K W Mollison

Abbott Laboratories, North Chicago, Illinois, United States

Are you K W Mollison?

Claim your profile

Publications (54)171.51 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 08/2010; 29(33).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sirolimus (rapamycin) is an immunosuppressant used in preventing allograft rejection and in drug-eluting stents to prevent restenosis after angioplasty. Zotarolimus, an analogue of sirolimus, was designed to have a shorter in vivo half-life. Zotarolimus was found to be mechanistically similar to sirolimus in having high-affinity binding to the immunophilin FKBP12 and comparable potency for inhibiting in vitro proliferation of both human and rat T cells. Rat pharmacokinetic studies with intravenous dosing demonstrated terminal elimination half-lives of 9.4 hours and 14.0 hours for zotarolimus and sirolimus, respectively. Given orally, T1/2 values were 7.9 hours and 33.4 hours, respectively. Consistent with its shorter duration, zotarolimus showed a corresponding and statistically significant 4-fold reduction in potency for systemic immunosuppression in 3 rat disease models. Pharmacokinetic studies in cynomolgus monkey underpredicted the half-life difference between zotarolimus and sirolimus apparent from recent clinical data. In vitro inhibition of human coronary artery smooth muscle cell proliferation by zotarolimus was comparable to sirolimus. Drug-eluting stents for local delivery of zotarolimus to the vessel wall of coronary arteries are in clinical development. The pharmacological profile of zotarolimus suggests it may be advantageous for preventing restenosis with a reduced potential for causing systemic immunosuppression or other side effects.
    Journal of Cardiovascular Pharmacology 05/2007; 49(4):228-35. · 2.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The synthesis and biological activities of rapamycin (I) analogs modified at the C-40 position are reported. Emphasis placed on compounds that potentially have an improved safety profile on account of their shorter in vivo half-life when compared with rapamycin.
    Bioorganic & Medicinal Chemistry Letters 01/2006; 15(23):5340-3. · 2.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract A-285222 (A-285) is a bistrifluoromethyl-pyrazole (BTP), a novel class of immunosuppressive agents that inhibit NFAT activity in vitro in human and non-human primate cells through a calcineurin-independent mechanism. In this preliminary study, we treated cynomolgus monkeys with different doses of A-285 for several days. Blood was collected from all animals at different times during the study. From these samples, plasma concentrations of A-285 were measured by liquid chromatography/mass spectrometry (LC/MS), and intracellular T-cell production of the cytokines IL-2, IFN-γ, and TNF-α was quantified by flow cytometry using a mitogen-stimulated whole blood assay. Marked inhibition of cytokine production occurred after administration of the first dose of A-285, and this effect was comparable to that of cyclosporine. While neurological toxic side effects were seen when the plasma concentration of A-285 exceeded 4 μg/ml, at lower plasma levels the drug was well tolerated over 2 weeks and its pharmacodynamic effects were sustained throughout this time.
    Transplant International 03/2005; 17(3):145 - 150. · 3.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A-285222 (A-285) is a bis-trifluoromethyl-pyrazole (BTP), a novel class of immunosuppressive agents that inhibit NFAT activity in vitro in human and non-human primate cells through a calcineurin-independent mechanism. In this preliminary study, we treated cynomolgus monkeys with different doses of A-285 for several days. Blood was collected from all animals at different times during the study. From these samples, plasma concentrations of A-285 were measured by liquid chromatography/mass spectrometry (LC/MS), and intracellular T-cell production of the cytokines IL-2, IFN-gamma, and TNF-alpha was quantified by flow cytometry using a mitogen-stimulated whole blood assay. Marked inhibition of cytokine production occurred after administration of the first dose of A-285, and this effect was comparable to that of cyclosporine. While neurological toxic side effects were seen when the plasma concentration of A-285 exceeded 4 microg/ml, at lower plasma levels the drug was well tolerated over 2 weeks and its pharmacodynamic effects were sustained throughout this time.
