Young R Kim

Massachusetts Institute of Technology, Cambridge, Massachusetts, United States

Are you Young R Kim?

Claim your profile

Publications (19)84.78 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The integrity of the blood-brain barrier (BBB) is critical to normal brain function. Traditional techniques for the assessment of BBB disruption rely heavily on the spatiotemporal analysis of extravasating contrast agents. However, such methods based on the leakage of relatively large molecules are not suitable for the detection of subtle BBB impairment or for the performance of repeated measurements in a short time frame. Quantification of the water exchange rate constant (WER) across the BBB using strictly intravascular contrast agents could provide a much more sensitive method for the quantification of the BBB integrity. To estimate WER, we have recently devised a powerful new method using a water exchange index (WEI) biomarker and demonstrated BBB disruption in an acute stroke model. Here, we confirm that WEI is sensitive to even very subtle changes in the integrity of the BBB caused by: (i) systemic hypercapnia and (ii) low doses of a hyperosmolar solution. In addition, we have examined the sensitivity and accuracy of WEI as a biomarker of WER using computer simulation. In particular, the dependence of the WEI-WER relation on changes in vascular blood volume, T(1) relaxation of cellular magnetization and transcytolemmal water exchange was explored. Simulated WEI was found to vary linearly with WER for typically encountered exchange rate constants (1-4 Hz), regardless of the blood volume. However, for very high WER (>5 Hz), WEI became progressively more insensitive to increasing WER. The incorporation of transcytolemmal water exchange, using a three-compartment tissue model, helped to extend the linear WEI regime to slightly higher WER, but had no significant effect for most physiologically important WERs (WER < 4 Hz). Variation in cellular T(1) had no effect on WEI. Using both theoretical and experimental approaches, our study validates the utility of the WEI biomarker for the monitoring of BBB integrity. Copyright © 2012 John Wiley & Sons, Ltd.
    NMR in Biomedicine 10/2012; · 3.45 Impact Factor
  • Source
    Stroke 02/2011; · 6.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MRI biomarkers of tumor edema, vascular permeability, blood volume, and average vessel caliber are increasingly being employed to assess the efficacy of tumor therapies. However, the dependence of these biomarkers on a number of physiological factors can compromise their sensitivity and complicate the assessment of therapeutic efficacy. Here we examine the response of these MRI tumor biomarkers to cediranib, a potent vascular endothelial growth factor receptor (VEGFR) inhibitor, in an orthotopic mouse glioma model. A significant increase in the tumor volume and relative vessel caliber index (rVCI) and a slight decrease in the water apparent diffusion coefficient (ADC) were observed for both control and cediranib treated animals. This contrasts with a clinical study that observed a significant decrease in tumor rVCI, ADC and volume with cediranib therapy. While the lack of a difference between control and cediranib treated animals in these biomarker responses might suggest that cediranib has no therapeutic benefit, cediranib treated mice had a significantly increased survival. The increased survival benefit of cediranib treated animals is consistent with the significant decrease observed for cediranib treated animals in the relative cerebral blood volume (rCBV), relative microvascular blood volume (rMBV), transverse relaxation time (T2), blood vessel permeability (K(trans)), and extravascular-extracellular space (ν(e)). The differential response of pre-clinical and clinical tumors to cediranib therapy, along with the lack of a positive response for some biomarkers, indicates the importance of evaluating the whole spectrum of different tumor biomarkers to properly assess the therapeutic response and identify and interpret the therapy-induced changes in the tumor physiology.
    PLoS ONE 01/2011; 6(3):e17228. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We validate optical cerebral blood flow measurements against functional MRI in a rat model during graded hypercapnia. We test the iso-metabolic assumption and demonstrate an apaprent increase in brain metabolism at higher inhaled CO2levels.
    04/2010;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The vessel caliber index (VCI), a magnetic resonance imaging biomarker of the average blood vessel diameter, is increasingly being used as a tool for assessing tumor angiogenesis and response to antiangiogenic therapy. However, although the VCI has been correlated with histological vessel diameters, good quantitative agreement with histology has been lacking. In addition, no VCI validation studies have been performed in vivo where the structural deformations frequently associated with histological tissue preparation are not present. This study employs intravital optical microscopy (IVM) measurements of cerebral blood vessel diameters in a mouse orthotopic glioma model to provide the first such in vivo validation. Two VCI correlation models, both a linear and a 3/2-power dependence on the DeltaR2*/DeltaR2 ratio, were compared with the IVM data. The linear VCI model, determined from steady-state susceptibility contrast (SSC) images, was found to be in excellent quantitative agreement with the intravitally determined VCI for separate tumor size matched groups of mice. In addition, preliminary data indicate that the VCI is independent of whether a dynamic susceptibility contrast or SSC measurement method is used.
