Li-Hui Xu

Jinan University (Guangzhou, China), Shengcheng, Guangdong, China

Are you Li-Hui Xu?

Claim your profile

Publications (33)68.45 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cross-talk between the mTOR (mechanistic target of rapamycin) and NF-κB (nuclear factor kappa-B) pathways has been reported to regulate macrophage responses to lipopolysaccharide (LPS). In this study, we aimed to explore the effect of INK128, a second-generation inhibitor of mTOR, on the inflammatory cytokine production in LPS-stimulated RAW 264.7 cells. Our data showed that INK128 strikingly inhibited the phosphorylation of p70S6K, 4E-BP1 and AKTSer473 in both unstimulated and LPS-stimulated cells. Although it increased the phosphorylation levels of inhibitor kappa-B (IκB) in LPS-stimulated cells, INK128 did not significantly change the levels of NF-κB phosphorylation. In addition, LPS-induced expression of IL-1β and IL-6 was markedly suppressed by INK128 at both mRNA and protein levels. However, the expression of Tumor necrosis factor-alpha (TNF-α protein), but not its mRNA level, was suppressed by this reagent. Our results suggest that the mTOR inhibitor INK128 not only regulates the NF-κB signaling but also influences the inflammatory cytokine expression at both transcriptional and translational levels.
    Inflammation 01/2014; · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cucurbitacin IIb (CuIIb) is one of the major active compounds in Hemsleyadine tablets which have been used for clinical treatment of bacillary dysentery, enteritis and acute tonsilitis. However, its action mechanism has not been completely understood. This study aimed to explore the anti-inflammatory activity of CuIIb and its underlying mechanism in mitogen-activated lymphocytes isolated from mouse mesenteric lymph nodes. The results showed that CuIIb inhibited the proliferation of concanavalin A (Con A)-activated lymphocytes in a time- and dose-dependent manner. CuIIb treatment arrested their cell cycle in S and G2/M phases probably due to the disruption of the actin cytoskeleton and the modulation of p27(Kip1) and cyclin levels. Moreover, the surface expression of activation markers CD69 and CD25 on Con A-activated CD3(+) T lymphocytes was suppressed by CuIIb treatment. Both Con A- and phorbol ester plus ionomycin-induced expression of TNF-α, IFN-γ and IL-6 proteins was attenuated upon exposure to CuIIb. Mechanistically, CuIIb treatment suppressed the phosphorylation of JNK and Erk1/2 but not p38 in Con A-activated lymphocytes. Although CuIIb unexpectedly enhanced the phosphorylation of IκB and NF-κB (p65), it blocked the nuclear translocation of NF-κB (p65). In support of this, CuIIb significantly decreased the mRNA levels of IκBα and TNF-α, two target genes of NF-κB, in Con A-activated lymphocytes. In addition, CuIIb downregulated Con A-induced STAT3 phosphorylation and increased cell apoptosis. Collectively, these results suggest that CuIIb exhibits its anti-inflammatory activity through modulating multiple cellular behaviors and signaling pathways, leading to the suppression of the adaptive immune response.
    PLoS ONE 01/2014; 9(2):e89751. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cucurbitacin B (CuB), a potent antineoplastic agent of cucurbitacin triterpenoids, induces rapid disruption of actin cytoskeleton and aberrant cell cycle inhibiting carcinogenesis. However, the underlying molecular mechanism of such anticancer effects remains incompletely understood. In this study, we showed that CuB treatment rapidly induced vasodilator-stimulated phosphoprotein (VASP) phosphorylation (i.e. activation) at the Ser157 residue and generated VASP clumps which were co-localized with amorphous actin aggregates prior to the formation of highly-ordered cofilin-actin rods in melanoma cells. Knockdown of VASP or inhibition of VASP activation using PKA-specific inhibitor H89 suppressed CuB-induced VASP activation, actin aggregation and cofilin-actin rod formation. The VASP activation was mediated by cAMP-independent PKA activation as CuB decreased the levels of cAMP while MDL12330A, an inhibitor of adenylyl cyclase, had weak effect on VASP activation. Knockdown of either Gα13 or RhoA not only suppressed VASP activation, but also ameliorated CuB-induced actin aggregation and abrogated cofilin-actin rod formation. Collectively, our studies highlighted that the CuB-induced actin aggregation and cofilin-actin rod formation was mediated via the Gα13/RhoA/PKA/VASP pathway.