    Transplant International 04/2004; 17(3):145-50. · 3.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to discover novel immunomodulators for application in treating autoimmune diseases, a stable Jurkat transfectant was constructed in which luciferase reporter gene is driven by a full-length IL-2 promotor. A chemical library was screened to identify compounds that inhibited luciferase expression in Jurkat transfectants stimulated with PMA and ionomycin. A class of compounds (bis-trifluoromethyl pyrazole, BTPs) was identified from this screen. BTPs were shown to inhibit anti-CD3 and anti-CD28 antibody-induced IL-2 secretion, mixed lymphocyte reaction, and Con A-induced T cell proliferation in normal human peripheral blood T cells. In addition, mRNA levels of IL-4, IL-5, IL-9, IL-10, IL-13, IL-15, and IFN-gamma were markedly inhibited by BTPs in peripheral blood mononuclear cells stimulated by Con A as determined by multi-probe RNA protection assay. Furthermore, IL-2, IL-4, IL-5, and IFN-gamma secretion by Hut 78 cells or CD3(+) T cells stimulated with PMA plus ionomycin or anti-CD3 antibody plus PMA were inhibited in a concentration-dependent manner by BTPs. Therefore, BTPs inhibit a wide spectrum of cytokine production including TH1 and TH2 type cytokines. Taken together, these compounds may be useful for treating autoimmune diseases and organ transplant rejection.
    Cellular Immunology 01/2003; 220(2):134-42. · 1.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In a search for novel early T cell activation transcripts, we identified expressed sequence tags (ESTs) more abundantly expressed in normal human CD4(+) T lymphocytes fully activated by a 5 h exposure to CD3 plus CD28 mAbs, compared to the same cells stimulated with either CD3 mAb or CD28 mAb alone. An EST was identified that hybridized with a 1.7 kb transcript expressed in activated T cells but was undetectable by Northern blot analysis in resting T cells or other normal tissues. The T cell transcript was maximally induced within 6 h and remained elevated for at least 47 h. Induction of the transcript was blocked by cyclosporin A, FK506, and dexamethasone but not by rapamycin. The transcript was polyadenylated but lacked an open reading. A BLAST search of the NCBI database revealed that the transcript shared identity with the recently reported human BIC proto-oncogene that encodes a noncoding mRNA (W. Tam, Gene 274 (2001) 157). Our data demonstrate that transcriptional activation of the BIC proto-oncogene is an early and sustained T cell activation event and suggest an important role for noncoding mRNA in T cell function.
    Cellular Immunology 05/2002; 217(1-2):78-86. · 1.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During a screen for compounds that could inhibit cell proliferation, a series of new tubulin-binding compounds was identified with the discovery of oxadiazoline 1 (A-105972). This compound showed good cytotoxic activity against non-multi-drug-resistant and multi-drug-resistant cancer cell lines, but its utility in vivo was limited by a short half-life. Medicinal chemistry efforts led to the discovery of indolyloxazoline 22g (A-259745), which maintained all of the in vitro activity seen with oxadiazoline 1, but also demonstrated a better pharmacokinetic profile, and dose-dependent in vivo activity. Over a 28 day study, indolyloxazoline 22g increased the life span of tumor-implanted mice by up to a factor of 3 upon oral dosing. This compound, and others of its structural class, may prove to be useful in the development of new chemotherapeutic agents to treat human cancers.
    Journal of Medicinal Chemistry 01/2002; 44(25):4416-30. · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NFAT (nuclear factor of activated T cell) proteins are expressed in most immune system cells and regulate the transcription of cytokine genes critical for the immune response. The activity of NFAT proteins is tightly regulated by the Ca(2+)/calmodulin-dependent protein phosphatase 2B/calcineurin (CaN). Dephosphorylation of NFAT by CaN is required for NFAT nuclear localization. Current immunosuppressive drugs such as cyclosporin A and FK506 block CaN activity thus inhibiting nuclear translocation of NFAT and consequent cytokine gene transcription. The inhibition of CaN in cells outside of the immune system may contribute to the toxicities associated with cyclosporin A therapy. In a search for safer immunosuppressive drugs, we identified a series of 3,5-bistrifluoromethyl pyrazole (BTP) derivatives that block Th1 and Th2 cytokine gene transcription. The BTP compounds block the activation-dependent nuclear localization of NFAT as determined by electrophoretic mobility shift assays. Confocal microscopy of cells expressing fluorescent-tagged NFAT confirmed that the BTP compounds block calcium-induced movement of NFAT from the cytosol to the nucleus. Inhibition of NFAT was selective because the BTP compounds did not affect the activation of NF-kappaB and AP-1 transcription factors. Treatment of intact T cells with the BTP compounds prior to calcium ionophore-induced activation of CaN caused NFAT to remain in a highly phosphorylated state. However, the BTP compounds did not directly inhibit the dephosphorylation of NFAT by CaN in vitro, nor did the drugs block the dephosphorylation of other CaN substrates including the type II regulatory subunit of protein kinase A and the transcription factor Elk-1. The data suggest that the BTP compounds cause NFAT to be maintained in the cytosol in a phosphorylated state and block the nuclear import of NFAT and, hence, NFAT-dependent cytokine gene transcription by a mechanism other than direct inhibition of CaN phosphatase activity. The novel inhibitors described herein will be useful in better defining the cellular regulation of NFAT activation and may lead to identification of new therapeutic targets for the treatment of autoimmune disease and transplant rejection.
