Hans C Breiter

Harvard Medical School, Boston, Massachusetts, United States

Are you Hans C Breiter?

Claim your profile

Publications (77)484.31 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Opioid analgesics are commonly used in chronic pain management despite a potential risk of rewarding. However, it remains unclear whether opioid analgesia would enhance the opioid rewarding effect thereby contributing to opioid rewarding. Utilizing a rat paradigm of conditioned place preference (CPP) combined with ankle monoarthritis as a condition of persistent nociception, we showed that analgesia induced by either morphine or the nonsteroid anti-inflammatory drug ibuprofen increased CPP scores in arthritic rats, suggesting that analgesia itself had a rewarding effect. However, arthritic rats exhibited a significantly higher CPP score in response to morphine than ibuprofen. Thus, the rewarding effect of morphine was enhanced in the presence of persistent nociception, producing a phenomenon of analgesia-enhanced opioid reward. At the cellular level, administration of morphine activated a cascade of leptin expression, glial activation, and dopamine receptor upregulation in the nucleus accumbens (NAc), while administration of ibuprofen decreased glial activation with no effect on leptin expression in the NAc. Furthermore, the morphine rewarding effect was blocked in leptin deficient ob/ob mice or by neutralizing leptin or interleukin-1β in the NAc without diminishing morphine analgesia. The data indicate that systemic opioid can activate a leptin-mediated central mechanism in the NAc that led to the enhanced opioid rewarding effect. These findings provide evidence for an interaction between opioid analgesia and opioid rewarding, which may have implications in clinical opioid dose escalation in chronic pain management.
    The Journal of neuroscience : the official journal of the Society for Neuroscience. 07/2014; 34(29):9779-88.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization.
    Journal of Neuroscience 04/2014; 34(16):5529-38. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Impaired cognitive empathy (ie, understanding the emotional experiences of others) is associated with poor social functioning in schizophrenia. However, it is unclear whether the neural activity underlying cognitive empathy relates to social functioning. This study examined the neural activation supporting cognitive empathy performance and whether empathy-related activation during correctly performed trials was associated with self-reported cognitive empathy and measures of social functioning. Thirty schizophrenia outpatients and 24 controls completed a cognitive empathy paradigm during functional magnetic resonance imaging. Neural activity corresponding to correct judgments about the expected emotional expression in a social interaction was compared in schizophrenia subjects relative to control subjects. Participants also completed a self-report measure of empathy and 2 social functioning measures (social competence and social attainment). Schizophrenia subjects demonstrated significantly lower accuracy in task performance and were characterized by hypoactivation in empathy-related frontal, temporal, and parietal regions as well as hyperactivation in occipital regions compared with control subjects during accurate cognitive empathy trials. A cluster with peak activation in the supplementary motor area (SMA) extending to the anterior midcingulate cortex (aMCC) correlated with social competence and social attainment in schizophrenia subjects but not controls. These results suggest that neural correlates of cognitive empathy may be promising targets for interventions aiming to improve social functioning and that brain activation in the SMA/aMCC region could be used as a biomarker for monitoring treatment response.
    Schizophrenia Bulletin 03/2014; · 8.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain–behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders.
    NeuroImage: Clinical. 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Depression is a debilitating condition that adversely affects many aspects of a person's life and general health. Earlier work has supported the idea that there may be a relationship between the use of certain media and depression. In this study, we tested if self-report of depression (SRD), which is not a clinically based diagnosis, was associated with increased internet, television, and social media usage by using data collected in the Media Behavior and Influence Study (MBIS) database (N = 19,776 subjects). We further assessed the relationship of demographic variables to this association. These analyses found that SRD rates were in the range of published rates of clinically diagnosed major depression. It found that those who tended to use more media also tended to be more depressed, and that segmentation of SRD subjects was weighted toward internet and television usage, which was not the case with non-SRD subjects, who were segmented along social media use. This study found that those who have suffered either economic or physical life setbacks are orders of magnitude more likely to be depressed, even without disproportionately high levels of media use. However, among those that have suffered major life setbacks, high media users-particularly television watchers-were even more likely to report experiencing depression, which suggests that these effects were not just due to individuals having more time for media consumption. These findings provide an example of how Big Data can be used for medical and mental health research, helping to elucidate issues not traditionally tested in the fields of psychiatry or experimental psychology.
