001 and P < 0.001, respectively), but not with the phosphorylation rate constant (k (3)). IHC and real-time PCR studies demonstrated a significant correlation between K (1) and TK-1 mRNA expression (P = 0.001), but not between k (3) and TK-1 protein and mRNA expression. Linear regression analysis revealed a significant correlation between K (1) and the Ki-67 index (P = 0.003), but not between k (3) and the Ki-67 index. TK-1 mRNA expression was significantly correlated with the Ki-67 index (P = 0.009). (18)F-FLT SUVmax and T/N ratio were significantly correlated with BBB breakdown evaluated by contrast enhancement in MR images (P = 0.003 and P = 0.011, respectively). CONCLUSION: These results indicate that (18)F-FLT uptake in the tumor is significantly related to transport through the disrupted BBB, but not through phosphorylation activity. Although the tissue TK-1 expression reflects tumor proliferation activity, the phosphorylation rate constant k (3) determined by (18)F-FLT PET kinetic analysis does not accurately reflect TK-1 expression in the tissue and should not be used as a surrogate biomarker of cell proliferation activity in human brain gliomas.
    European Journal of Nuclear Medicine 11/2012; · 4.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mps one binder 1a (MOB1A) and MOB1B are key components of the Hippo signaling pathway and are mutated or inactivated in many human cancers. Here we show that intact Mob1a or Mob1b is essential for murine embryogenesis and that loss of the remaining WT Mob1 allele in Mob1aΔ/Δ1btr/+ or Mob1aΔ/+1btr/tr mice results in tumor development. Because most of these cancers resembled trichilemmal carcinomas, we generated double-mutant mice bearing tamoxifen-inducible, keratinocyte-specific homozygous-null mutations of Mob1a and Mob1b (kDKO mice). kDKO mice showed hyperplastic keratinocyte progenitors and defective keratinocyte terminal differentiation and soon died of malnutrition. kDKO keratinocytes exhibited hyperproliferation, apoptotic resistance, impaired contact inhibition, enhanced progenitor self renewal, and increased centrosomes. Examination of Hippo pathway signaling in kDKO keratinocytes revealed that loss of Mob1a/b altered the activities of the downstream Hippo mediators LATS and YAP1. Similarly, YAP1 was activated in some human trichilemmal carcinomas, and some of these also exhibited MOB1A/1B inactivation. Our results clearly demonstrate that MOB1A and MOB1B have overlapping functions in skin homeostasis, and exert their roles as tumor suppressors by regulating downstream elements of the Hippo pathway.
    The Journal of clinical investigation 11/2012; · 15.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rare sugar d-psicose has cropped up as a non-toxic and effective compound to protect and preserve pancreatic β-islets in the growing type 2 diabetes mellitus (T2DM) rats through the regulation of glucose and fat metabolism. The present study was undertaken to examine the effect of rare sugar d-psicose on the protection of pancreatic β-islets using Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a T2DM model. Treated rats were fed with 5% d-psicose or 5% d-glucose supplemented drinking water, and only water in the control for 13weeks. A non-diabetic Long-Evans Tokushima Otsuka (LETO), fed with water served as a counter control of OLETF. d-Psicose significantly attenuated progressive β-islet fibrosis and preserved islets, evaluated by hematoxylin-eosin staining, Masson's trichrome staining and immunostainings of insulin and α-smooth muscle actin (SMA). d-Psicose significantly reduced increase in body weight and abdominal fat deposition. Oral glucose tolerance test (OGTT) showed reduced blood glucose levels suggesting the improvement of insulin resistance. All these data suggests that d-psicose protected and preserved pancreatic β-islets through the maintenance of hyperglycemia and by the prevention of fat accumulation in OLETF rats.
