Rhonda Bassel-Duby

University of Texas Southwestern Medical Center, Dallas, Texas, United States

Are you Rhonda Bassel-Duby?

Claim your profile

Publications (138)1484.86 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular injury triggers dedifferentiation and cytoskeletal remodeling of smooth muscle cells (SMCs), culminating in vessel occlusion. Serum response factor (SRF) and its coactivator, myocardin, play a central role in the control of smooth muscle phenotypes by regulating the expression of cytoskeletal genes. We show that SRF and myocardin regulate a cardiovascular-specific microRNA (miRNA) cluster encoding miR-143 and miR-145. To assess the functions of these miRNAs in vivo, we systematically deleted them singly and in combination in mice. Mice lacking both miR-143 and miR-145 are viable and do not display overt abnormalities in smooth muscle differentiation, although they show a significant reduction in blood pressure due to reduced vascular tone. Remarkably, however, neointima formation in response to vascular injury is profoundly impeded in mice lacking these miRNAs, due to disarray of actin stress fibers and diminished migratory activity of SMCs. These abnormalities reflect the regulation of a cadre of modulators of SRF activity and actin dynamics by miR-143 and miR-145. Thus, miR-143 and miR-145 act as integral components of the regulatory network whereby SRF controls cytoskeletal remodeling and phenotypic switching of SMCs during vascular disease.
    Genes & development 09/2009; 23(18):2166-78. · 12.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oligodendrocyte development is regulated by the interaction of repressors and activators in a complex transcriptional network. We found that two histone-modifying enzymes, HDAC1 and HDAC2, were required for oligodendrocyte formation. Genetic deletion of both Hdac1 and Hdac2 in oligodendrocyte lineage cells resulted in stabilization and nuclear translocation of -catenin, which negatively regulates oligodendrocyte development by repressing Olig2 expression. We further identified the oligodendrocyte-restricted transcription factor TCF7L2/TCF4 as a bipartite co-effector of -catenin for regulating oligodendrocyte differentiation. Targeted disruption of Tcf7l2 in mice led to severe defects in oligodendrocyte maturation, whereas expression of its dominant-repressive form promoted precocious oligodendrocyte specification in developing chick neural tube. Transcriptional co-repressors HDAC1 and HDAC2 compete with -catenin for TCF7L2 interaction to regulate downstream genes involved in oligodendrocyte differentiation. Thus, crosstalk between HDAC1/2 and the canonical Wnt signaling pathway mediated by TCF7L2 serves as a regulatory mechanism for oligodendrocyte differentiation.
    Nature Neuroscience 06/2009; 12(7):829-838. · 15.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Denervation by sciatic nerve resection causes decreased muscle glucose transporter 4 (GLUT4) expression, but little is known about the signaling events that cause this decrease. Experiments were designed to test the hypothesis that decreased GLUT4 expression in denervated muscle occurs because of decreased calcium/CaMK activity, which would then lead to decreased activation of the transcription factors myocyte enhancer factor 2 (MEF2) and GLUT4 enhancer factor (GEF), which are required for normal GLUT4 expression. GLUT4 mRNA was elevated in mice expressing constitutively active CaMK isoform IV (CaMKIV) and decreased by denervation. Denervation decreased GEF binding to the promoter and the content of GEF in the nucleus, but there was no change in either MEF2 binding or MEF2 protein content. Expression of a MEF2-dependent reporter gene did not change in denervated skeletal muscle. To determine the domains of the GLUT4 promoter that respond to denervation, transgenic mice expressing the chloramphenicol acetyl transferase (CAT) reporter gene driven by different lengths of the human GLUT4 promoter were denervated. Using several different promoter/reporter gene constructs, we found that all areas of the GLUT4 promoter were truncated or missing, except for the MEF2 binding domain and the basal promoter. All of the GLUT4 promoter/CAT reporter constructs evaluated responded normally to denervation. Our data lead us to conclude that decreased CaMK activity is not the reason for decreased GLUT4 content in denervated muscle and that negative control of GLUT4 expression is not mediated through the MEF2 or GEF-binding domains. These findings indicate that withdrawal of a GEF- or MEF2-dependent signal is not likely a major determinant of the denervation effect on GLUT4 expression. Thus, the response to denervation may be mediated by other elements present in the basal promoter of the GLUT4 gene.