    PLoS ONE 01/2014; 9(4):e93547. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a conserved mechanism for controlling the degradation of misfolded proteins and damaged organelles in eukaryotes and can be induced by nutrient withdrawal, including serum starvation. Although differential acetylation of autophagy-related proteins has been reported to be involved in autophagic flux, the regulation of acetylated microtubule-associated protein 1 light chain 3 (LC3) is incompletely understood. In this study, we found that the acetylation levels of phosphotidylethanolamine (PE)-conjugated LC3B (LC3B-II), which is a critical component of double-membrane autophagosome, were profoundly decreased in HeLa cells upon autophagy induction by serum starvation. Pretreatment with lysosomal inhibitor chloroquine did not attenuate such deacetylation. Under normal culture medium, we observed increased levels of acetylated LC3B-II in cells treated with tubacin, a specific inhibitor of histone deacetylase 6 (HDAC6). However, tubacin only partially suppressed serum-starvation-induced LC3B-II deacetylation, suggesting that HDAC6 is not the only deacetylase acting on LC3B-II during serum-starvation-induced autophagy. Interestingly, tubacin-induced increase in LC3B-II acetylation was associated with p62/SQSTM1 accumulation upon serum starvation. HDAC6 knockdown did not influence autophagosome formation but resulted in impaired degradation of p62/SQSTM1 during serum starvation. Collectively, our data indicated that LC3B-II deacetylation, which was partly mediated by HDAC6, is involved in autophagic degradation during serum starvation.
    Biochemical and Biophysical Research Communications 11/2013; · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Piperine, an alkaloid from black and long peppers (Piper nigrum Linn & P. longum Linn), has been reported to exhibit antitumor activities in vitro and in vivo. To further understand the antitumor mechanism of piperine, we investigated the growth inhibitory effects of piperine on human prostate cancer DU145, PC-3 and LNCaP cells. Piperine treatment resulted in a dose-dependent inhibition of the proliferation of these cell lines. Cell cycle arrest at G0/G1 was induced and cyclin D1 and cyclin A were downregulated upon piperine treatment. Notably, the level of p21(Cip1) and p27(Kip1) was increased dose-dependently by piperine treatment in both LNCaP and DU145 but not in PC-3 cells, in line with more robust cell cycle arrest in the former two cell lines than the latter one. Although piperine induced low levels of apoptosis, it promoted autophagy as evidenced by the increased level of LC3B-II and the formation of LC3B puncta in LNCaP and PC-3 cells. The piperine-induced autophagic flux was further confirmed by assaying LC3-II accumulation and LC3B puncta formation in the presence of chloroquine, a well-known autophagy inhibitor. Taken together, these results indicated that piperine exhibited anti-proliferative effect in human prostate cancer cells by inducing cell cycle arrest and autophagy.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 08/2013; · 2.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence indicates that cucurbitacin B (CuB), as well as other cucurbitacins, damages the actin cytoskeleton in a variety of cell types. However, the underlying mechanism of such an effect is not well understood. In this study, we showed that CuB rapidly induced actin aggregation followed by actin rod formation in melanoma cells. Cofilin, a critical regulator of actin dynamics, was dramatically dephosphorylated (i.e. activated) upon CuB treatment. Notably, the activated cofilin subsequently formed rod-like aggregates which were highly colocalized with actin rods, indicating the formation of cofilin-actin rods. Cofilin knockdown significantly suppressed rod formation but did not prevent actin aggregation. Furthermore, knockdown of the cofilin phosphatase slingshot homolog 1 (SSH1), but not chronophin (CIN), alleviated CuB-induced cofilin hyperactivation and cofilin-actin rod formation. The activity of Rho kinase and LIM kinase, two upstream regulators of cofilin activation, was downregulated after cofilin hyperactivation. Pretreatment with a thiol-containing reactive oxygen species (ROS) scavenger N-acetyl cysteine, but not other ROS inhibitors without thiol groups, suppressed CuB-induced actin aggregation, cofilin hyperactivation and cofilin-actin rod formation, suggesting that thiol oxidation might be involved in these processes. Taken together, our results demonstrated that CuB-induced formation of cofilin-actin rods was mediated by SSH1-dependent but CIN-independent cofilin hyperactivation. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Journal of Cellular Biochemistry 05/2013; · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cucurbitacin IIa (CuIIa), a member of cucurbitacin family, is isolated from the root of Hemsleya amabilis which has been used as an ancient remedy for bacillary dysentery and gastroenteritis. The anti-inflammatory properties of CuIIa have long been recognized but the underlying mechanism is largely unknown. In this study, we investigated the anti-inflammatory effect of CuIIa on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. The results showed that CuIIa inhibited the proliferation and migration of RAW 264.7 cells in a dose-dependent manner. Whereas CuIIa did not cause apoptosis in unstimulated RAW264.7 cells, it did induce a significant apoptosis in LPS-stimulated cells, which was caspase-3-dependent and associated with downregulation of survivin. Furthermore, LPS induced autophagy in RAW 264.7 cells and this effect was further enhanced by CuIIa as evidenced by increased levels of LC3-II conjugates and formation of LC3 puncta. In addition, CuIIa disrupted actin cytoskeleton via inducing actin aggregation. However, neither the synthesis of tumor necrosis factor-α, nor the activation of the mitogen-activated protein kinases and NF-κB pathways in LPS-stimulated cells was suppressed by CuIIa treatment. Collectively, these results suggested that induction of apoptosis and enhancement of autophagy contributed to the anti-inflammatory activity of CuIIa against inflammation-related diseases.