    Biochemical and Biophysical Research Communications 08/2012; 425(4):717-23. · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal nitric oxide synthase (nNOS) is an important regulatory enzyme in the central nervous system catalyzing the production of NO, which regulates multiple biological processes in the central nervous system. However, the mechanisms by which nNOS activity is regulated are not completely understood. In the present study, the effects of protein kinases on the phosphorylation of nNOS in GH3 rat pituitary tumor cells were evaluated. We show that phosphorylation of nNOS at Ser1412 could be induced by the phosphatidylinositol 3-kinase/protein kinase B (Akt/PKB) agonist insulin, the calcium/calmodulin-dependent protein kinase II (CaM-K II) agonist A23187 or the cAMP-dependent protein kinase A (PKA) agonist IBMX, respectively. The phosphorylation levels of nNOS at Ser1412, induced by activation of Akt/PKB or CaM-K II, but not by PKA signaling, were reduced by pre-treatment with the NO donor diethylamine-NONOate. This inhibitory effect could be reversed by addition of a reducing reagent, dithiothreitol. Furthermore, the levels of phosphorylation of nNOS at Ser1412, induced by Akt/PKB or CaM-K II but not by PKA signaling, were enhanced by inhibition of nNOS activity with 7-nitroindazole. These findings suggest that the activation of nNOS can be catalyzed by at least three protein kinases, Akt/PKB, CaM-K II or PKA. NO generated from nNOS feedback prevents the activation of nNOS by inhibiting either Akt/PKB or CaM-K II but not PKA signaling.
    International Journal of Molecular Medicine 07/2012; 30(1):15-20. · 1.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PP5 is a unique member of serine/threonine phosphatases comprising a regulatory tetratricopeptide repeat (TPR) domain and functions in signaling pathways that control many cellular responses. We reported previously that Ca(2+)/S100 proteins directly associate with several TPR-containing proteins and lead to dissociate the interactions of TPR proteins with their client proteins. Here, we identified protein phosphatase 5 (PP5) as a novel target of S100 proteins. In vitro binding studies demonstrated that S100A1, S100A2, S100A6, and S100B proteins specifically interact with PP5-TPR and inhibited the PP5-Hsp90 interaction. In addition, the S100 proteins activate PP5 by using a synthetic phosphopeptide and a physiological protein substrate, Tau. Overexpression of S100A1 in COS-7 cells induced dephosphorylation of Tau. However, S100A1 and permanently active S100P inhibited the apoptosis signal-regulating kinase 1 (ASK1) and PP5 interaction, resulting the inhibition of dephosphorylation of phospho-ASK1 by PP5. The association of the S100 proteins with PP5 provides a Ca(2+)-dependent regulatory mechanism for the phosphorylation status of intracellular proteins through the regulation of PP5 enzymatic activity or PP5-client protein interaction.
    Journal of Biological Chemistry 03/2012; 287(17):13787-98. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A homeostasis of the electrochemical properties and volume of the endolymph in the inner ear is essential for hearing and equilibrium sensing and is maintained by ion-transport across an epithelial tissue, the endolymphatic sac. One of the key proteins in the maintenance is Na(+), K(+)-ATPase. Although we previously found that the Na(+), K(+)-ATPase in the sac plays a pivotal role in the control of the endolymphatic volume, the mechanism remains unclear. Therefore, in this study, we examined the expression of FXYD6, a functional modulator of the Na(+), K(+)-ATPase, in the epithelial cells of the endolymphatic sac using various approaches. Laser capture microdissection RT-PCR was used to identify FXYD6 mRNA in the endolymphatic sac. Immunolabeling with the specific antibody showed that FXYD6 was predominantly expressed in the intermediate portion of the endolymphatic sac, and it was colocalized with the Na(+), K(+)-ATPase. Because the Na(+), K(+)-ATPase in this region is known to exhibit a high level of activity, an interaction of FXYD6 with this transporter may be critically involved in the regulation of the characteristics of the endolymph.