    AJP Regulatory Integrative and Comparative Physiology 04/2009; 296(6):R1820-8. · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The basic helix-loop-helix transcription factor stem cell leukemia gene (Scl) is a master regulator for hematopoiesis essential for hematopoietic specification and proper differentiation of the erythroid and megakaryocyte lineages. However, the critical downstream targets of Scl remain undefined. Here, we identified a novel Scl target gene, transcription factor myocyte enhancer factor 2 C (Mef2C) from Scl(fl/fl) fetal liver progenitor cell lines. Analysis of Mef2C(-/-) embryos showed that Mef2C, in contrast to Scl, is not essential for specification into primitive or definitive hematopoietic lineages. However, adult VavCre(+)Mef2C(fl/fl) mice exhibited platelet defects similar to those observed in Scl-deficient mice. The platelet counts were reduced, whereas platelet size was increased and the platelet shape and granularity were altered. Furthermore, megakaryopoiesis was severely impaired in vitro. Chromatin immunoprecipitation microarray hybridization analysis revealed that Mef2C is directly regulated by Scl in megakaryocytic cells, but not in erythroid cells. In addition, an Scl-independent requirement for Mef2C in B-lymphoid homeostasis was observed in Mef2C-deficient mice, characterized as severe age-dependent reduction of specific B-cell progenitor populations reminiscent of premature aging. In summary, this work identifies Mef2C as an integral member of hematopoietic transcription factors with distinct upstream regulatory mechanisms and functional requirements in megakaryocyte and B-lymphoid lineages.
    Blood 03/2009; 113(15):3461-71. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute and chronic injuries to the heart result in perturbation of intracellular calcium signaling, which leads to pathological cardiac hypertrophy and remodeling. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the transduction of calcium signals in the heart, but the specific isoforms of CaMKII that mediate pathological cardiac signaling have not been fully defined. To investigate the potential involvement in heart disease of CaMKIIdelta, the major CaMKII isoform expressed in the heart, we generated CaMKIIdelta-null mice. These mice are viable and display no overt abnormalities in cardiac structure or function in the absence of stress. However, pathological cardiac hypertrophy and remodeling are attenuated in response to pressure overload in these animals. Cardiac extracts from CaMKIIdelta-null mice showed diminished kinase activity toward histone deacetylase 4 (HDAC4), a substrate of stress-responsive protein kinases and suppressor of stress-dependent cardiac remodeling. In contrast, phosphorylation of the closely related HDAC5 was unaffected in hearts of CaMKIIdelta-null mice, underscoring the specificity of the CaMKIIdelta signaling pathway for HDAC4 phosphorylation. We conclude that CaMKIIdelta functions as an important transducer of stress stimuli involved in pathological cardiac remodeling in vivo, which is mediated, at least in part, by the phosphorylation of HDAC4. These findings point to CaMKIIdelta as a potential therapeutic target for the maintenance of cardiac function in the setting of pressure overload.
    Proceedings of the National Academy of Sciences 02/2009; 106(7):2342-7. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) modulate gene expression by inhibiting mRNA translation and promoting mRNA degradation, but little is known of their potential roles in organ formation or function. miR-133a-1 and miR-133a-2 are identical, muscle-specific miRNAs that are regulated during muscle development by the SRF transcription factor. We show that mice lacking either miR-133a-1 or miR-133a-2 are normal, whereas deletion of both miRNAs causes lethal ventricular-septal defects in approximately half of double-mutant embryos or neonates; miR-133a double-mutant mice that survive to adulthood succumb to dilated cardiomyopathy and heart failure. The absence of miR-133a expression results in ectopic expression of smooth muscle genes in the heart and aberrant cardiomyocyte proliferation. These abnormalities can be attributed, at least in part, to elevated expression of SRF and cyclin D2, which are targets for repression by miR-133a. These findings reveal essential and redundant roles for miR-133a-1 and miR-133a-2 in orchestrating cardiac development, gene expression, and function and point to these miRNAs as critical components of an SRF-dependent myogenic transcriptional circuit.