    Neuro-Oncology 04/2010; 12(4):341-50. · 6.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The involvement of matrix metalloproteinase-9 (MMP-9) activities in the development of abnormal water diffusion in the brain after cardiac arrest is not fully understood. We used magnetic resonance imaging to determine the correlation between MMP-9 activity and the mechanism of abnormal water diffusion after global cerebral ischemia (GCI)-induced brain damage in C57black6 mice. We induced GCI in mice by occluding both carotid arteries for 60 min, then allowing reperfusion. We labeled a short DNA that targets mmp-9 mRNA activity [phosphorothioate-modified oligodeoxynucleotide (sODN)-mmp9] or a control probe without intracellular target (sODN-Ran) with iron-based MR contrast agent [superparamagnetic iron oxide nanoparticle (SPION)-mmp9 or SPION-Ran] or fluorescein isothiocyanate (FITC)-sODN-mmp9 or FITC-sODN-Ran; we then delivered these probes by intracerebroventricular infusion or intraperitoneal injection within 3 h of reperfusion. At low dose (120 pmol/kg) the SPION-mmp9 probe was retained at significant levels in the striatum and cortex of living brains 10 h after GCI. Probe retention was validated by similar elevation of mmp-9 mRNA and antigens in postmortem samples taken from regions that exhibited GCI-induced hyperintensity in diffusion-weighted imaging, and a significant reduction in apparent diffusion coefficient (rADC, p = 0.0006, n = 12). At a higher dose (120 nmol/kg), the FITC-sODN-mmp9 probe revealed significant knockdown of MMP-9 activity, per zymography, and a reversal of striatal rADC (p = 0.004, n = 6). These observations were not duplicated in the control group. We conclude that expression of mmp-9 mRNA is associated with abnormal ADC after GCI.
    Journal of Neuroscience 04/2009; 29(11):3508-17. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We aimed to test the feasibility of detecting gliosis in living brains when the blood-brain barrier (BBB) is disrupted. We designed a novel magnetic resonance (MR) probe that contains superparamagnetic iron oxide nanoparticles (SPION, a T2 susceptibility contrast agent) linked to a short DNA sequence complementary to the cerebral mRNA of glial fibrillary acidic protein (GFAP) found in glia and astrocytes. As a control, we also used a sequence complementary to the mRNA of beta-actin. Our objectives are to demonstrate that this new probe, SPION-gfap, could be delivered to the brain when administered by eyedrop solution to the conjunctival sac. We induced BBB leakage by puncture wound, global cerebral ischemia, and cortical spreading depression in C57BL6 mice; 1 day after probe delivery we acquired T2* MR images and R2* (R2* = 1/T2*) maps using a transcription MRI technique in live mice. We found that the SPION-gfap probe reported foci with elevated signal in subtraction R2* maps and that these foci matched areas identified as having extensive glial network (gliosis) in postmortem immunohistochemistry. Similarly, animals administered the control probe exhibited foci of R2* elevation that matched beta-actin-expressing endothelia in the vascular wall. We conclude that our modular MR probe, delivered in an eyedrop solution, effectively reports gliosis associated with acute neurological disorders in living animals. As BBB leakage is often observed in acute neurological disorders, this study also served to validate noninvasive delivery of MR probes to the brains of live animals after acute neurological disorders.
    The FASEB Journal 05/2008; 22(4):1193-203. · 5.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We attempt to validate optical measurements of cerebral blood volume and blood flow in a rat model during a hypercapnic challenge using functional MRI. Initial results show good correlation between optical measurements and MR results.
    03/2008;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of lithium as a neuroprotective agent has been demonstrated using various models in which improvements in infarct size, DNA damage, and neurological function were reported. We further investigated neurohemodynamic aspects of the treatment-associated recovery by assessing the therapeutic efficacy of delayed chronic lithium treatment using functional MRI. Ipsilesional functional MRI activations in the somatosensory cortex, acquired 2 weeks after the 90-minute transient middle cerebral artery occlusion, were compared between lithium- and saline-treated rats. Specifically, MRI signal changes based on blood oxygenation level dependence and functional cerebral blood volume responses were examined using electrical stimulation of forelimbs. Additional immunohistochemical assays were performed. The ratio of ipsilesional to contralesional blood oxygenation level dependence response magnitudes significantly improved with lithium treatments. In contrast, the increase of the functional cerebral blood volume response magnitude ratio was not statistically significant. Nonetheless, the lithium treatment induced significant enhancements of total functional MRI activation (defined as a product of activation volume and response magnitude) for both blood oxygenation level dependence and functional cerebral blood volume methods. Increased cerebral blood volume in periinfarct tissues suggests a possible stroke-induced vascular transformation in both saline- and lithium-treated rats; however, other MRI-derived vascular parameters (vascular size index and microvascular volume) and immunohistochemical staining (CD31, glia fibrillary-associated protein, and matrix metalloproteinase-9) may imply that the neoformation of vasculature was differently affected by the lithium treatment. The delayed chronic lithium treatment enhanced the blood oxygenation level dependence functional MRI response magnitude in the absence of neurological improvement and influenced vascular formation in poststroke animal models.