    Journal of Biological Chemistry 01/2002; 276(51):48118-26. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABT-773 is a novel ketolide effective against antibacterial-resistant respiratory tract pathogens. The pharmacokinetic profile of ABT-773 was studied in rats and consisted of a mean peak concentration in plasma of 1.07 microg/ml and an area under the concentration-time curve (AUC) of 12.03 microg. h/ml when the compound was delivered at a dose of 25 mg/kg of body weight. It concentrated in rat lung tissue, with a lung tissue-to-plasma ratio of 29 based on the AUC. In acute systemic infections in mice, ABT-773 showed efficacy against macrolide-susceptible strains of Staphylococcus aureus, Streptococcus pneumoniae, S. pyogenes, and Listeria monocytogenes. Additionally, ABT-773 improved the survival of mice infected with resistant S. pneumoniae containing either the ermB gene, the mefE gene, or altered penicillin binding protein genes. In a rat lung model of infection, ABT-773 demonstrated 50% effective doses lower than those of comparator macrolides when evaluated against the following strains of S. pneumoniae: a macrolide-lincosamide-streptogramin B-susceptible strain, an ermB strain, and an mefE strain. ABT-773 was also effective against Haemophilus influenzae lung infections in rats. Thus, ABT-773 may prove to be a useful new antibacterial agent for the treatment of respiratory tract infections.
    Antimicrobial Agents and Chemotherapy 10/2001; 45(9):2585-93. · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of bis(trifluoromethyl)pyrazoles (BTPs) has been found to be a novel inhibitor of cytokine production. Identified initially as inhibitors of IL-2 synthesis, the BTPs have been optimized in this regard and even inhibit IL-2 production with a 10-fold enhancement over cyclosporine in an ex vivo assay. Additionally, the BTPs show inhibition of IL-4, IL-5, IL-8, and eotaxin production. Unlike the IL-2 inhibitors, cyclosporine and FK506, the BTPs do not directly inhibit the dephosphorylation of NFAT by calcineurin.
    Journal of Medicinal Chemistry 09/2000; 43(16):2975-81. · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: C24-Deoxyascomycin was prepared in a two-step process from ascomycin and evaluated for its immunosuppressant activity relative to ascomycin and FK506. An intermediate in the synthetic pathway, Delta(23,24)-dehydroascomycin, was likewise evaluated. Despite lacking the hydrogen-bonding interactions associated with the C24-hydroxyl moiety of ascomycin, C24-deoxyascomycin was found to be equipotent to the parent compound both in its immunosuppressive potency and in its interaction with the immunophilin, FKBP12. Conversely, Delta(23,24)-dehydroascomycin which also lacks the same hydrogen-bonding interactions did not exhibit this potency. NMR studies were conducted on the FKBP12/C24-deoxyascomycin complex in an attempt to understand this phenomenon at the molecular level. The NMR structures of the complexes formed between FKBP12 and ascomcyin or C24-deoxyascomcyin were very similar, suggesting that hydrogen-bonding interactions with the C24 hydroxyl moiety are not important for complex formation.
