Are you Mark Cunningham?

Claim your profile

Publications (9)35.94 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Selective delivery of antiretrovirals to human immunodeficiency virus (HIV) infected cells may reduce toxicities associated with long-term highly active antiretroviral therapy (HAART), may improve therapeutic compliance and delay the emergence of resistance. We developed sterically stabilized pegylated liposomes coated with targeting ligands derived from the Fab' fragment of HIV-gp120-directed monoclonal antibody F105, and evaluated these liposomes as vehicles for targeted delivery of a novel HIV-1 protease inhibitor. We demonstrated that the immunoliposomes were selectively taken up by HIV-1-infected cells and localized intracellularly, enabling the establishment of a cytoplasmic reservoir of protease inhibitor. In antiviral experiments, the drug delivered by the immunoliposomes showed greater and longer antiviral activity than comparable concentrations of free drug or drug encapsulated in non-targeted liposomes. In conclusion, by combining a targeting moiety with drug-loaded liposomes, efficient and specific uptake by non-phagocytic HIV-infected cells was facilitated, resulting in drug delivery to infected cells. This approach to targeted delivery of antiretroviral compounds may enable the design of drug regimens for patients that allow increased therapeutic adherence and less toxic treatment of HIV infection.
    Antiviral research 09/2009; 84(2):142-9. · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acute respiratory distress syndrome (ARDS) manifests clinically as a consequence of septic and/or traumatic injury in the lung. Oxygen therapy remains a major therapeutic intervention in ARDS, but this can contribute further to lung damage. Patients with ARDS are highly susceptible to viral infection and it may be due to altered Toll-like receptor (TLR) expression. To evaluate the role of TLR3 in ARDS. TLR3 expression and signaling was determined in airway epithelial cells after in vitro hyperoxia challenge. Using a murine model of hyperoxia-induced lung injury, the role of TLR3 was determined using either TLR3-gene deficient mice or a specific neutralizing antibody directed to TLR3. Increased TLR3 expression was observed in airway epithelial cells from patients with ARDS. Further, hyperoxic conditions alone were a major stimulus for increased TLR3 expression and activation in cultured human epithelial cells. Interestingly, TLR3(-/-) mice exhibited less acute lung injury, activation of apoptotic cascades, and extracellular matrix deposition after 5 days of 80% oxygen compared with wild-type (TLR3(+/+)) mice under the same conditions. Administration of a monoclonal anti-TLR3 antibody to TLR3(+/+) mice exposed to hyperoxic conditions likewise protected these mice from lung injury and inflammation. The potential for redundancy in function as well as cross-talk between distinct TLRs may indeed contribute to whether the inflammatory cascade can be effectively disrupted once signaling has been initiated. Together, these data show that TLR3 has a major role in the development of ARDS-like pathology in the absence of a viral pathogen.
    American Journal of Respiratory and Critical Care Medicine 11/2008; 178(12):1227-37. · 11.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The functional role of IL-12 and IL-23 in host defense and disease following viral infection of the CNS was determined. Instillation of mouse hepatitis virus (MHV, a positive-strand RNA virus) into the CNS of mice results in acute encephalitis followed by a chronic immune-mediated demyelinating disease. Antibody-mediated blocking of either IL-23 (anti-IL-23p19) or IL-12 and IL-23 (anti-IL-12/23p40) signaling did not mute T-cell trafficking into the CNS or antiviral effector responses and mice were able to control viral replication within the brain. Therapeutic administration of either anti-IL-23p19 or anti-IL-12/23p40 to mice with viral-induced demyelination did not attenuate T-cell or macrophage infiltration into the CNS nor improve clinical disease or diminish white matter damage. In contrast, treatment of mice with anti-IL-12/23p40 or anti-IL-23p19 resulted in inhibition of the autoimmune model of demyelination, experimental autoimmune encephalomyelitis (EAE). These data indicate that (1) IL-12 and IL-23 signaling are dispensable in generating a protective T-cell response following CNS infection with MHV, and (2) IL-12 and IL-23 do not contribute to demyelination in a model independent of autoimmune T-cell-mediated pathology. Therefore, therapeutic targeting of IL-12 and/or IL-23 for the treatment of autoimmune diseases may offer unique advantages by reducing disease severity without muting protective responses following viral infection.
