Yongxiang Gao

University of Science and Technology of China, Hefei, Anhui Sheng, China

Are you Yongxiang Gao?

Claim your profile

Publications (35)122.47 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Yeast Hif1, a homologue of human nuclear autoantigenic sperm protein (NASP), is a histone chaperone that involved in various protein complexes modifying histones during telomeric silencing and chromatin reassembly. For elucidating the structural basis of Hif1, here, we present crystal structure of Hif1 that consists of a superhelixed TPR domain and an extended acid loop covering the rear of TPR domain, which represents typical characters of SHNi-TPR (Sim3-Hif1-NASP interrupted TPR) proteins. Our binding assay indicates that Hif1 could bind to histone octamer via histone H3 and H4. However, the acid loop is crucial for the binding of histones while it may also change the conformation of TPR groove. By binding to core histone complex Hif1 may recruit functional protein complexes to modify histones during chromatin reassembly.
    Biochemical Journal 06/2014; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adenylate kinase plays a very important role in regulating adenylate species in the cell. Methanocaldococcus jannaschii is a rich resource of unique enzymes. Here, MJ0458, an adenylate kinase from M. jannaschii, was crystallized. A set of X-ray diffraction data to 2.70 Å resolution was collected on beamline BL-17U of the Shanghai Synchrotron Radiation Facility (SSRF). The crystal belonged to space group P41212 or P43212. The unit-cell parameters were a = b = 76.18, c = 238.70 Å, α = β = γ = 90°.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 11/2013; 69(Pt 11):1272-4. · 0.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Nit (nitrilase-like) protein subfamily constitutes branch 10 of the nitrilase superfamily. Nit proteins are widely distributed in nature. Mammals possess two members of the Nit subfamily, namely Nit1 and Nit2. Based on sequence similarity, yeast Nit2 (yNit2) is a homologue of mouse Nit1, a tumour-suppressor protein whose substrate specificity is not yet known. Previous studies have shown that mammalian Nit2 (also a putative tumour suppressor) is identical to ω-amidase, an enzyme that catalyzes the hydrolysis of α-ketoglutaramate (α-KGM) and α-ketosuccinamate (α-KSM) to α-ketoglutarate (α-KG) and oxaloacetate (OA), respectively. In the present study, crystal structures of wild-type (WT) yNit2 and of WT yNit2 in complex with α-KG and with OA were determined. In addition, the crystal structure of the C169S mutant of yNit2 (yNit2-C169S) in complex with an endogenous molecule of unknown structure was also solved. Analysis of the structures revealed that α-KG and OA are covalently bound to Cys169 by the formation of a thioester bond between the sulfhydryl group of the cysteine residue and the γ-carboxyl group of α-KG or the β-carboxyl group of OA, reflecting the presumed reaction intermediates. However, an enzymatic assay suggests that α-KGM is a relatively poor substrate of yNit2. Finally, a ligand was found in the active site of yNit2-C169S that may be a natural substrate of yNit2 or an endogenous regulator of enzyme activity. These crystallographic analyses provide information on the mode of substrate/ligand binding at the active site of yNit2 and insights into the catalytic mechanism. These findings suggest that yNit2 may have broad biological roles in yeast, especially in regard to nitrogen homeostasis, and provide a framework for the elucidation of the substrate specificity and biological role of mammalian Nit1.
    Acta Crystallographica Section D Biological Crystallography 08/2013; 69(Pt 8):1470-81. · 12.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphorylated derivatives of phosphatidylinositol (PtdIns), also called phosphoinositides (PIPs), are basic components of membrane-associated signalling systems. A family of PtdIns-transfer proteins (PITPs) called the Sec14 family have been predicted to form a set of functional modules that can sense different types of lipid metabolism and transmit the information to the PIP signalling system. In eukaryotic cells, the Sec14 family exhibits a wide diversity of activity, but the structural basis of this diversity remains unclear. In the present study, the dimeric structure of Sfh3 (Sec14 family homologue 3 in yeast) is reported for the first time and differs from the Sec14 proteins reported to date, all of which are monomeric. Some variations in the binding pocket of Sfh3 were observed and the dimer interface was identified and proposed to provide a link between dimer-monomer state changes and PtdIns binding. Together, these structural changes and the oligomeric state transformation of Sfh3 support ideas of diversity within the Sec14 family and provide some new clues to function.