    Journal of Medicinal Chemistry 11/1999; 42(21):4456-61. · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T lymphocytes play a critical part in inflammatory skin diseases but are targeted by available therapies that have only partial efficacy, significant side-effects, or both. Because psoriasis, atopic dermatitis, and allergic contact hypersensitivity are associated with T helper type 1 (Th1), T helper type 2 (Th2), or mixed Th1-Th2 cell subsets and cytokine types, respectively, there is a need for a better broad-based inhibitor. The macrolactam ascomycin analog, ABT-281, was found to inhibit potently T cell function across species and to inhibit expression of multiple cytokines in human peripheral blood leukocytes which have been found in human skin disease cells and tissues. These included immunoregulatory Th1 (interleukin-2 and interferon-gamma) and Th2 (interleukin-4 and interleukin-5) cytokines. ABT-281 was shown to have potent topical activity (ED50 = 0.6% in acetone/olive oil) in a stringent swine model of allergic contact hypersensitivity, but its potency was markedly reduced compared with ascomycin when administered systemically due to more rapid clearance. Topical application of 3% ABT-281 in acetone/olive oil over 25% of the body surface in swine resulted in undetectable blood levels. Compared with a wide potency range of topical corticosteroids in clinical formulations, 0.3% and 1% ABT-281 ointments profoundly inhibited dinitrochlorobenzene-induced contact hypersensitivity in the pig by 78% and 90%, respectively, whereas super-potent steroids such as clobetasol propionate only inhibited in the 50% range and mild to moderate potency steroids such as fluocinolone acetonide were inactive. The potent topical activity of ABT-281 in swine, its superior efficacy, its rapid systemic clearance following uptake into the bloodstream, and its ability to inhibit cytokine biosynthesis of both Th1 and Th2 cell subsets, suggests that it will have a broad therapeutic value in inflammatory skin diseases, including psoriasis, atopic dermatitis, and allergic contact dermatitis.
    Journal of Investigative Dermatology 06/1999; 112(5):729-38. · 6.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rapamycin, a macrolide antibiotic known to prevent allograft rejection, is a potent inhibitor of cell proliferation. Therefore we studied the effects of orally administered rapamycin in a pig model of balloon injury in an attempt to reduce the cellular proliferation and neointimal formation thought to play a role in restenosis. Twenty Yucatan minipigs, divided into groups of 10 animals each, were subjected to balloon inflation of the carotid arteries. One group received the methylcellulose vehicle for rapamycin, whereas the second group was treated for a total of 31 days with 2.0 mg/kg of rapamycin administered daily by oral gavage. This dose and treatment regimen produced significant (p < 0.05) reductions in neointimal area (59%) and in the maximal thickness of the neointima (59%) when comparisons were made with vehicle-treated animals. These effects were accompanied by a significant increase in the lumen area in animals that received rapamycin (33%). Medial area was decreased by 18% in these animals. Blood samples from rapamycin-treated pigs indicated peak concentrations of 1.87 +/- 0.45 and 1.70 +/- 0.24 ng/ml at 2 and 4 weeks after balloon angioplasty, respectively. Significant increases in blood pressure of 21 mm Hg and decreases in heart rate of 25 beats/min also were observed in rapamycin-treated animals relative to those that received vehicle. These results indicate that the antiproliferative effect of rapamycin can be demonstrated after oral dosing in a pig vascular injury model, suggesting a possible therapeutic utility for rapamycin or its analogs in patients undergoing balloon angioplasty.
    Journal of Cardiovascular Pharmacology 06/1999; 33(6):829-35. · 2.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lck encodes a 56-kDa protein-tyrosine kinase, predominantly expressed in T lymphocytes, crucial for initiating T cell antigen receptor (TCR) signal transduction pathways, culminating in T cell cytokine gene expression and effector functions. As a consequence of a high-throughput screen for selective, novel inhibitors of p56(lck), an isothiazolone compound was identified, methyl-3-(N-isothiazolone)-2-thiophenecarboxylate(A-125800), which inhibits p56(lck) kinase activity with IC50 = 1-7 microM. Under similar assay conditions, the isothiazolone compound was equipotent in blocking the ZAP-70 tyrosine kinase activity but was 50 to 100 times less potent against the catalytic activities of p38 MAP kinase and c-Jun N-terminal kinase 2alpha. A-125800 blocked activation-dependent TCR tyrosine phosphorylation and intracellular calcium mobilization in Jurkat T cells (IC50 = 35 microM) and blocked T cell proliferation in response to alloantigen (IC50 = 14 microM) and CD3/CD28-induced IL-2 secretion (IC50 = 2.2 microM) in primary T cell cultures. Inhibition of p56(lck )by A-125800 was dose- and time-dependent and was irreversible. A substitution of methylene for the sulfur atom in the isothiazolone ring of the compound completely abrogated the ability to inhibit p56(lck) kinase activity and TCR-dependent signal transduction. Incubation with thiols such as beta-ME or DTT also blocked the ability of the isothiazolone to inhibit p56(lck) kinase activity. LC/MS analysis established the covalent modification of p56(lck) at cysteine residues 378, 465, and 476. Together these data support an inhibitory mechanism, whereby cysteine -SH groups within the p56(lck) catalytic domain react with the isothiazolone ring, leading to ring opening and disulfide bond formation with the p56(lck) enzyme. Loss of p56(lck) activity due to -SH oxidation has been suggested to play a role in the pathology of AIDS. Consequently, a similar mechanism of sulfhydryl oxidation leading to p56(lck) inhibition, described in this report, may occur in the intact T cell and may underlie certain T cell pathologies.