    Genes & Development 12/2008; 22(23):3242-54. · 12.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The composition of skeletal muscle, in terms of the relative number of slow- and fast-twitch fibers, is tightly regulated to enable an organism to respond and adapt to changing physical demands. The phosphatase calcineurin and its downstream targets, transcription factors of the nuclear factor of activated T cells (NFAT) family, play a critical role in this process by promoting the formation of slow-twitch, oxidative fibers. Calcineurin binds to calsarcins, a family of striated muscle-specific proteins of the sarcomeric Z-disc. We show here that mice deficient in calsarcin-2, which is expressed exclusively by fast-twitch muscle and encoded by the myozenin 1 (Myoz1) gene, have substantially reduced body weight and fast-twitch muscle mass in the absence of an overt myopathic phenotype. Additionally, Myoz1 KO mice displayed markedly improved performance and enhanced running distances in exercise studies. Analysis of fiber type composition of calsarcin-2-deficient skeletal muscles showed a switch toward slow-twitch, oxidative fibers. Reporter assays in cultured myoblasts indicated an inhibitory role for calsarcin-2 on calcineurin, and Myoz1 KO mice exhibited both an excess of NFAT activity and an increase in expression of regulator of calcineurin 1-4 (RCAN1-4), indicating enhanced calcineurin signaling in vivo. Taken together, these results suggest that calsarcin-2 modulates exercise performance in vivo through regulation of calcineurin/NFAT activity and subsequent alteration of the fiber type composition of skeletal muscle.
    Journal of Clinical Investigation 11/2008; 118(11):3598-608. · 12.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone deacetylase (HDAC) inhibitors show remarkable therapeutic potential for a variety of disorders, including cancer, neurological disease, and cardiac hypertrophy. However, the specific HDAC isoforms that mediate their actions are unclear, as are the physiological and pathological functions of individual HDACs in vivo. To explore the role of Hdac3 in the heart, we generated mice with a conditional Hdac3 null allele. Although global deletion of Hdac3 resulted in lethality by E9.5, mice with a cardiac-specific deletion of Hdac3 survived until 3-4 months of age. At this time, they showed massive cardiac hypertrophy and upregulation of genes associated with fatty acid uptake, fatty acid oxidation, and electron transport/oxidative phosphorylation accompanied by fatty acid-induced myocardial lipid accumulation and elevated triglyceride levels. These abnormalities in cardiac metabolism can be attributed to excessive activity of the nuclear receptor PPARalpha. The phenotype associated with cardiac-specific Hdac3 gene deletion differs from that of all other Hdac gene mutations. These findings reveal a unique role for Hdac3 in maintenance of cardiac function and regulation of myocardial energy metabolism.
    Journal of Clinical Investigation 11/2008; 118(11):3588-97. · 12.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial cells play essential roles in maintenance of vascular integrity, angiogenesis, and wound repair. We show that an endothelial cell-restricted microRNA (miR-126) mediates developmental angiogenesis in vivo. Targeted deletion of miR-126 in mice causes leaky vessels, hemorrhaging, and partial embryonic lethality, due to a loss of vascular integrity and defects in endothelial cell proliferation, migration, and angiogenesis. The subset of mutant animals that survives displays defective cardiac neovascularization following myocardial infarction. The vascular abnormalities of miR-126 mutant mice resemble the consequences of diminished signaling by angiogenic growth factors, such as VEGF and FGF. Accordingly, miR-126 enhances the proangiogenic actions of VEGF and FGF and promotes blood vessel formation by repressing the expression of Spred-1, an intracellular inhibitor of angiogenic signaling. These findings have important therapeutic implications for a variety of disorders involving abnormal angiogenesis and vascular leakage.
