W Bursch

University of Michigan, Ann Arbor, MI, United States

Are you W Bursch?

Claim your profile

Publications (101)482.87 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
  • Source
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
    Autophagy 04/2012; 8(4):445. · 12.04 Impact Factor
  • Source
    Autophagy 04/2012; 8(4):1-100. · 12.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process);5,6 thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
    Autophagy 04/2012; 8(4). · 12.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
    Autophagy 04/2012; 8(4):445-544. · 12.04 Impact Factor
  • Source
    Autophagy 04/2012; 4454(8):445-544. · 12.04 Impact Factor
  • Source
    Autophagy 01/2012; 4454(8):445-544. · 12.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Active cell death, the genetically programmed self-destruction of a cell, is now recognized to be a widespread phenomenon in biology that counterbalances mitosis to preserve tissue homeostasis. It is subject to the control of the growth regulatory networks in tissues. Close examination of the morphology of dying cells in liver and other tissues suggests that there are a number of morphological types of active cell death, ranging from forms dominated by nuclear changes and without signs of autophagy ("classical" apoptosis), e.g., in thymocytes and the liver, to those dominated by autophagic degradation of cytoplasm, e.g., in the mammary gland. The induction of gene expression in these diverse types of cell death is anticipated to be different. Here we review the data regarding the regulation of apoptosis in the liver by liver tumor promoter, transforming growth factor beta-1 and related peptides as well as nutrition. In the course of hepatocarcinogenesis, initiated cells as well as preneoplastic and neoplastic cell populations showed enhanced cell replication, but also enhanced apoptosis. Tumor promoter shift the balance between birth and death by increasing the rate of cell replication and by decreasing the rate of apoptosis. Thereby, liver tumor formation is accelerated. Food restriction exhibits the opposite effect and consequently, provides protection from carcinogenesis.
    Biochemistry and Cell Biology 01/2011; 72(11-12):669-75. · 2.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell culture systems are widely used to study metabolic changes during apoptosis. In cell culture, unlike in vivo, apoptotic cells are not phagocytosed and eventually lyse (secondary necrosis). This is of practical importance because metabolic changes seen in cultures may be due to the transition from apoptosis to necrosis, rather than to the induction of apoptosis itself. In the present study, we followed the kinetics of the occurrence of several indicators of cell death in rat thymocytes and mouse lymphoma (S.49), and human leukemia (CEM) cell cultures after dexamethasone treatment (10(-6) M). The presence of apoptosis and secondary necrosis was demonstrated by electron microscopy. Nuclear condensation and fragmentation, which are considered to reflect early stages of apoptosis, were visualized with Hoechst fluorescent dye H 33258 for quantitative determination by light microscopy. In S.49 and CEM cultures their incidence increased after glucocorticoid treatment, but remained at relatively low levels not exceeding 6-9% until 36 h (S.49) or 3-4% until 92 h (CEM). The trypan blue positive cells, however, increased steadily to about 60%. Furthermore, flow cytometry (single parameter DNA analysis after propidium iodide staining) revealed the occurrence of cells with reduced DNA fluorescence. Morphological and biochemical (internucleosomal DNA cleavage) analysis of FACS-sorted cells showed that early after dexamethasone the majority of them were apoptotic. In S.49 and CEM cell cultures no clear-cut time lag between increase in cells with reduced DNA fluorescence, chromatin condensation/fragmentation, and the uptake of trypan blue could be detected.(ABSTRACT TRUNCATED AT 250 WORDS)
    Biochemistry and Cell Biology 01/2011; 72(11-12):677-85. · 2.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glutathione S-transferases (GSTs) play an essential role in the elimination of xenobiotic-derived electrophilic metabolites and also catalyze certain steps in the conversion of endogenous molecules. Their expression is controlled by different transcription factors, such as the antioxidant-activated Nrf2 or the constitutive androstane receptor. Here, we show that the Wnt/beta-catenin pathway is also involved in the transcriptional regulation of GSTs: GSTm2, GSTm3, and GSTm6 are overexpressed in mouse hepatomas with activating Ctnnb1 (encoding beta-catenin) mutations and in transgenic hepatocytes expressing activated beta-catenin. Inversely, GSTm expression is reduced in mice with hepatocyte-specific knock out of Ctnnb1. Activation of beta-catenin-dependent signaling stimulates GSTm expression in vitro. Activation of beta-catenin in mouse hepatoma cells activates GSTm3 promoter-driven reporter activity, independently of beta-catenin/T-cell factor sites, via a retinoid X receptor-binding site. By contrast, GSTm expression is inhibited upon Ras activation in mouse liver tumors and transgenic hepatocytes. Recent studies by different groups have shown that beta-catenin-dependent signaling is involved in the transcriptional control of "perivenous" expression of various cytochrome P450s in mouse liver, whereas Ras signaling was hypothesized to antagonize the perivenous hepatocyte phenotype. In synopsis with our present results, it now appears that the Wnt/beta-catenin pathway functions as a master regulator of the expression of both phase I and phase II drug-metabolizing enzymes in perivenous hepatocytes from mouse liver.