    Frontiers in Human Neuroscience 01/2014; 8:712. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cannabis use is associated with working memory (WM) impairments; however, the relationship between cannabis use and WM neural circuitry is unclear. We examined whether a cannabis use disorder (CUD) was associated with differences in brain morphology between control subjects with and without a CUD and between schizophrenia subjects with and without a CUD, and whether these differences related to WM and CUD history. Subjects group-matched on demographics included 44 healthy controls, 10 subjects with a CUD history, 28 schizophrenia subjects with no history of substance use disorders, and 15 schizophrenia subjects with a CUD history. Large-deformation high-dimensional brain mapping with magnetic resonance imaging was used to obtain surface-based representations of the striatum, globus pallidus, and thalamus, compared across groups, and correlated with WM and CUD history. Surface maps were generated to visualize morphological differences. There were significant cannabis-related parametric decreases in WM across groups. Similar cannabis-related shape differences were observed in the striatum, globus pallidus, and thalamus in controls and schizophrenia subjects. Cannabis-related striatal and thalamic shape differences correlated with poorer WM and younger age of CUD onset in both groups. Schizophrenia subjects demonstrated cannabis-related neuroanatomical differences that were consistent and exaggerated compared with cannabis-related differences found in controls. The cross-sectional results suggest that both CUD groups were characterized by WM deficits and subcortical neuroanatomical differences. Future longitudinal studies could help determine whether cannabis use contributes to these observed shape differences or whether they are biomarkers of a vulnerability to the effects of cannabis that predate its misuse.
    Schizophrenia Bulletin 12/2013; · 8.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Empathic deficits have been linked to poor functioning in schizophrenia, but this work is mostly limited to self-report data. This study examined whether performance-based empathy measures account for incremental variance in social competence and social attainment above and beyond self-reported empathy, neurocognition, and clinical symptoms. Given the importance of working memory in theoretical models of empathy and in the prediction of functioning in schizophrenia, we also examined whether empathy mediates the relationship between working memory and functioning. Sixty outpatients and 45 healthy controls were compared on performance-based measures of 3 key components of empathic responding, including facial affect perception, emotional empathy (affective responsiveness), and cognitive empathy (emotional perspective-taking). Participants also completed measures of self-reported empathy, neurocognition, clinical symptoms, and social competence and attainment. Patients demonstrated lower accuracy than controls across the 3 performance-based empathy measures. Among patients, these measures showed minimal relations to self-reported empathy but significantly correlated with working memory and other neurocognitive functions as well as symptom levels. Furthermore, cognitive empathy explained significant incremental variance in social competence (R(2) = .072, P < .05) and was found to mediate the relation between working memory and social competence. Performance-based measures of empathy were sensitive to functionally relevant disturbances in schizophrenia. Working memory deficits appear to have an important effect on these disruptions in empathy. Empathy is emerging as a promising new area for social cognitive research and for novel recovery-oriented treatment development.
    Schizophrenia Bulletin 06/2013; · 8.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the last decade, there has been an upsurge of interest in understanding the mechanisms of behavior change (MOBC) and effective behavioral interventions as a strategy to improve addiction-treatment efficacy. However, there remains considerable uncertainty about how treatment research should proceed to address the MOBC issue. In this article, we argue that limitations in the underlying models of addiction that inform behavioral treatment pose an obstacle to elucidating MOBC. We consider how advances in the cognitive neuroscience of addiction offer an alternative conceptual and methodological approach to studying the psychological processes that characterize addiction, and how such advances could inform treatment process research. In addition, we review neuroimaging studies that have tested aspects of neurocognitive theories as a strategy to inform addiction therapies and discuss future directions for transdisciplinary collaborations across cognitive neuroscience and MOBC research. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
    Psychology of Addictive Behaviors 04/2013; · 2.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background / Purpose: Negative symptomology is central to psychotic disorders, and is particularly common in individuals with schizophrenia. Working memory (WM) and approach motivation (AM) behaviors, constructs in the Research Domain Criteria (RDoC) project, have shown relationships with various components of negative symptoms (1). Brain systems involved with AM (2) and WM (3) constructs may be involved with these disorders. Functions of multiple brain regions have been linked to AM, including the nucleus accumbens (NAc) and caudate (Cd) (4). The thalamus (Th) is central to WM functions (5), while NAc and Th have been observed to show altered morphology in individuals with negative symptoms (6, 7). In this study, we compiled measures across two levels of analysis (imaging and behavior) for two constructs (AM and WM) from two dimensions (positive valence and cognitive systems). Main conclusion: Clustering using neuroanatomic measures yielded differences along dimensions of negative symptom pathology and WM constructs. The subgroup with more severe surface deformities exhibits (1) increased deficits in cognitive functioning, (2) increased severity in negative symptoms, and (3) increased severity in positive symptoms. These findings are consistent with the previous work identifying neuropsychological impaired and near-normal subgroups of schizophrenics using neurospsychological measures, with the impaired subgroup showing more severe cortical thinning (8). This study demonstrates a proof of concept of a convergent, multimodal approach to studying neurobiological dimensions.