    Viral Immunology 07/2008; 21(2):173-88. · 1.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptors are a family of pattern-recognition receptors that contribute to the innate immune response. Toll-like receptor 3 (TLR3) signals in response to foreign, endogenous and synthetic ligands including viral dsRNA, bacterial RNA, mitochondrial RNA, endogenous necrotic cell mRNA and the synthetic dsRNA analog, poly(I:C). We have generated a monoclonal antibody (mAb CNTO2424) that recognizes the extracellular domain (ECD) of human TLR3 in a conformation-dependent manner. CNTO2424 down-regulates poly(I:C)-induced production of IL-6, IL-8, MCP-1, RANTES, and IP-10 in human lung epithelial cells. In addition, mAb CNTO2424 was able to interfere with the known TLR3-dependent signaling pathways, namely NF-kappaB, IRF-3/ISRE, and p38 MAPK. The generation of this neutralizing anti-TLR3 mAb provides a unique tool to better understand TLR3 signaling and potential cross-talk between TLR3 and other molecules.
    Cellular Immunology 09/2007; 248(2):103-14. · 1.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biologic activities of IL-16 have been well described (e.g., chemotaxis of CD4+ cells, CD25 upregulation, secretion of IL-1b, IL-4 and TNF-a secretion) but very few signaling events have been described. To gain a better understanding of how the biologic activities of IL-16 are regulated following receptor engagement (CD4) we have analyzed the activation state of numerous STAT proteins in primary human peripheral blood mononuclear cells (PBMCs) and the human monocytic cell line THP-1 following IL-16 stimulation. Of the four STAT proteins tested, only STAT6 was activated (phosphorylated) in a dose-dependant manner by IL-16. The activation of STAT6 was completely abolished when IL-16 was pre-incubated with soluble CD4 (the IL-16 cell surface receptor), demonstrating the need for CD4 engagement in STAT6 activation. These results are the first to demonstrate a link between IL-16 and STAT6 activation.
    Cytokine 07/2007; 38(3):145-50. · 2.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recognition of double-stranded RNA by Toll-like receptor 3 (TLR3) will increase the production of cytokines and chemokines through transcriptional activation by the NF-kappaB protein. Over 136 single-nucleotide polymorphisms (SNPs) in TLR3 have been identified in the human population. Of these, four alter the sequence of the TLR3 protein. Molecular modeling suggests that two of the SNPs, N284I and L412F, could affect the packing of the leucine-rich repeating units in TLR3. Notably, L412F is reported to be present in 20% of the population and is higher in the asthmatic population. To examine whether the four SNPs affect TLR3 function, each were cloned and tested for their ability to activate the expression of TLR3-dependent reporter constructs. SNP N284I was nearly completely defective for activating reporter activity, and L412F was reduced in activity. These two SNPs did not obviously affect the level of TLR3 expression or their intracellular location in vesicles. However, N284I and L412F were underrepresented on the cell surface, as determined by flow cytometry analysis, and were not efficiently secreted into the culture medium when expressed as the soluble ectodomain. They were also reduced in their ability to act in a dominant negative fashion on the wild type TLR3 allele. These observations suggest that N284I and L412F affect the activities of TLR3 needed for proper signaling.