    Toxicological Sciences 05/2010; 115(1):22-33. · 4.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumoren in hormonabhängigen Organen gehören zu den weltweit häufigsten Ursachen von Krebserkrankungen; zu ihnen zählen vor allem die Mamma-, Endometrium-, Prostataund Hodenkarzinome.
    12/2009: pages 254-271;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cells may use multiple pathways to commit suicide. In certain contexts, dying cells generate large amounts of autophagic vacuoles and clear large proportions of their cytoplasm, before they finally die, as exemplified by the treatment of human mammary carcinoma cells with the anti-estrogen tamoxifen (TAM, < or = 1 microM). Protein analysis during autophagic cell death revealed distinct proteins of the nuclear fraction including GST-pi and some proteasomal subunit constituents to be affected during autophagic cell death. Depending on the functional status of caspase-3, MCF-7 cells may switch between autophagic and apoptotic features of cell death [Fazi, B., Bursch, W., Fimia, G.M., Nardacci R., Piacentini, M., Di Sano, F., Piredda, L., 2008. Fenretinide induces autophagic cell death in caspase-defective breast cancer cells. Autophagy 4(4), 435-441]. Furthermore, the self-destruction of MCF-7 cells was found to be completed by phagocytosis of cell residues [Petrovski, G., Zahuczky, G., Katona, K., Vereb, G., Martinet, W., Nemes, Z., Bursch, W., Fésüs, L., 2007. Clearance of dying autophagic cells of different origin by professional and non-professional phagocytes. Cell Death Diff. 14 (6), 1117-1128]. Autophagy also constitutes a cell's strategy of defense upon cell damage by eliminating damaged bulk proteins/organelles. This biological condition may be exemplified by the treatment of MCF-7 cells with a necrogenic TAM-dose (10 microM), resulting in the lysis of almost all cells within 24h. However, a transient (1h) challenge of MCF-7 cells with the same dose allowed the recovery of cells involving autophagy. Enrichment of chaperones in the insoluble cytoplasmic protein fraction indicated the formation of aggresomes, a potential trigger for autophagy. In a further experimental model HL60 cells were treated with TAM, causing dose-dependent distinct responses: 1-5 microM TAM, autophagy predominant; 7-9 microM, apoptosis predominant; 15 microM, necrosis. These phenomena might be attributed to the degree of cell damage caused by tamoxifen, either by generating ROS, increasing membrane fluidity or forming DNA-adducts. Finally, autophagy constitutes a cell's major adaptive (survival) strategy in response to metabolic challenges such as glucose or amino acid deprivation, or starvation in general. Notably, the role of autophagy appears not to be restricted to nutrient recycling in order to maintain energy supply of cells and to adapt cell(organ) size to given physiological needs. For instance, using a newly established hepatoma cell line HCC-1.2, amino acid and glucose deprivation revealed a pro-apoptotic activity, additive to TGF-beta1. The pro-apoptotic action of glucose deprivation was antagonized by 2-deoxyglucose, possibly by stabilizing the mitochondrial membrane involving the action of hexokinase II. These observations suggest that signaling cascades steering autophagy appear to provide links to those regulating cell number. Taken together, our data exemplify that a given cell may flexibly respond to type and degree of (micro)environmental changes or cell death stimuli; a cell's response may shift gradually from the elimination of damaged proteins by autophagy and the recovery to autophagic or apoptotic pathways of cell death, the failure of which eventually may result in necrosis.
    Toxicology 07/2008; 254(3):147-57. · 4.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The elimination of tumor cells by apoptosis is the main mechanism of action of chemotherapeutic drugs. More recently, autophagic cell death has been shown to trigger a nonapoptotic cell death program in cancer cells displaying functional defects of caspases. Fenretinide (FenR), a synthetic derivative of retinoic acid, promotes growth inhibition and induces apoptosis in a wide range of tumor cell types. The present study was designed to evaluate the ability of fenretinide to induce caspase-independent cell death and to this aim we used the human mammary carcinoma cell line MCF-7, lacking functional caspase-3 activity. We demonstrated that in these cells fenretinide is able to trigger an autophagic cell death pathway. In particular we found that fenretinide treatment resulted in the increase in Beclin 1 expression, the conversion of the soluble form of LC3 to the autophagic vesicle-associated form LC3-II and its shift from diffuse to punctate staining and finally the increase in lysosomes/autophagosomes. By contrast, caspase-3 reconstituted MCF-7 cell line showed apoptotic cell death features in response to fenretinide treatment. These data strongly suggest that fenretinide does not invariably elicit an apoptotic response but it is able to induce autophagy when apoptotic pathway is deregulated. The understanding of the molecular mechanisms involved in fenretinide action is important for the future design of therapies employing this retinoid in breast cancer treatment.
    Autophagy 05/2008; 4(4):435-41. · 12.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