    18th Annual Meeting of the Organization for Human Brain Mapping (OHBM) 2012; 08/2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The search for predictors of schizophrenia has accelerated with a growing focus on early intervention and prevention of psychotic illness. Studying nonpsychotic relatives of individuals with schizophrenia enables identification of markers of vulnerability for the illness independent of confounds associated with psychosis. The goal of these studies was to develop new auditory continuous performance tests (ACPTs) and evaluate their effects in individuals with schizophrenia and their relatives. We carried out two studies of auditory vigilance with tasks involving working memory (WM) and interference control with increasing levels of cognitive load to discern the information-processing vulnerabilities in a sample of schizophrenia patients, and two samples of nonpsychotic relatives of individuals with schizophrenia and controls. Study 1 assessed adults (mean age = 41), and Study 2 assessed teenagers and young adults age 13-25 (M = 19). Patients with schizophrenia were impaired on all five versions of the ACPTs, whereas relatives were impaired only on WM tasks, particularly the two interference tasks that maximize cognitive load. Across all groups, the interference tasks were more difficult to perform than the other tasks. Schizophrenia patients performed worse than relatives, who performed worse than controls. For patients, the effect sizes were large (Cohen's d = 1.5), whereas for relatives they were moderate (d = ~0.40-0.50). There was no age by group interaction in the relatives-control comparison except for participants <31 years of age. Novel WM tasks that manipulate cognitive load and interference control index an important component of the vulnerability to schizophrenia.
    Neuropsychology 05/2012; 26(3):288-303. · 3.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There has been increasing interest in the interaction of the basal ganglia with the cerebellum and the brainstem in motor control and movement disorders. In addition, it has been suggested that these subcortical connections with the basal ganglia may help to coordinate a network of regions involved in mediating posture and stabilization. While studies in animal models support a role for this circuitry in the pathophysiology of the movement disorder dystonia, thus far, there is only indirect evidence for this in humans with dystonia. In the current study we investigated probabilistic diffusion tractography in DYT1-negative patients with cervical dystonia and matched healthy control subjects, with the goal of showing that patients exhibit altered microstructure in the connectivity between the pallidum and brainstem. The brainstem regions investigated included nuclei that are known to exhibit strong connections with the cerebellum. We observed large clusters of tractography differences in patients relative to healthy controls, between the pallidum and the brainstem. Tractography was decreased in the left hemisphere and increased in the right hemisphere in patients, suggesting a potential basis for the left/right white matter asymmetry we previously observed in focal dystonia patients. These findings support the hypothesis that connections between the basal ganglia and brainstem play a role in the pathophysiology of dystonia.
    PLoS ONE 01/2012; 7(2):e31654. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Presymptomatic individuals with the Huntingtin (HTT) CAG expansion mutation that causes Huntington's disease may have higher levels of depressive symptoms than healthy comparison populations. However, the prevalence of HTT CAG repeat expansions among individuals diagnosed with major depressive disorder has not been established. This was a case-control genetic association study of HTT CAG allele size in two discovery cohorts of individuals with major depressive disorder and comparison subjects without major depression as well as a replication cohort of individuals with major depression and comparison subjects without major depression. CAG repeat lengths of 36 or greater were observed in six of 3,054 chromosomes from individuals with major depression, compared with none of 4,155 chromosomes from comparison subjects. In a third cohort, one expanded allele was observed among 1,202 chromosomes in the major depression group, compared with none of 2,678 chromosomes in comparison subjects. No clear pattern of clinical features was shared among individuals with the expanded repeats. In clinical populations of individuals diagnosed with major depression, approximately 3 in 1,000 carried expanded HTT CAG alleles.
    American Journal of Psychiatry 04/2010; 167(5):574-9. · 14.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies of major depressive disorder (MDD) have focused on abnormalities in the prefrontal cortex and medial temporal regions. There has been little investigation in MDD of midbrain and subcortical regions central to reward/aversion function, such as the ventral tegmental area/substantia nigra (VTA/SN), and medial forebrain bundle (MFB). We investigated the microstructural integrity of this circuitry using diffusion tensor imaging (DTI) in 22 MDD subjects and compared them with 22 matched healthy control subjects. Fractional anisotropy (FA) values were increased in the right VT and reduced in dorsolateral prefrontal white matter in MDD subjects. Follow-up analysis suggested two distinct subgroups of MDD patients, which exhibited non-overlapping abnormalities in reward/aversion circuitry. The MDD subgroup with abnormal FA values in VT exhibited significantly greater trait anxiety than the subgroup with normal FA values in VT, but the subgroups did not differ in levels of anhedonia, sadness, or overall depression severity. These findings suggest that MDD may be associated with abnormal microstructure in brain reward/aversion regions, and that there may be at least two subtypes of microstructural abnormalities which each impact core symptoms of depression.