    Archives of Biochemistry and Biophysics 05/1999; 364(1):19-29. · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: p38 is a member of the mitogen-activated protein kinase (MAPK) family of serine/threonine kinases, which is activated by cellular stressors and has been shown to be a critical enzyme in the synthesis and action of proinflammatory cytokines, tumor necrosis factor-a (TNF-alpha) and interleukin-1beta (IL-1beta). A group of pyridinyl imidazole compounds such as SB202190 have been identified as selective inhibitors of p38 that bind directly to the ATP pocket of the enzyme. These compounds inhibit the p38 kinase activity, block TNF-alpha and IL-1beta secretion both in vivo and in vitro and are found to be effective in animal models of arthritis, bone resorption, and endotoxin shock. We postulated that other classes of compounds capable of competing the binding of pyridinyl imidazole with p38 enzyme could have efficacy in the treatment of inflammatory diseases. Therefore, a simple and robust assay was developed to measure the ability of small molecules to inhibit the binding of tritium-labeled pyridinyl imidazole, SB202190, to recombinant p38 kinase. For assay development, the human p38 gene was cloned in baculovirus and then expressed in insect cells. Tritiated SB202190 was synthesized and used as the p38 ligand for a competitive filter binding assay. This assay has been used successfully to screen both synthetic and combinatorial chemical libraries for other classes of p38 kinase inhibitors.
    Journal of Biomolecular Screening 02/1999; 4(3):129-135. · 2.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To assess the duration of immunosuppression in FK506-dosed pigs, an undiluted whole blood assay was established to measure reactivities of T cells in their physiological milieu. PMA and ionomycin were shown to induce IL-2 production in swine blood. The IC50 of FK506 in inhibiting IL-2 production in whole blood and isolated PBMC stimulated with PMA and ionomycin measured 1.2 and 0.04 nM, respectively. These data underscore the influence of red blood cells and plasma proteins on drug potency. IL-2 levels were determined in blood drawn immediately before and 1, 24, 48, and 72 h after iv dosing. For pigs dosed with 0.05 mg/kg, 50% recovery of IL-2 production was observed at 16 h and 100% at 35 h after dosing. For pigs dosed with 0.15 mg/kg, 50% recovery was observed at 38 h and 100% at 72 h. Blood concentrations of FK506 at 50 and 100% recovery of IL-2 production measured 10.8 and 2.2 nM for pigs dosed with 0.05 mg/kg and 6.1 and 1.1 nM for pigs dosed with 0.15 mg/kg, respectively. These concentrations are severalfold higher than predicted from the IC50 of FK506 for inhibiting IL-2 production in the whole blood assay. These data suggest that the true potency of FK506 in blood after dosing is influenced by additional factors, which could include plasma protein binding, the presence of active or interfering metabolites, serum interfering factors, and sequestration of drug in blood cells. Our results demonstrate the utility of an undiluted whole blood assay for assessing the duration of immunosuppression in drug-dosed animals and emphasize the importance of assessing drug potency in the whole blood environment ex vivo.