    Developmental Cell 09/2008; 15(2):261-71. · 12.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adult hippocampal neurogenesis is stimulated by chronic administration of antidepressants (ADs) and by voluntary exercise. Neural progenitor cells (NPCs) in the dentate gyrus (DG) that are capable of continuous proliferation and neuronal differentiation are the source of such structural plasticity. Here we report that mice lacking the receptor tyrosine kinase TrkB in hippocampal NPCs have impaired proliferation and neurogenesis. When exposed to chronic ADs or wheel-running, no increase in proliferation or neurogenesis is observed. Ablation of TrkB also renders these mice behaviorally insensitive to antidepressive treatment in depression- and anxiety-like paradigms. In contrast, mice lacking TrkB only in differentiated DG neurons display typical neurogenesis and respond normally to chronic ADs. Thus, our data establish an essential cell-autonomous role for TrkB in regulating hippocampal neurogenesis and behavioral sensitivity to antidepressive treatments, and support the notion that impairment of the neurogenic niche is an etiological factor for refractory responses to an antidepressive regimen.
    Neuron 09/2008; 59(3):399-412. · 15.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Learning and memory depend on the activity-dependent structural plasticity of synapses and changes in neuronal gene expression. We show that deletion of the MEF2C transcription factor in the CNS of mice impairs hippocampal-dependent learning and memory. Unexpectedly, these behavioral changes were accompanied by a marked increase in the number of excitatory synapses and potentiation of basal and evoked synaptic transmission. Conversely, neuronal expression of a superactivating form of MEF2C results in a reduction of excitatory postsynaptic sites without affecting learning and memory performance. We conclude that MEF2C limits excessive synapse formation during activity-dependent refinement of synaptic connectivity and thus facilitates hippocampal-dependent learning and memory.
    Proceedings of the National Academy of Sciences 08/2008; 105(27):9391-6. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HDAC4 is a Class II histone deacetylase (HDAC) that is highly expressed in the brain, but whose functional significance in the brain is not known. We show that forced expression of HDAC4 in cerebellar granule neurons protects them against low potassium-induced apoptosis. HDAC4 also protects HT22 neuroblastoma cells from death induced by oxidative stress. HDAC4-mediated neuroprotection does not require its HDAC catalytic domain and cannot be inhibited by chemical inhibitors of HDACs. Neuroprotection by HDAC4 also does not require the Raf-MEK-ERK or the PI-3 kinase-Akt signaling pathways and occurs despite the activation of c-jun, an event that is generally believed to condemn neurons to die. The protective action of HDAC4 occurs in the nucleus and is mediated by a region that contains the nuclear localization signal. HDAC4 inhibits the activity of cyclin-dependent kinase-1 (CDK1) and the progression of proliferating HEK293T and HT22 cells through the cell cycle. Mice-lacking HDAC4 have elevated CDK1 activity and display cerebellar abnormalities including a progressive loss of Purkinje neurons postnatally in posterior lobes. Surviving Purkinje neurons in these lobes have duplicated soma. Furthermore, large numbers of cells within these affected lobes incorporate BrdU, indicating cell-cycle progression. These abnormalities along with the ability of HDAC4 to inhibit CDK1 and cell-cycle progression in cultured cells suggest that neuroprotection by HDAC4 is mediated by preventing abortive cell-cycle progression.
    Developmental Neurobiology 08/2008; 68(8):1076-92. · 4.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: VEGF has been shown to regulate endothelial cell (EC) proliferation and migration. However, the nuclear mediators of the actions of VEGF in ECs have not been fully defined. We show that VEGF induces the phosphorylation of three conserved serine residues in histone deacetylase 7 (HDAC7) via protein kinase D, which promotes nuclear export of HDAC7 and activation of VEGF-responsive genes in ECs. Expression of a signal-resistant HDAC7 mutant protein in ECs inhibits proliferation and migration in response to VEGF. These results demonstrate that phosphorylation of HDAC7 serves as a molecular switch to mediate VEGF signaling and endothelial function.