    PLoS ONE 01/2010; 5(11):e13945. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Approach and avoidance behavior provide a means for assessing the rewarding or aversive value of stimuli, and can be quantified by a keypress procedure whereby subjects work to increase (approach), decrease (avoid), or do nothing about time of exposure to a rewarding/aversive stimulus. To investigate whether approach/avoidance behavior might be governed by quantitative principles that meet engineering criteria for lawfulness and that encode known features of reward/aversion function, we evaluated whether keypress responses toward pictures with potential motivational value produced any regular patterns, such as a trade-off between approach and avoidance, or recurrent lawful patterns as observed with prospect theory. Three sets of experiments employed this task with beautiful face images, a standardized set of affective photographs, and pictures of food during controlled states of hunger and satiety. An iterative modeling approach to data identified multiple law-like patterns, based on variables grounded in the individual. These patterns were consistent across stimulus types, robust to noise, describable by a simple power law, and scalable between individuals and groups. Patterns included: (i) a preference trade-off counterbalancing approach and avoidance, (ii) a value function linking preference intensity to uncertainty about preference, and (iii) a saturation function linking preference intensity to its standard deviation, thereby setting limits to both. These law-like patterns were compatible with critical features of prospect theory, the matching law, and alliesthesia. Furthermore, they appeared consistent with both mean-variance and expected utility approaches to the assessment of risk. Ordering of responses across categories of stimuli demonstrated three properties thought to be relevant for preference-based choice, suggesting these patterns might be grouped together as a relative preference theory. Since variables in these patterns have been associated with reward circuitry structure and function, they may provide a method for quantitative phenotyping of normative and pathological function (e.g., psychiatric illness).
    PLoS ONE 01/2010; 5(5):e10613. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain derived neurotrophic factor (BDNF) regulates neural development and synaptic transmission. We have tested the hypothesis that functional variation in the BDNF gene (Val66Met polymorphism, rs6265) affects brain reward circuitry encoding human judgment and decision-making regarding relative preference. We quantified relative preference among faces with emotional expressions (angry, fearful, sad, neutral, and happy) by a keypress procedure performed offline to measure effort traded for viewing time. Keypress-based relative preferences across the ensemble of faces were mirrored significantly by fMRI signal in the orbitofrontal cortex, amygdala, and hippocampus when passively viewing these faces. For these three brain regions, there was also a statistically significant group difference by BDNF genotype in the fMRI responses to the emotional expressions. In comparison with Val/Met heterozygotes, Val/Val individuals preferentially sought exposure to positive emotions (e.g., happy faces) and had stronger regional fMRI activation to aversive stimuli (e.g., angry, fearful, and sad faces). BDNF genotype accounted for approximately 30% of the variance in fMRI signal that mirrors keypress responses to these stimuli. This study demonstrates that functional allelic variation in BDNF modulates human brain circuits processing reward/aversion information and relative preference transactions.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 05/2009; 150B(6):762-81. · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is critical, however, for both basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brainwide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brainwide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open-access data repository; compatibility with existing resources; and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.
    PLoS Computational Biology 04/2009; 5(3):e1000334. · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The structural effects of cocaine on neural systems mediating cognition and motivation are not well known. By comparing the thickness of neocortical and paralimbic brain regions between cocaine-dependent and matched control subjects, we found that four of 18 a priori regions involved with executive regulation of reward and attention were significantly thinner in addicts. Correlations were significant between thinner prefrontal cortex and reduced keypresses during judgment and decision making of relative preference in addicts, suggesting one basis for restricted behavioral repertoires in drug dependence. Reduced effortful attention performance in addicts also correlated with thinner paralimbic cortices. Some thickness differences in addicts were correlated with cocaine use independent of nicotine and alcohol, but addicts also showed diminished thickness heterogeneity and altered hemispheric thickness asymmetry. These observations suggest that brain structure abnormalities in addicts are related in part to drug use and in part to predisposition toward addiction.