    Neuroscience Letters 02/2012; 513(1):47-50. · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress modulates the osteoclast differentiation via redox systems, and thioredoxin 1 (Trx) promotes the osteoclast formation by regulating the activity of transcription factors. The function of Trx is known to be regulated by its binding partner, thioredoxin-interacting protein (TXNIP). We previously reported that the expression of TXNIP gene is strongly induced by a rare sugar D-allose. In this study, we tested the hypothesis that D-allose could inhibit the osteoclast differentiation by regulating the Trx function. We used a murine Raw264 cell line that differentiates to the osteoclast by the receptor activator of nuclear factor-κB ligand (RANKL) treatment. The effect of sugars was evaluated by tartrate-resistant acid phosphatase staining. The expression and localization of TXNIP and Trx protein were examined by Western blotting and immunohistochemisty. The activity of the nuclear factor-κB, nuclear factor of activated T cells, and activator protein 1 transcription factors was measured by the luciferase reporter assay. The addition of D-allose (25 mmol/L) inhibited the osteoclast differentiation down to 9.53% ± 1.27% of a receptor activator of nuclear factor-κB ligand-only treatment. During the osteoclast differentiation, a significant increase of TNXIP was observed by D-allose treatment. The immunohistochemical analysis showed that both Trx and TXNIP existed in the nucleus in preosteoclasts and osteoclasts. Overexpression of TXNIP by plasmid transfection also inhibited the osteoclast formation, indicating the functional importance of TXNIP for the osteoclast differentiation. Transcriptional activity of the activator protein 1, nuclear factor-κB, and nuclear factor of activated T cells, known to be modulated by Trx, were inhibited by D-allose. In conclusion, our data indicate that D-allose is a strong inhibitor of the osteoclast differentiation, and this effect could be caused by TXNIP induction and a resulting inhibition of the Trx function.
    Nutrition research (New York, N.Y.) 02/2012; 32(2):116-23. · 1.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cisplatin (cis-diamminedichloroplatinum II) is a potent antineoplastic agent widely used to treat various forms of cancer. However, its therapeutic use is limited because of dose-dependent nephrotoxicity. Inflammatory mechanisms may play an important role in the pathogenesis of cisplatin nephrotoxicity. D-allose is an aldo-hexose present in nature that recently has been demonstrated to inhibit production of inflammatory mediators in septic kidneys. The purpose of this study was to determine the protective effects of D-allose on cisplatin-induced nephrotoxicity. Cisplatin (20 mg/kg) was administered by intraperitoneal injection to mice in the cisplatin group and the cisplatin plus D-allose group, as was normal saline to control group mice. D-allose was intraperitoneally administered immediately after cisplatin injection. Serum and renal tumor necrosis factor (TNF)-alpha concentrations, renal monocyte chemoattractant protein-1 (MCP-1; a chemotactic factor for monocytes), renal function, histological changes and renal cortex neutrophil infiltration were determined 72 h after cisplatin injection. The serum TNF-alpha concentration in the cisplatin plus D-allose (400 mg/kg body weight) group significantly decreased in comparison with that in the cisplatin group. The renal TNF-alpha and MCP-1 concentrations in the cisplatin plus D-allose group significantly decreased in comparison with those in the cisplatin group. Neutrophil infiltration in the cisplatin plus D-allose group was significantly lower than that in the cisplatin group. Cisplatin-induced renal dysfunction and renal tubular injury scores were attenuated by D-allose treatment. These results reveal that D-allose attenuates cisplatin-induced nephrotoxicity by suppressing renal inflammation. Hence, D-allose may become a new therapeutic candidate for treatment of cisplatin-induced nephrotoxicity.