    Proceedings of the National Academy of Sciences 07/2008; 105(22):7738-43. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle consists of type I and type II myofibers, which exhibit different metabolic and contractile properties. Type I fibers display an oxidative metabolism and are resistant to fatigue, whereas type II fibers are primarily glycolytic and suited for rapid bursts of activity. These properties can be modified by changes in workload, activity, and hormonal stimuli, facilitating muscle adaptation to physiological demand. The MEF2 transcription factor promotes the formation of slow-twitch (type I) muscle fibers in response to activity. MEF2 activity is repressed by class II histone deacetylases (HDACs) and is enhanced by calcium-regulated protein kinases that promote the export of class II HDACs from the nucleus to the cytoplasm. However, the identities of skeletal muscle class II HDAC kinases are not well defined. Here we demonstrate that protein kinase D1 (PKD1), a highly effective class II HDAC kinase, is predominantly expressed in type I myofibers and, when misexpressed in type II myofibers, promotes transformation to a type I, slow-twitch, fatigue-resistant phenotype. Conversely, genetic deletion of PKD1 in type I myofibers increases susceptibility to fatigue. PKD1 cooperates with calcineurin to facilitate slow-twitch-fiber transformation. These findings identify PKD1 as a key regulator of skeletal muscle function and phenotype.
    Molecular and cellular biology 07/2008; 28(11):3600-9. · 6.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Calcineurin activation ameliorates the dystrophic pathology of hindlimb muscles in mdx mice and decreases their susceptibility to contraction damage. In mdx mice, the diaphragm is more severely affected than hindlimb muscles and more representative of Duchenne muscular dystrophy. The constitutively active calcineurin Aalpha transgene (CnAalpha) was overexpressed in skeletal muscles of mdx (mdx CnAalpha*) mice to test whether muscle morphology and function would be improved. Contractile function of diaphragm strips and extensor digitorum longus and soleus muscles from adult mdx CnAalpha* and mdx mice was examined in vitro. Hindlimb muscles from mdx CnAalpha* mice had a prolonged twitch time course and were more resistant to fatigue. Because of a slower phenotype and a decrease in fiber cross-sectional area, normalized force was lower in fast- and slow-twitch muscles of mdx CnAalpha* than mdx mice. In the diaphragm, despite a slower phenotype and a approximately 35% reduction in fiber size, normalized force was preserved. This was likely mediated by the reduction in the area of the diaphragm undergoing degeneration (i.e., mononuclear cell and connective and adipose tissue infiltration). The proportion of centrally nucleated fibers was reduced in mdx CnAalpha* compared with mdx mice, indicative of improved myofiber viability. In hindlimb muscles of mdx mice, calcineurin activation increased expression of markers of regeneration, particularly developmental myosin heavy chain isoform and myocyte enhancer factor 2A. Thus activation of the calcineurin signal transduction pathway has potential to ameliorate the mdx pathophysiology, especially in the diaphragm, through its effects on muscle degeneration and regeneration and endurance capacity.
    AJP Regulatory Integrative and Comparative Physiology 04/2008; 294(3):R983-92. · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The adult heart responds to biomechanical stress and neurohormonal signaling by hypertrophic growth, accompanied by fibrosis, diminished pump function, and activation of a fetal gene program. Class II histone deacetylases (HDACs) suppress stress-dependent remodeling of the heart via their association with the MEF2 transcription factor, an activator of heart disease. Protein kinase D (PKD) is a stress-responsive kinase that phosphorylates class II HDACs, resulting in their dissociation from MEF2 with consequent activation of MEF2 target genes. To test whether PKD1 is required for pathological cardiac remodeling in vivo, we generated mice with a conditional PKD1-null allele. Mice with cardiac-specific deletion of PKD1 were viable and showed diminished hypertrophy, fibrosis, and fetal gene activation as well as improved cardiac function in response to pressure overload or chronic adrenergic and angiotensin II signaling. We conclude that PKD1 functions as a key transducer of stress stimuli involved in pathological cardiac remodeling in vivo.
    Proceedings of the National Academy of Sciences 03/2008; 105(8):3059-63. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The heart adapts to changes in nutritional status and energy demands by adjusting its relative metabolism of carbohydrates and fatty acids. Loss of this metabolic flexibility such as occurs in diabetes mellitus is associated with cardiovascular disease and heart failure. To study the long-term consequences of impaired metabolic flexibility, we have generated mice that overexpress pyruvate dehydrogenase kinase (PDK)4 selectively in the heart. Hearts from PDK4 transgenic mice have a marked decrease in glucose oxidation and a corresponding increase in fatty acid catabolism. Although no overt cardiomyopathy was observed in the PDK4 transgenic mice, introduction of the PDK4 transgene into mice expressing a constitutively active form of the phosphatase calcineurin, which causes cardiac hypertrophy, caused cardiomyocyte fibrosis and a striking increase in mortality. These results demonstrate that cardiac-specific overexpression of PDK4 is sufficient to cause a loss of metabolic flexibility that exacerbates cardiomyopathy caused by the calcineurin stress-activated pathway.