    Neuron 11/2008; 60(1):174-88. · 15.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reinforcement of behavioral responses involves a complex cerebral circuit engaging specific neuronal networks that are modulated by cortical oversight systems affiliated with emotion, memory, judgment, and decision making (collectively referred to in this study as the "extended reward and oversight system" or "reward network"). We examined whether reward-network brain volumes are reduced in alcoholics and how volumes of subcomponents within this system are correlated with memory and drinking history. Morphometric analysis was performed on magnetic resonance brain scans in 21 abstinent long-term chronic alcoholic men and 21 healthy control men, group-matched on age, verbal IQ, and education. We derived volumes of total brain and volumes of cortical and subcortical reward-related structures including the dorsolateral-prefrontal, orbitofrontal, cingulate cortices, and the insula, as well as the amygdala, hippocampus, nucleus accumbens septi (NAc), and ventral diencephalon. Morphometric analyses of reward-related regions revealed decreased total reward-network volume in alcoholic subjects. Volume reduction was most pronounced in right dorsolateral-prefrontal cortex, right anterior insula, and right NAc, as well as left amygdala. In alcoholics, NAc and anterior insula volumes increased with length of abstinence, and total reward-network and amygdala volumes correlated positively with memory scores. The observation of decreased reward-network volume suggests that alcoholism is associated with alterations in this neural reward system. These structural reward system deficits and their correlation with memory scores elucidate underlying structural-functional relationships between alcoholism and emotional and cognitive processes.
    Biological psychiatry 09/2008; 64(3):192-202. · 8.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous functional neuroimaging studies have identified a network of brain regions that process aversive stimuli, including anger. A polymorphism near the cyclic adenosine monophosphate response element binding protein gene (CREB1) has recently been associated with greater self-reported effort at anger control as well as risk for antidepressant treatment-emergent suicidality in men with major depressive disorder, but its functional effects have not been studied. To determine whether this genetic variant is associated with altered brain processing of and behavioral avoidance responses to angry facial expressions. A total of 28 white participants (mean age, 29.2 years; 13 women) were screened using the Structured Clinical Interview for DSM-IV to exclude any lifetime Axis I psychiatric disorder and were genotyped for rs4675690, a single-nucleotide polymorphism near CREB1. Blood oxygenation level-dependent signal by functional magnetic resonance imaging in the amygdala, insula, anterior cingulate, and orbitofrontal cortex during passive viewing of photographs of faces with emotional expressions. To measure approach and avoidance responses to anger, an off-line key-press task that traded effort for viewing time assessed valuation of angry faces compared with other expressions. The CREB1-linked single-nucleotide polymorphism was associated with significant differential activation in an extended neural network responding to angry and other facial expressions. The CREB1-associated insular activation was coincident with activation associated with behavioral avoidance of angry faces. A polymorphism near CREB1 is associated with responsiveness to angry faces in a brain network implicated in processing aversion. Coincident activation in the left insula is further associated with behavioral avoidance of these stimuli.
    Archives of general psychiatry 09/2008; 65(8):882-92. · 12.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amygdala volume has been associated with drug craving in cocaine addicts, and amygdala volume reduction is observed in some alcohol-dependent subjects. This study sought an association in alcohol-dependent subjects between volumes of reward-related brain regions, alcohol craving, and the risk of relapse. Besides alcohol craving, the authors assessed amygdala, hippocampus, and ventral striatum volumes in 51 alcohol-dependent subjects and 52 age- and education-matched healthy comparison subjects after detoxification. After imaging and clinical assessment, patients were followed for 6 months and alcohol intake was recorded. Alcohol-dependent subjects showed reduced amygdala, hippocampus, and ventral striatum volumes and reported stronger craving in relation to healthy comparison subjects. However, only amygdala volume and craving differentiated between subsequent relapsers and abstainers. A significant decrease of amygdala volume in alcohol-dependent subjects was associated with increased alcohol craving before imaging and an increased alcohol intake during the 6-month follow-up period. These findings suggest a relationship between amygdala volume reduction, alcohol craving, and prospective relapse into alcohol consumption.
    American Journal of Psychiatry 08/2008; 165(9):1179-84. · 14.72 Impact Factor

Publication Stats

6k Citations
484.31 Total Impact Points

Institutions

  • 1998–2014
    • Harvard Medical School
      • • Department of Anesthesia
      • • Department of Psychiatry
      Boston, Massachusetts, United States
  • 1995–2014
    • Massachusetts General Hospital
      • • Department of Radiology
      • • Department of Psychiatry
      Boston, Massachusetts, United States
  • 2007
    • Beth Israel Deaconess Medical Center
      • Department of Psychiatry
      Boston, MA, United States
  • 2004
    • University of California, Los Angeles
      • Brain Research Institute
      Los Angeles, CA, United States
    • Boston Children's Hospital
      • Department of Radiology
      Boston, MA, United States
  • 1996
    • Harvard University
      • Department of Psychology
      Cambridge, Massachusetts, United States