    Journal of Biological Chemistry 07/2007; 282(24):17696-705. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of targeting moieties is a new and exciting field of scientific research for facilitating the specific delivery of therapeutic agents in HIV-infected patients. The interaction of a potential targeting moiety with its ligand is a crucial factor in the evaluation of a targeted approach for chemotherapeutic intervention. Therefore, we have further characterized the interaction between a potential targeting agent, the monoclonal human antibody F105, and its ligand gp120, a glycoprotein expressed on the surface of HIV-1 infected cells. We demonstrate the specificity of binding and entry of F105 to infected cells. F105 was rapidly taken up into the cell and accumulated in the Golgi apparatus. Kinetic analysis of the F105-gp120 interaction revealed an equilibrium dissociation constant (K(D)) of 0.62 nM, compared with the gp120-CD4 interaction where the K(D) was determined at 35 nM. Consequently, F105 displayed a higher gp120 affinity. This was due to a slower dissociation as compared with the natural ligand. These data further underline the potential of monoclonal antibodies as targeting agents, and offer new insights into the possibility of F105 as a targeting moiety for the delivery of antiretroviral drugs to HIV-1 infected cells.
    Journal of Virological Methods 02/2007; 139(1):17-23. · 1.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptors (TLRs) play critical roles in bridging the innate and adaptive immune responses. The human TLR3 recognizes foreign-derived double-stranded RNA and endogenous necrotic cell RNA as ligands. Herein we characterized the contribution of glycosylation to TLR3 structure and function. Exogenous addition of purified extracellular domain of TLR3 (hTLR3 ECD) expressed in human embryonic kidney cells was found to inhibit TLR3-dependent signaling, thus providing a reagent for structural and functional characterization. Approximately 35% of the mass of the hTLR3 ECD was due to posttranslational modification, with N-linked glycosyl groups contributing substantially to the additional mass. Cells treated with tunicamycin, an inhibitor of glycosylation, prevented TLR3-induced NF-kappaB activation, confirming that N-linked glycosylation is required for bioactivity of this receptor. Further, mutations in two of these predicted glycosylation sites impaired TLR3 signaling without obviously affecting the expression of the protein. Single-particle structures reconstructed from electron microscopy images and two-dimensional crystallization revealed that hTLR3 ECD forms a horseshoe structure similar to the recently elucidated x-ray structure of the protein expressed in insect cells using baculovirus vectors (Choe, J., Kelker, M. S., and Wilson, I. A. (2005) Science 309, 581-585 and Bell, J. K., Botos, I., Hall, P. R., Askins, J., Shiloach, J., Segal, D. M., and Davies, D. R. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 10976-10980). There are, however, notable differences between the human cell-derived and insect cell-derived structures, including features attributable to glycosylation.
    Journal of Biological Chemistry 05/2006; 281(16):11144-51. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Unmethlylated CpG dinucleotides induce a strong T-helper-1-like inflammatory response, presumably mediated by Toll-like receptor 9 (TLR9). However, the nature and cellular localization of TLR9 in primary human cells remain controversial. Here we demonstrate, using flow cytometry and immunofluorescence microscopy techniques, that TLR9 can be expressed at the cell surface. The primary human cell subsets that were positive for TLR9 expression were distinct depending on the tissues analyzed. Specifically, in human peripheral blood mononuclear cells (PBMC) the majority of cell surface TLR9(+) cells were confined to the major histocompatibility complex (MHC) class II(+) CD19(-) populations that express CD11c and/or CD14, whereas in tonsils the same gated population contained primarily MHC class II(+) CD19(+) cells. Cells positive for surface expression represented a minor fraction of the total cell populations examined, varying between 2 and 10%. In addition, we found that TLR9 expression at the surface of PBMC was up-regulated approximately fourfold following stimulation with the gram-negative bacterial cell wall component lipopolysaccharide, suggesting a potential modulatory role of TLR4 agonists on TLR9 expression. Taken together, these data validate human TLR9 expression at the surface of primary cells, in addition to the previously described intracellular localization. Further, our results suggest that human antigen-presenting cells comprise the major cell populations expressing cell surface TLR9.
    Infection and Immunity 01/2005; 72(12):7202-11. · 4.07 Impact Factor