    Stroke 03/2008; 39(2):439-47. · 6.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Altered gene activities are underlying causes of many neurological disorders. The ability to detect, image, and report endogenous gene transcription using magnetic resonance (MR) holds great potential for providing significant clinical benefits. In this review, we present the development of conjugates consisting of gene-targeting short nucleic acids (oligodeoxynucleotides, or sODN) and superparamagnetic iron oxide nanoparticles (SPION, an MR susceptibility T(2) agent) for reporting gene activity using transcription MRI (tMRI). We will discuss 1) the target specificity of sODN, 2) selection of contrast agents for tMRI, 3) the distribution and uptake, 4) sequence specificity, 5) histology of SPION and sODN, 6) data acquisition and quantitative analysis for tMRI, and 7) application of gene transcript-targeting nanoparticles in biology and medicine. We will also discuss methods of validating the correlation between results from conventional assays (in situ hybridization, PCR, histology Prussian blue stain and immunohistochemistry) in postmortem samples and retention of SPION-sODN using tMRI. The application of our novel contrast probe to report and target gene transcripts in the mesolimbic pathways of living mouse brains after amphetamine exposure will be discussed. Because of the targeting ability in the nucleic acid sequence, the concept of tMRI probes with complementary nucleic acid (antisense DNA or short interfering RNA) allows not only tracking, targeting, binding to intracellular mRNA, and manipulating gene action but also tracing cells with specific gene action in living brains. Transcription MRI will lend itself to myriad applications in living organs.
    The Neuroscientist 12/2007; 14(5):503-20. · 5.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this research was to validate transcription magnetic resonance (MR) imaging (MRI) for gene transcript targeting in acute neurological disorders in live subjects. We delivered three MR probe variants with superparamagnetic iron oxide nanoparticles (SPION, a T2 susceptibility agent) linked to a phosphorothioate-modified oligodeoxynucleotide (sODN) complementary to c-fos mRNA (SPION-cfos) or beta-actin mRNA (SPION-beta-actin) and to sODN with random sequence (SPION-Ran). Each probe (1 microg Fe in 2 microl) was delivered via intracerebroventricular infusion to the left cerebral ventricle of male C57Black6 mice. We demonstrated SPION retention, measured as decreased T2* signal or increased R2* value (R2* = 1/T2*). Animals that received the SPION-beta-actin probe exhibited the highest R2* values, followed (in descending order) by SPION-cfos and SPION-Ran. SPION-cfos retention was localized in brain regions where SPION-cfos was present and where hybrids of SPION-cfos and its target c-fos mRNA were detected by in situ reverse transcription PCR. In animals that experienced cerebral ischemia, SPION-cfos retention was significantly increased in locations where c-fos mRNA increased in response to the ischemic insult; these elevations were not observed for SPION-beta-actin and SPION-Ran. This study should enable MR detection of mRNA alteration in disease models of the central nervous system.
    The FASEB Journal 10/2007; 21(11):3004-15. · 5.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating experimental and clinical data suggest that albumin may be neuroprotective for stroke. Here, we use functional magnetic resonance imaging (fMRI) to evaluate the therapeutic efficacy of albumin and its effects on the recovery of stimuli-induced cerebral hemodynamics. For this purpose, fMRI activity in the ipsilesional somatosensory (SS) cortex was assessed using a well established rat model of transient 90 min focal ischemia and electrical forelimb stimulation. Rats were treated with either saline or albumin via intracerebroventricular injections at 12 h post-stroke onset. Despite this delayed treatment time, when compared to the saline-treated rats (n=7), there were significant enhancements of the fMRI activation in the albumin-treated rats (n=6) for both blood oxygenation level dependence (BOLD) and functional cerebral blood volume (fCBV) responses. Interestingly, the temporal characteristics of the ipsilesional SS BOLD responses in the albumin-treated rats appeared considerably altered compared to those of contralesional responses while such temporal alterations were not pronounced for the fCBV responses. These characteristic fMRI temporal profiles of the albumin-treated brains may be due to altered neuronal responses rather than altered integrity of neurovascular coupling, which implies an unusually fast habituation of neuronal responses in the lesional SS cortex. The correlation between various MRI-derived structural parameters and the fMRI response magnitude was also characteristic for albumin and control groups. Taken together, these data suggest that restoration of fMRI response magnitudes, temporal profiles, and correlations with structure may reveal the extent and specific traits of albumin treatment associated stroke recovery.