    AJP Heart and Circulatory Physiology 03/2008; 294(2):H936-43. · 4.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The adult heart responds to excessive neurohumoral signaling and workload by a pathological growth response characterized by hypertrophy of cardiomyocytes and activation of a fetal program of cardiac gene expression. These responses culminate in diminished pump function, ventricular dilatation, wall thinning, and fibrosis, and can result in sudden death. Myocyte enhancer factor-2 (MEF2) transcription factors serve as targets of the signaling pathways that drive pathological cardiac remodeling, but the requirement for MEF2 factors in the progression of heart disease in vivo has not been determined. MEF2A and MEF2D are the primary MEF2 factors expressed in the adult heart. To specifically determine the role of MEF2D in pathological cardiac remodeling, we generated mice with a conditional MEF2D allele. MEF2D-null mice were viable, but were resistant to cardiac hypertrophy, fetal gene activation, and fibrosis in response to pressure overload and beta-chronic adrenergic stimulation. Furthermore, we show in a transgenic mouse model that forced overexpression of MEF2D was sufficient to drive the fetal gene program and pathological remodeling of the heart. These results reveal a unique and important function for MEF2D in stress-dependent cardiac growth and reprogramming of gene expression in the adult heart.
    Journal of Clinical Investigation 02/2008; 118(1):124-32. · 12.81 Impact Factor
  • Article: Rcan1-4
    R. Sanders Williams, Rhonda Bassel-Duby, Beverly Rothermel
    AfCS-Nature Molecule Pages 01/2008;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myocyte enhancer factor 2 (MEF2) transcription factors cooperate with the MyoD family of basic helix-loop-helix (bHLH) transcription factors to drive skeletal muscle development during embryogenesis, but little is known about the potential functions of MEF2 factors in postnatal skeletal muscle. Here we show that skeletal muscle-specific deletion of Mef2c in mice results in disorganized myofibers and perinatal lethality. In contrast, neither Mef2a nor Mef2d is required for normal skeletal muscle development in vivo. Skeletal muscle deficient in Mef2c differentiates and forms normal myofibers during embryogenesis, but myofibers rapidly deteriorate after birth due to disorganized sarcomeres and a loss of integrity of the M line. Microarray analysis of Mef2c null muscles identified several muscle structural genes that depend on MEF2C, including those encoding the M-line-specific proteins myomesin and M protein. We show that MEF2C directly regulates myomesin gene transcription and that loss of Mef2c in skeletal muscle results in improper sarcomere organization. These results reveal a key role for Mef2c in maintenance of sarcomere integrity and postnatal maturation of skeletal muscle.
    Molecular and cellular biology 01/2008; 27(23):8143-51. · 6.06 Impact Factor

Publication Stats

11k Citations
1,484.86 Total Impact Points

Institutions

  • 1992–2014
    • University of Texas Southwestern Medical Center
      • • Department of Molecular Biology
      • • Department of Internal Medicine
      Dallas, Texas, United States
  • 2008–2009
    • Universität Heidelberg
      • Department of Cardiology
      Heidelberg, Baden-Wuerttemberg, Germany
  • 2006–2008
    • University of Melbourne
      • Department of Physiology
      Melbourne, Victoria, Australia
  • 2004
    • Duke University Medical Center
      • Division of General Internal Medicine
      Durham, NC, United States
  • 2002
    • University of Iowa
      • Department of Internal Medicine
      Iowa City, IA, United States
  • 1997
    • University of Michigan
      • Department of Internal Medicine
      Ann Arbor, MI, United States
  • 1987–1990
    • Harvard Medical School
      • Department of Microbiology and Immunobiology
      Boston, MA, United States