    International immunopharmacology 03/2013; · 2.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: Cucurbitacin E (CuE), a triterpenoid compound isolated from Cucurbitaceae plants, possesses a wide range of biological activities including anti-inflammatory properties. The present study aimed to investigate the anti-inflammatory effect of CuE and the underlying mechanism of action. METHODS: The anti-inflammatory effect of CuE was evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Cell proliferation was assessed using a modified MTT assay. Cell cycle distribution was analyzed by propidium iodide staining. The actin cytoskeleton was examined by immunofluorescent staining. The expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β was determined by intracellular cytokine staining. G-actin level and nuclear factor (NF)-κB nuclear translocation were detected by immunoblotting. RESULTS: CuE inhibited cell proliferation and induced cell cycle arrest at G(2)/M phase in RAW 264.7 cells. CuE also suppressed LPS-induced cell spreading and pseudopodia formation. These effects were associated with decreased G-actin level and severe actin aggregation. Moreover, CuE significantly inhibited both TNF-α and IL-1β production in LPS-stimulated RAW 264.7 cells. This was likely mediated by suppressing LPS-induced nuclear translocation of NF-κB, a critical transcription factor responsible for pro-inflammatory cytokine expression. CONCLUSION: CuE displayed anti-inflammatory effects through suppression of NF-κB nuclear translocation leading to a decreased expression of TNF-α and IL-1β in LPS-stimulated RAW 264.7 cells.
    Agents and Actions 01/2013; · 1.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagic responses to chemotherapeutic agents may vary greatly among different prostate cancer cells and have not been well characterized. In this study, we showed that valproic acid (VPA) induced conversion of LC3-I to LC3-II and formation of LC3 puncta, the typical markers of autophagy, in LNCaP and PC-3 cells. However, these markers were undetectable in DU145 cells upon autophagic stimulation, indicating a defect of autophagy in this cell line. Among several critical autophagy-related proteins, ATG5 and ATG12-ATG5 conjugates, which are essential for autophagy induction, were absent in DU145 cells. No canonical transcripts for full-length ATG5 but only two alternatively spliced ATG5 transcripts were identified in DU145 cells. These alternative transcripts lack one or two exons, leading to premature termination of ATG5 translation. Transfection of the wild-type ATG5 gene into DU145 cells rescued the production of ATG5 and ATG12-ATG5 conjugates, resulting in formation of LC3-II conjugates and LC3 puncta. Moreover, the levels of the SQSTM1 protein, which should be degradable as an autophagy adaptor, were much higher in DU145 than in LNCaP and PC-3 cells, but were significantly decreased after ATG5 restoration in DU145 cells. However, expression of wild-type ATG5 in DU145 or knockdown of ATG5 in LNCaP and PC-3 cells did not change the inhibitory effects of VPA on these cells. Collectively, these results indicated that VPA-induced autophagy in prostate cancer cells depended on ATG5 and more importantly, that the autophagy pathway was genetically impaired in DU145 cells, suggesting caution in interpreting autophagic responses in this cell line.
    Autophagy 10/2012; 9(1). · 12.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cucurbitacins are a class of triterpenoid molecules that possess cytotoxic characteristics for plant defense against herbivore feeding. 23,24-dihydrocucurbitacin F (DHCF), a derivative of the cucurbitacin family, has been isolated as an active component from the root of Hemsleya amabilis (Cucurbitaceae), an ancient Chinese remedy for bacillary dysentery, gastroenteritis, and cancers. While the toxicity of other cucurbitacins has been explored in several cancers, little data exist on the effect of DHCF on human cancers, including prostate cancer (PCa). In this study, we explore the level and mechanisms of DHCF toxicity on human PCa cell lines. Human PCa DU145, PC3, and LNCaP cells were treated with graded doses of DHCF in vitro, and anti-proliferative, cytotoxic, and proteomic effects were determined using MTS assay, cell cycle analysis, immunofluorescent staining, and western blotting. DHCF inhibited cell growth and induced cell cycle arrest at G(2)/M phase, formation of binucleated cells, and increased levels of apoptosis in all PCa cell lines tested. G-actin depletion, actin aggregation, and rod-like actin fibers, with little effect on microtubule structure, were observed after DHCF treatment. Actin aggregation and cofilin-actin rod formation were highly correlated with rapid and persistent dephosphorylation of cofilin-1 (cofilin). DHCF treatment resulted in upregulation of p21(Cip1) and downregulation of cyclin A in all three PCa cell lines. The anti-proliferative activity of DHCF on human PCa cells may be brought about by inducing actin aggregation and cofilin-actin rod formation, leading to cell cycle arrest, cytokinesis failure, and apoptosis.