    Journal of Cerebral Blood Flow & Metabolism 02/2007; 27(1):142-53. · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To circumvent the limitations of using postmortem brain in molecular assays, we used avidin-biotin binding to couple superparamagnetic iron oxide nanoparticles (SPIONs) (15-20 nm) to phosphorothioate-modified oligodeoxynucleotides (sODNs) with sequence complementary to c-fos and beta-actin mRNA (SPION-cfos and SPION-beta-actin, respectively) (14-22 nm). The Stern-Volmer constant for the complex of SPION and fluorescein isothiocyanate (FITC)-sODN is 3.1 x 10(6)/m. We studied the feasibility of using the conjugates for in vivo magnetic resonance imaging (MRI) to monitor gene transcription, and demonstrated that these complexes at 40 mug of Fe per kilogram of body weight were retained at least 1 d after intracerebroventricular infusion into the left ventricle of C57Black6 mice. SPION retention measured by MRI as T(2)* or R(2)* maps (R(2)* = 1/T(2)*) was compared with histology of iron oxide (Prussian blue) and FITC-labeled sODN. We observed significant reduction in magnetic resonance (MR) T(2)* signal in the right cortex and striatum; retention of SPION-cfos and SPION-beta-actin positively correlated with c-fos and beta-actin mRNA maps obtained from in situ hybridization. Histological examination showed that intracellular iron oxide and FITC-sODN correlated positively with in vivo MR signal reduction. Furthermore, in animals that were administered SPION-cfos and amphetamine (4 mg/kg, i.p.), retention was significantly elevated in the nucleus accumbens, striatum, and medial prefrontal cortex of the forebrain. Control groups that received SPION-cfos and saline or that received a SPION conjugate with a random-sequence probe and amphetamine showed no retention. These results demonstrated that SPION-sODN conjugates can detect active transcriptions of specific mRNA species in living animals with MRI.
    Journal of Neuroscience 02/2007; 27(3):713-22. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nicotine is one of the most addictive substances known. To better understand the mechanisms of action, we mapped the regional brain response to nicotine administration using pharmacologic magnetic resonance imaging (phMRI) in rats. We measured the regional response of relative cerebral blood volume (rCBV) in rats to a challenge of 0.07 mg/kg (0.43 micromol/kg) of nicotine. The areas of the brain with significant and reproducible changes in the rCBV response were (in descending order of magnitude) infralimbic cortex, hippocampus (subiculum), agranular insular/pyriform cortex, visual cortex, interpeduncular area, nucleus accumbens, cingulate cortex, thalamus, and septum. This pattern of response is consistent with stimulation of both cholinergic and dopaminergic neuronal pathways and is consistent with the known behavioral properties of nicotine. The peak CBV response to nicotine occurred between 9 and 13 min depending upon brain region, and the average full width half-maximum of the rCBV response was 27 min. The high spatial and temporal resolution of the phMRI technique lends itself well to further, more detailed, studies of nicotine dynamics.
    Synapse 09/2006; 60(2):152-7. · 2.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain responses to external stimuli after permanent and transient ischemic insults have been documented using cerebral blood volume weighted (CBVw) functional magnetic resonance imaging (fMRI) in correlation with tissue damage and neurological recovery. Here, we extend our previous studies of stroke recovery in rat models of focal cerebral ischemia by comparing blood oxygen level-dependent (BOLD) and cerebral blood volume (CBV) changes. Responses to forepaw stimulation were measured in normal rats (n=5) and stroke rats subjected to 2 h of middle cerebral artery occlusion (n=6). Functional magnetic resonance imaging was performed 2 weeks after stroke to evaluate the recovery process. After stroke, animals showed variable degrees of fMRI activation in ipsilesional cortex, the extent of which did not correlate with structural damages as measured using apparent diffusion coefficient, fractional anisotropy, blood volume, and vessel size index. While the contralesional cortex showed good overlap between BOLD and CBV-activated regions, the ipsilesional cortex showed low covariance between significantly activated voxels by BOLD and CBVw techniques. In particular, the relative activation during contralateral stimuli in the ipsilesional somatosensory cortex was significantly higher for CBVw responses than BOLD, which might be due to stroke-related alterations in fMRI hemodynamic coupling. Aberrant subcortical activations were also observed. When unaffected forelimbs were stimulated, strong bilateral responses were observed. However, little thalamic responses accompanied stimulation of affected forelimbs despite significant activation in the ipsilesional somatosensory cortex. These results suggest that stroke affects not only local hemodynamics and coupling but also other factors including neural connectivity.