    Acta Crystallographica Section D Biological Crystallography 03/2013; 69(Pt 3):313-23. · 12.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The yeast Paf1 complex (Paf1C), which is composed of the proteins Paf1, Cdc73, Ctr9, Leo1 and Rtf1, accompanies RNA polymerase II from the promoter to the 3'-end formation site of mRNA- and snoRNA-encoding genes. As one of the first identified subunits of Paf1C, yeast Cdc73 (yCdc73) takes part in many transcription-related processes, including binding to RNA polymerase II, recruitment and activation of histone-modification factors and communication with other transcriptional activators. The human homologue of yCdc73, parafibromin, has been identified as a tumour suppressor linked to breast, renal and gastric cancers. However, the functional mechanism of yCdc73 has until recently been unclear. Here, a 2.2 Å resolution crystal structure of the highly conserved C-terminal region of yCdc73 is reported. It revealed that yCdc73 appears to have a GTPase-like fold. However, no GTPase activity was observed. The crystal structure of yCdc73 will shed new light on the modes of function of Cdc73 and Paf1C.
    Acta Crystallographica Section D Biological Crystallography 08/2012; 68(Pt 8):953-9. · 12.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mannonate dehydratase (ManD; EC4.2.1.8) catalyzes the dehydration of d-mannonate to 2-keto-3-deoxygluconate. It is the third enzyme in the pathway for dissimilation of d-glucuronate to 2-keto-3-deoxygluconate involving in the Entner-Doudoroff pathway in certain bacterial and archaeal species. ManD from Gram negative bacteria has an insert sequence as compared to those from Gram positives revealed by sequence analysis. To evaluate the impact of this insert sequence on the catalytic efficiency, we solved the crystal structures of ManD from Escherichia coli strain K12 and its complex with d-mannonate, which reveal that this insert sequence forms two α helices locating above the active site. The two insert α helices introduce a loop that forms a cap covering the substrate binding pocket, which restricts the tunnels of substrate entering and product releasing from the active site. Site-directed mutations and enzymatic activity assays confirm that the catalytic rate is decreased by this loop. These features are conserved among Gram negative bacteria. Thus, the insert sequence of ManD from Gram negative bacteria acts as a common inducer to decrease the catalytic rate and consequently the glucuronate metabolic rate as compared to those from Gram positives. Moreover, residues essential for substrate to enter the active site were characterized via structural analysis and enzymatic activity assays.
    Journal of Structural Biology 07/2012; · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Palmitoylation/depalmitoylation plays an important role in protein modification. yApt1 is the only enzyme in Saccharomyces cerevisiae that catalyses depalmitoylation. In the present study, recombinant full-length yApt1 was cloned, expressed, purified and crystallized. The crystals diffracted to 2.40 Å resolution and belonged to space group P4(2)2(1)2, with unit-cell parameters a = b = 146.43, c = 93.29 Å. A preliminary model of the three-dimensional structure has been built and further refinement is ongoing.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 07/2012; 68(Pt 7):775-7. · 0.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Agkisacucetin is a snake C-type lectin isolated from the venom of Agkistrodon acutus (A. acutus). It binds specifically to the platelet glycoprotein (GP) Ib and prevents the von Willebrand factor (VWF) accessing it. We determined the crystal structure of agkisacucetin to 1.9Å resolution. The structure of agkisacucetin has an (αβ) fold similar to another GPIb-binding protein, flavocetin-A, but lacks the C-terminal cysteine in the β-subunit, does not form (βα)(4) tetramers, and does not cluster GPIbs, like flavocetin-A.
    Proteins Structure Function and Bioinformatics 02/2012; 80(6):1707-11. · 3.34 Impact Factor
  • Xiaoting Qiu, Ye Yuan, Yongxiang Gao
    [Show abstract] [Hide abstract]
    ABSTRACT: In bacteria and eukaryotes, the last two steps of de novo purine biosynthesis are catalyzed by bifunctional purine-biosynthesis protein (PurH), which is composed of two functionally independent domains linked by a flexible region. The N-terminal domain possesses IMP cyclohydrolase activity and the C-terminal domain possesses aminoimidazole-4-carboxamide ribonucleotide transformylase activity. This study reports the expression, purification, crystallization and preliminary X-ray crystallographic analysis of PurH from Escherichia coli with an N-terminal His(6) tag. The crystals diffracted to a maximum resolution of 3.05 Å and belonged to the monoclinic space group P2(1), with unit-cell parameters a = 76.37, b = 132.15, c = 82.64 Å, β = 111.86°.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 12/2011; 67(Pt 12):1590-4. · 0.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synaptotagmin acts as the Ca(2+) sensor for neural and endocrine exocytosis. Synaptotagmin 5 has been demonstrated to play a key role in the acquisition of cathepsin D and the vesicular proton ATPase and in Ca(2+)-dependent insulin exocytosis. The C2 domains modulate the interaction of synaptotagmin with the phospholipid bilayer of the presynaptic terminus and effector proteins such as the SNARE complex. This study reports the cloning, expression in Escherichia coli, purification, crystallization and preliminary X-ray analysis of the C2A domain of human synaptotagmin 5 with an N-terminal His(6) tag. The crystals diffracted to 1.90 Å resolution and belonged to the hexagonal space group P6(5), with unit-cell parameters a = b = 93.97, c = 28.05 Å. A preliminary model of the protein structure has been built and refinement of the model is ongoing.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 11/2011; 67(Pt 11):1375-7. · 0.55 Impact Factor