    The Tohoku Journal of Experimental Medicine 01/2012; 228(3):215-21. · 1.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pioglitazone, a synthetic ligand of peroxisome proliferator-activated receptor (PPAR)γ, causes preadipocyte proliferation through a mechanism which still remains elusive. Here, to address the mechanism, we investigated the effects of PPARγ and pioglitazone on the kinetics of cyclin-dependent kinase inhibitors, especially with p16(Ink4a) (p16) centered, by employing 3T3-L1 preadipocytes. Pioglitazone promoted preadipocyte proliferation by increasing S and G(2)/M cell-cycle entry, which was accompanied by decreased p16 mRNA expression. PPARγ overexpression along with the luciferase reporter assay confirmed that PPARγ was crucial for the downregulation of p16 mRNA transcription, and that the action was augmented by pioglitazone. Thus, pioglitazone exerted cell-cycle dependent promoting effect on preadipocyte proliferation, of which mechanisms include p16-downregulation through PPARγ.
    Biochemical and Biophysical Research Communications 07/2011; 411(2):375-80. · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A rare sugar, D-psicose has progressively been evaluated as a unique metabolic regulator of glucose and lipid metabolism, and thus represents a promising compound for the treatment of type 2 diabetes mellitus (T2DM). The present study was undertaken to examine the underlying effector organs of D-psicose in lowering blood glucose and abdominal fat by exploiting a T2DM rat model, Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Rats were fed 5% D-psicose or 5% D-glucose supplemented in drinking water, and only water in the control for 13 weeks and the protective effects were compared. A non-diabetic Long-Evans Tokushima Otsuka (LETO), fed with water served as a counter control of OLETF. After 13 weeks feeding, D-psicose treatment significantly reduced the increase in body weight and abdominal fat mass. Oral glucose tolerance test (OGTT) showed the reduced blood glucose and insulin levels suggesting the improvement of insulin resistance in OLETF rats. Oil-red-O staining elucidated that D-psicose significantly reduced lipid accumulation in the liver. Immunohistochemical analysis showed D-psicose induced glucokinase translocation from nucleus to cytoplasm of the liver which enhances glucokinase activity and subsequent synthesis of glycogen in the liver. D-psicose also protected the pathological change of the β-cells of pancreatic islets. These data demonstrate that D-psicose controls blood glucose levels by reducing lipotoxicity in liver and by preserving pancreatic β-cell function.
    Biochemical and Biophysical Research Communications 02/2011; 405(1):7-12. · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have found in our research so far that proliferation of leukemia cell, which is a typical cancer cell, was remarkably affected by irradiation of blue LED light. In this study, we made a special experimental apparatus which could irradiate blue light as strong as 100 W/m2 to the cells in culture medium. And it was found that the proliferation of leukemia cells (K562) was drastically surpressed. In order to educiate the cause, flow cytometry analysis was performed for the irradiated cells. The result showed that the cell suppression might be caused by the irregularity of cell cycle occurred by the strong blue light (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
    physica status solidi (c) 01/2011;

Publication Stats

3k Citations
622.76 Total Impact Points

Institutions

  • 1996–2014
    • Kagawa University
      • • Department of Cell Physiology
      • • Faculty of Medicine
      • • Department of Ophthalmology
      • • Rare Sugar Research Center
      • • School of Medicine
      • • Department of Physiology
      Takamatu, Kagawa, Japan
  • 2008
    • Showa Pharmaceutical University
      Machida, Tōkyō, Japan
  • 2002
    • Minami Okayama Medical Center
      Okayama, Okayama, Japan
  • 2001
    • VTT/MSI Molecular Sciences Institute
      Berkeley, California, United States
    • Okayama Rosai Hospital
      Okayama, Okayama, Japan
  • 1999–2000
    • The University of Tokyo
      • Faculty & Graduate School of Medicine
      Tokyo, Tokyo-to, Japan
  • 1995
    • National Defense Medical College
      • Department of Internal Medicine
      Tokorozawa, Saitama-ken, Japan
  • 1991
    • University of Tsukuba
      Tsukuba, Ibaraki, Japan
  • 1990
    • Osaka Central Hospital
      • Central Laboratory for Clinical Investigation
      Ōsaka, Ōsaka, Japan
  • 1986–1987
    • The University of Calgary
      Calgary, Alberta, Canada