    Clinical Immunology 02/1999; 90(1):133-40. · 3.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lck encodes a 56-kDa protein–tyrosine kinase, predominantly expressed in T lymphocytes, crucial for initiating T cell antigen receptor (TCR) signal transduction pathways, culminating in T cell cytokine gene expression and effector functions. As a consequence of a high-throughput screen for selective, novel inhibitors of p56lck, an isothiazolone compound was identified, methyl-3-(N-isothiazolone)-2-thiophenecarboxylate(A-125800), which inhibits p56lckkinase activity with IC50= 1–7 μM. Under similar assay conditions, the isothiazolone compound was equipotent in blocking the ZAP-70 tyrosine kinase activity but was 50 to 100 times less potent against the catalytic activities of p38 MAP kinase and c-JunN-terminal kinase 2α. A-125800 blocked activation-dependent TCR tyrosine phosphorylation and intracellular calcium mobilization in Jurkat T cells (IC50= 35 μM) and blocked T cell proliferation in response to alloantigen (IC50= 14 μM) and CD3/CD28-induced IL-2 secretion (IC50= 2.2 μM) in primary T cell cultures. Inhibition of p56lckby A-125800 was dose- and time-dependent and was irreversible. A substitution of methylene for the sulfur atom in the isothiazolone ring of the compound completely abrogated the ability to inhibit p56lckkinase activity and TCR-dependent signal transduction. Incubation with thiols such as β-ME or DTT also blocked the ability of the isothiazolone to inhibit p56lckkinase activity. LC/MS analysis established the covalent modification of p56lckat cysteine residues 378, 465, and 476. Together these data support an inhibitory mechanism, whereby cysteine -SH groups within the p56lckcatalytic domain react with the isothiazolone ring, leading to ring opening and disulfide bond formation with the p56lckenzyme. Loss of p56lckactivity due to -SH oxidation has been suggested to play a role in the pathology of AIDS. Consequently, a similar mechanism of sulfhydryl oxidation leading to p56lckinhibition, described in this report, may occur in the intact T cell and may underlie certain T cell pathologies.
    Archives of Biochemistry and Biophysics 01/1999; 364(1):19-29. · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Drug therapy for the major inflammatory skin diseases, which include atopic dermatitis, psoriasis and allergic contact dermatitis, is often inadequate due to poor efficacy, toxicity, or both. Much research has focused on the macrolactam T cell inhibitors as a promising new class of agents for immunotherapy, and medicinal chemistry efforts to design novel ascomycin analogs have produced clinically promising agents. A synthetic program to modify the ascomycin nucleus to alter its physicochemical properties and promote systemic clearance is described. A biologic screening strategy to identify analogs with reduced systemic activity and rapid pharmacokinetic elimination led to identification of the clinical candidate, ABT-281. A swine contact hypersensitivity model was used as a stringent indicator of skin penetration as human doses of topical corticosteroids produced inhibition only in the 50% range and ED50 values were 100-fold less potent than in rat. Also, cyclosporine was confirmed to be topically inactive in swine, as seen in human. ABT-281 had topical potency equal to tacrolimus (FK506) despite a severalfold lower potency for inhibiting swine T cells in vitro, consistent with superior skin penetration. ABT-281 was found to have a shorter duration of action after i.v. dosing in monkeys using an ex vivo whole blood IL-2 production assay. Systemic potency was reduced by 30-fold or more in rat popliteal lymph node hyperplasia and contact hypersensitivity assays. Following i.v. or i.p. administration in the swine contact hypersensitivity model, ABT-281 was 19- and 61-fold less potent, respectively, than FK506. Pharmacokinetic studies showed that ABT-281 had a shorter half life and higher rate of clearance than FK506 in all three species. The potent topical activity and reduced systemic exposure of ABT-281 may thus provide both efficacy and a greater margin of safety for topical therapy of skin diseases.
    Current Pharmaceutical Design 11/1998; 4(5):367-79. · 3.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of novel pyrazole carboxamides is disclosed that demonstrate strong immunosuppressant activity in rodent and human mixed leukocyte response (MLR) assays (IC50 < 1 microM). The synthesis, biological activity, mode of action, and pharmacokinetic properties of this new lead series are discussed.
    Bioorganic & Medicinal Chemistry Letters 10/1998; 8(19):2787-92. · 2.34 Impact Factor

Publication Stats

753 Citations
171.51 Total Impact Points

Institutions

  • 1988–2010
    • Abbott Laboratories
      • • Abbott Laboratories
      • • Global Pharmaceutical Research and Development
      North Chicago, Illinois, United States
  • 2004–2005
    • University of California, San Francisco
      • School of Pharmacy
      San Francisco, CA, United States