    Journal of Cerebral Blood Flow & Metabolism 08/2005; 25(7):820-9. · 5.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Relative to common clinical magnetic field strengths, higher fields benefit functional brain imaging both by providing additional signal for high-resolution applications and by improving the sensitivity of endogenous contrast due to the blood oxygen level dependent (BOLD) mechanism, which has limited detection power at low magnetic fields relative to the use of exogenous contrast agent. This study evaluates the utility of iron oxide contrast agent for gradient echo functional MRI at 9.4 T in rodents using cocaine and methylphenidate as stimuli. Relative to the BOLD method, the use of high iron doses and short echo times provided a roughly twofold global increase in functional sensitivity, while also suppressing large vessel signal and reducing susceptibility artifacts. Furthermore, MRI measurements of the functional percentage change in cerebral blood volume (CBV) showed excellent agreement with results obtained at much lower magnetic field strengths, demonstrating that MRI estimates of this quantity are roughly independent of magnetic field when appropriate techniques are employed. The derived field dependencies for relative sensitivity and MRI estimates of the percentage change in CBV suggest that the benefits provided by exogenous agents will persist even at much higher magnetic fields than 9.4 T.
    Magnetic Resonance in Medicine 01/2005; 52(6):1272-81. · 3.27 Impact Factor
  • Source
    Journal of Cerebral Blood Flow & Metabolism 01/2005; 25. · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The potential application of gas microbubbles as a unique intravascular susceptibility contrast agent for MRI has not been fully explored. In this study, the MR susceptibility effect of an ultrasound microbubble contrast agent, Optison, was studied with rat liver imaging at 7 T. Optison suspension in two different doses (0.15 mL/kg and 0.4 mL/kg) was injected into rats, and induced transverse relaxation rate increases (deltaR2*) of 29.1 +/- 1.6 s(-1) (N = 2) and 61.5 +/- 12.9 s(-1) (N = 6), respectively, in liver tissue. Liver uptake of intact albumin microbubbles was observed 10 min after injection. Eight of the 16 rats studied showed no susceptibility enhancement. This is probably attributable to the intravascular microbubble growth due to transmural CO2 supersaturation in the cecum and colon in small animals that causes microbubble aggregation and trapping in the inferior vena cava (IVC). In vitro deltaR2* measurements of Optison suspension at different concentrations are also reported.
    Magnetic Resonance in Medicine 10/2004; 52(3):445-52. · 3.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain injury affects one-third of persons who survive after heart attack, even with restoration of spontaneous circulation by cardiopulmonary resuscitation. We studied brain injury resulting from transient bilateral carotid artery occlusion (BCAO) and reperfusion by simulating heart attack and restoration of circulation, respectively, in live C57Black6 mice. This model is known to induce neuronal death in the hippocampus, striatum, and cortex. We report the appearance of edema after transient BCAO of 60 minutes and 1 day of reperfusion. Hyperintensity in diffusion-weighted magnetic resonance imaging (MRI) was detectable in the striatum, thalamus, and cortex but not in the hippocampus. To determine whether damage to the hippocampus can be detected in live animals, we infused a T(2) susceptibility magnetic resonance contrast agent (superparamagnetic iron oxide nanoparticles [SPIONs]) that was linked to single-stranded deoxyribonucleic acid (DNA) complementary in sequence to c-fos messenger ribonucleic acid (SPION-cfos); we acquired in vivo T(2)*-weighted MRI 3 days later. SPION retention was measured as T(2)* (milliseconds) signal reduction or R(2)* value (s(-1)) elevation. We found that animals treated with 60-minute BCAO and 7-day reperfusion exhibited significantly less SPION retention in the hippocampus and cortex than sham-operated animals. These findings suggest that brain injury induced by cardiac arrest can be detected in live animals.
    Molecular Imaging 6(3):156-70. · 3.41 Impact Factor

Publication Stats

250 Citations
84.78 Total Impact Points

Institutions

  • 2012
    • Massachusetts Institute of Technology
      Cambridge, Massachusetts, United States
  • 2004–2012
    • Massachusetts General Hospital
      • Athinoula A. Martinos Center for Biomedical Imaging
      Boston, Massachusetts, United States
  • 2005–2008
    • Harvard University
      Cambridge, Massachusetts, United States