    Autophagy 02/2008; 4(2):151-75. · 12.04 Impact Factor
  • Source
    01/2008: pages 151-75; , ISBN: 1554-8635 (Electronic)
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activins are members of the transforming growth factor-beta (TGF-β) family. They are dimers composed of β subunits four of which are known in mammals: βA, βB, βC, and βE; a fifth subunit, βD, was found in Xenopus. As other TGF-β family members, activins are synthesised as proforms and are intracellularly processed to the mature peptides. They contain a characteristic knot of nine conserved cysteines. Activin A has been quite-well characterized. It is expressed in many organs and cell types, its receptors and binding proteins (follistatins) as well as the binding regions in the mature peptide are known. The liver activin A, like TGF-β1, is a negative regulator of growth and contributes to the adjustment of liver size according to physiological requirements. In addition, activin A appears to exert proinflammatory and fibrogenic activities. In rodent liver tumors levels of activin A are decreased and those of follistatins are increased suggesting that deregulation of this growth inhibitory system contributes to carcinogenesis. Activins C and E are predominantly expressed in the liver. Little definitive evidence is available on their function. Activin C has been described as proapoptotic and growth inhibitory in liver and hepatoma cells, while other studies have reported growth stimulatory effects. Activin E was found to inhibit DNA synthesis and stimulate apoptosis in normal liver and hepatoma cells. Key WordsActivins-inhibin-TGF β-follistatins-hepatic apoptosis-hepatic DNA synthesis-inflammatory effects-liver fibrosis-chemical mitogens-liver tumors
    12/2007: pages 483-508;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MCF-7 cells undergo autophagic death upon tamoxifen treatment. Plated on non-adhesive substratum these cells died by anoikis while inducing autophagy as revealed by monodansylcadaverine staining, elevated light-chain-3 expression and electron microscopy. Both de novo and anoikis-derived autophagic dying cells were engulfed by human macrophages and MCF-7 cells. Inhibition of autophagy by 3-methyladenine abolished engulfment of cells dying through de novo autophagy, but not those dying through anoikis. Blocking exposure of phosphatidylserine (PS) on both dying cell types inhibited phagocytosis by MCF-7 but not by macrophages. Gene expression profiling showed that though both types of phagocytes expressed full repertoire of the PS recognition and signaling pathway, macrophages could evolve during engulfment of de novo autophagic cells the potential of calreticulin-mediated processes as well. Our data suggest that cells dying through autophagy and those committing anoikis with autophagy may engage in overlapping but distinct sets of clearance mechanisms in professional and non-professional phagocytes.
    Cell Death and Differentiation 07/2007; 14(6):1117-28. · 8.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytostatic agents are applied in cancer therapy and subsequently excreted into hospital wastewater. As these substances are known to be carcinogenic, mutagenic and toxic for reproduction, they should be removed from wastewater at their source of origin. In this study the fate and effects of the cancerostatic platinum compounds (CPC) cisplatin, carboplatin, oxaliplatin, 5-fluorouracil (5-FU) and the anthracyclines doxorubicin, daunorubicin and epirubicin were investigated in hospital wastewater. Wastewater from the in-patient treatment ward of a hospital in Vienna was collected and monitored for the occurrence of the selected drugs. A calculation model was established to spot the correlation between administered dosage and measured concentrations. To investigate the fate of the selected substances during wastewater treatment, the oncologic wastewater was treated in a pilot membrane bioreactor system (MBR) and in downstream advanced wastewater treatment processes (adsorption to activated carbon and UV-treatment). Genotoxic effects of the oncologic wastewater were assessed before and after wastewater treatment followed by a risk assessment. Monitoring concentrations of the selected cytostatics in the oncologic wastewater were in line with calculated concentrations. Due to different mechanisms (adsorption, biodegradation) in the MBR-system 5 - FU and the anthracyclines were removed < LOD, whereas CPC were removed by 60%. In parallel, genotoxic effects could be reduced significantly by the MBR-system. The risk for humans, the aquatic and terrestrial environment by hospital wastewater containing cytostatic drugs was classified as small in a preliminary risk assessment.
    Water Science & Technology 02/2007; 56(12):141-9. · 1.10 Impact Factor

Publication Stats

7k Citations
482.87 Total Impact Points

Institutions

  • 2012
    • University of Michigan
      • Life Sciences Institute
      Ann Arbor, MI, United States
  • 1990–2011
    • University of Vienna
      • • Institut für Krebsforschung
      • • Institute of Cancer Research
      • • Institute of Tumor Biology-Cancer Research
      Vienna, Vienna, Austria
  • 2004–2009
    • Medizinische Universität Wien
      • • Institut für Krebsforschung
      • • Universitätsklinik für Innere Medizin I
      Vienna, Vienna, Austria
  • 2005
    • St. John's University
      New York City, New York, United States
  • 1987
    • Philipps University of Marburg
      Marburg, Hesse, Germany