  • Xiaoting Qiu, Kai Huang, Jinming Ma, Yongxiang Gao
    [Show abstract] [Hide abstract]
    ABSTRACT: In Saccharomyces cerevisiae, TRM6 and TRM61 compose a tRNA methyltransferase which catalyzes the methylation of the N1 of adenine at position 58 in tRNAs, especially initiator methionine tRNA. TRM61 is the subunit that binds S-adenosyl-L-methionine and both subunits contribute to target tRNA binding. In order to elucidate the catalytic mechanism of TRM6-TRM61 and the mode of interaction between the two subunits, expression, purification, crystallization and X-ray diffraction analysis of the TRM6-TRM61 complex were performed in this study. The crystals diffracted to 2.80 Å resolution and belonged to the trigonal space group P3(1)21 or P3(2)21, with unit-cell parameters a = b = 139.14, c = 101.62 Å.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 11/2011; 67(Pt 11):1448-50. · 0.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Snake-venom thrombin-like enzymes (SVTLEs) are serine proteases that are widely distributed in snakes from the Crotalinae subfamily of the Viperidae. In contrast to other snake-venom serine proteases, they have a biochemical activity similar to that of thrombin and play an important role in the process of blood coagulation. However, SVTLEs cannot activate factor VIII, which is essential in blood-clot stabilization. Consequently, blood clots produced by SVTLEs are not stable and are cleared rapidly. This characteristic makes SVTLEs attractive as potential candidates for antithrombotic therapy. Saxthrombin, an SVTLE from Gloydius saxatilis, was purified and crystallized to obtain a high-quality crystal, from which data were acquired to 1.43 Å resolution. Preliminary X-ray diffraction analysis showed that the crystal belonged to space group C2, with unit-cell parameters a = 94.2, b = 52.2, c = 50.1 Å, β = 96.7°. The crystal structure was determined by molecular replacement and the final R factor was 18.69%; the R(free) was 20.01%. This is the first report of a crystal structure of an SVTLE. Saxthrombin belongs to the typical α/β-hydrolase fold of serine proteases. Its structure was compared with those of thrombin and other snake-venom serine proteases. The observed differences in the amino-acid composition of the loops surrounding the active site appear to contribute to different surface-charge distributions and thus alter the shape of the active-site cleft, which may explain the differences in substrate affinity.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 08/2011; 67(Pt 8):862-5. · 0.55 Impact Factor
  • Source
    Hao Wu, Ye Yuan, Jinming Ma, Yongxiang Gao
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitrogen fixation is catalyzed by the nitrogenase complex in Azotobacter, which is composed of dinitrogenase and dinitrogenase reductase. Dinitrogenase is an α(2)β(2) heterotetramer of the proteins NifD and NifK. Dinitrogenase reductase is a homodimer of the protein NifH. The expression of NifD/K and NifH nitrogenase homologues (named NflD/K and NflH for Nif-like D and H, respectively) has been detected in the non-nitrogen-fixing hyperthermophilic methanogen Methanocaldococcus jannaschii. Solving the structure of MjNifH1 may help in better understanding its function and may supply some clues to understanding the evolution of nitrogenase. The full-length protein with an additional His(6) tag at the C-terminus was expressed, purified and crystallized by the hanging-drop vapour-diffusion method at 287 K. An X-ray diffraction data set was collected to a resolution of 3.3 Å. The crystal belonged to space group P4(1)32, with unit-cell parameters a = b = c = 139.45 Å, and was estimated to contain one protein molecule per asymmetric unit.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 05/2011; 67(Pt 5):565-7. · 0.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cleavage factor I(m) (CF I(m)), consists of a 25 kDa subunit (CF I(m)25) and one of three larger subunits (CF I(m)59, CF I(m)68, CF I(m)72), and is an essential protein complex for pre-mRNA 3'-end cleavage and polyadenylation. It recognizes the upstream sequence of the poly(A) site in a sequence-dependent manner. Here we report the crystal structure of human CF I(m), comprising CF I(m)25 and the RNA recognition motif domain of CF I(m)68 (CF I(m)68RRM), and the crystal structure of the CF I(m)-RNA complex. These structures show that two CF I(m)68RRM molecules bind to the CF I(m)25 dimer via a novel RRM-protein interaction mode forming a heterotetramer. The RNA-bound structure shows that two UGUAA RNA sequences, with anti-parallel orientation, bind to one CF I(m)25-CF I(m)68RRM heterotetramer, providing structural basis for the mechanism by which CF I(m) binds two UGUAA elements within one molecule of pre-mRNA simultaneously. Point mutation and kinetic analyses demonstrate that CF I(m)68RRM can bind the immediately flanking upstream region of the UGUAA element, and CF I(m)68RRM binding significantly increases the RNA-binding affinity of the complex, suggesting that CF I(m)68 makes an essential contribution to pre-mRNA binding.
    Cell Research 04/2011; 21(7):1039-51. · 10.53 Impact Factor
  • Source
    Kai Huang, Jinming Ma, Ye Yuan, Yongxiang Gao
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitrogenases are protein complexes that are only found in Azotobacter and are required for biological nitrogen fixation. They are made up of a nitrogenase, which is a NifD2/NifK2 heterotetramer, and a nitrogenase reductase, which is a homodimer of NifH. Many homologues of nitrogenase have been found in various non-nitrogen-fixing prokaryotes; in particular, they are found in all known methanogens. This indicates that these homologues may play a role in methane production. Here, the cloning of NifH2, a homologue of the NifH nitrogenase component, from Methanocaldococcus jannaschii (MjNifH2) and its expression in Escherichia coli with a polyhistidine tag, purification and crystallization are described. MjNifH2 crystals were obtained by the hanging-drop vapour-diffusion method and diffracted to a resolution limit of 2.85 Å. The crystals belonged to space group P2, with unit-cell parameters a=64.01, b=94.38, c=98.08 Å, α=γ=90, β=98.85°.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 01/2011; 67(Pt 1):133-5. · 0.55 Impact Factor
  • Proteins Structure Function and Bioinformatics 12/2010; 79(4):1358-62. · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glutamate-1-semialdehyde aminotransferase (GSA-AT), also named glutamate-1-semialdehyde aminomutase (GSAM), a pyridoxamine-5'-phosphate (PMP)/pyridoxal-5'-phosphate (PLP) dependent enzyme, catalyses the transamination of the substrate glutamate-1-semialdehyde (GSA) to the product 5-Aminolevulinic acid (ALA) by an unusual intramolecular exchange of amino and oxo groups within the catalytic intermediate 4,5-diaminovalerate (DAVA). This paper presents the crystal structure of GSA-AT from Bacillus subtilis (GSA-ATBsu) in its PMP-bound form at 2.3Å resolution. The structure was determined by molecular replacement using the Synechococcus GSAM (GSAMSyn) structure as a search model. Unlike the previous reported GSAM/GSA-AT structures, GSA-ATBsu is a symmetric homodimer in the PMP-bound form, which shows the structural symmetry at the gating loop region with open state, as well as identical cofactor (PMP) binding in each monomer. This observation of PMP in combination with an "open" lid supports one characteristic feature for this enzyme, as the catalyzed reaction is believed to be initiated by PMP. Furthermore, the symmetry of GSA-ATBsu structure challenges the previously proposed negative cooperativity between monomers of this enzyme.
    Biochemical and Biophysical Research Communications 10/2010; 402(2):356-60. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 5-aminolaevulinic acid dehydratase (ALAD), a crucial enzyme in the biosynthesis of tetrapyrrole, catalyses the condensation of two 5-aminolaevulinic acid (ALA) molecules to form porphobilinogen (PBG). The gene encoding ALAD was amplified from genomic DNA of Bacillus subtilis and the protein was overexpressed in Escherichia coli strain BL21 (DE3). The protein was purified and crystallized with an additional MGSSHHHHHHSSGLVPRGSH- tag at the N-terminus of the target protein. Diffraction-quality single crystals were obtained by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected at a resolution of 2.7 A.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 09/2010; 66(Pt 9):1053-5. · 0.55 Impact Factor
  • Proteins Structure Function and Bioinformatics 09/2010; 79(2):662-8. · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The histone chaperone SET encoded by the SET gene, which is also known as template-activating factor Iß (TAF-Iß), is a multifunctional molecule that is involved in many biological phenomena such as histone binding, nucleosome assembly, chromatin remodelling, replication, transcription and apoptosis. A truncated SET/TAF-Iß ΔN protein that lacked the first 22 residues of the N-terminus but contained the C-terminal acidic domain and an additional His6 tag at the C-terminus was overexpressed in Escherichia coli and crystallized by the hanging-drop vapour-diffusion method using sodium acetate as precipitant at 283 K. The crystals diffracted to 2.7 A resolution and belonged to space group P4(3)2(1)2.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 08/2010; 66(Pt 8):926-8. · 0.55 Impact Factor