    Cancer Chemotherapy and Pharmacology 07/2012; 70(3):415-24. · 2.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study aimed to explore the antitumor effect and action mechanism of cucurbitacin B (CuB) on human T-cell leukemia Jurkat cells. Cell proliferation was measured by the MTS assay. Cell cycle distribution, mitochondrial membrane potential and annexin V staining were analyzed using flow cytometry. Western blotting was used to determine the levels of apoptosis- and autophagy-related proteins. CuB inhibited the proliferation of Jurkat cells in a dose-dependent manner and induced G 2 /M phase arrest as well as formation of tetraploid cells. Accompanied with these effects, the actin dynamics was disrupted, and cofilin, a key regulator of actin dynamics, was persistently activated (dephosphorylated). Although CuB induced around 10% cells undergoing apoptosis, most of the cells were alive after CuB treatment for 24 h. Induction of autophagy was also evident by accumulation of LC3-II. CuB-induced autophagy seemed to be a prosurvival response, since suppression of CuB-induced autophagy significantly increased the activation of caspase-3. Our results demonstrated that CuB exhibited antitumor activity in Jurkat cells through induction of cell cycle arrest and apoptosis which was at least partly due to the disruption of actin dynamics.
    Pharmacology 06/2012; 89(5-6):348-6. · 1.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, has been proven to be an anti-cancer agent. Its anti-inflammatory activities have recently been observed both in in vitro and in vivo models. Yet its action on lymphocytes and the underlying mechanism are still not well known. In this study, in order to evaluate the anti-inflammatory function of SAHA, we analyzed the effects of SAHA on the proliferation, activation, cytokines secretion, cell cycle distribution and apoptosis of murine lymphocytes activated with concanavalin A (Con A). Our results demonstrated that SAHA inhibited the proliferation of Con A-activated lymphocytes in a dose-dependent manner. The expression of CD69 on CD3(+) T lymphocytes was significantly inhibited by SAHA. Intracellular cytokine staining analysis showed that SAHA could downregulate the expression of pro-inflammatory cytokines TNF-α, IL-6 and IFN-γ in T lymphocytes. Furthermore, analysis of sub-G(0)/G(1) peaks and annexin V binding populations revealed that SAHA induced apoptotic cell death in Con A-activated lymphocytes. Consistent with these results, SAHA treatment also induced a decrease of mitochondrial membrane potential and cleavage of caspase-3 and PARP in these cells. Moreover, SAHA caused an accumulation of phosphorylated histone H2A.X, indicating increased double strand DNA breaks. These findings suggest that induction of apoptosis through the mitochondrial pathway may contribute to the anti-inflammatory activities of SAHA on activated lymphocytes.
    International immunopharmacology 02/2012; 12(4):580-7. · 2.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gossypol (GOS), a BH3 mimetic, has been investigated as a sensitizing co-therapy to radiation and chemotherapy in treatment of metastatic prostate cancer. In this study, we found that valproic acid (VPA), a histone deacetylase inhibitor (HDACI), counteracted the suppressive effect of GOS on histone H3 acetylation and enhanced the cytotoxicity of GOS to DU145 prostate cancer cells. Significant synergistic effects were observed in combined GOS and VPA treatment, culminating in more DNA damage and cell death. The iTRAQ-based quantitative proteomic analysis revealed differential proteomic profiles in cells treated with VPA, GOS or their combination. In GOS-treated cells, oxidative phosphorylation-related proteins were depressed and endoplasmic reticulum stress markers were upregulated. In the presence of VPA, the GOS-induced mitochondrial stress was further enhanced since glycolysis- and hypoxia-associated proteins were upregulated, suggesting a disruption of energy metabolism in these cells. Furthermore, the DNA damage repair ability of cells co-treated with GOS and VPA was also decreased, as evidenced by the downregulation of DNA damage repair proteins and the enhancement of DNA fragmentation and cell death. These findings suggest that GOS in combination with an HDACI has the potential to increase its clinical efficacy in the treatment of prostate cancer.
    Journal of proteomics 06/2011; 74(10):2180-93. · 5.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, possesses potent anti-tumor activity against a variety of malignant cells. However, its action on lymphocytes and the underlying mechanism are not completely understood. In this study, we aimed to analyze the effects of VPA on the proliferation, activation, and apoptosis of murine lymphocytes activated with concanavalin A (ConA). Our results showed that VPA inhibited the proliferation of ConA-activated lymphocytes in a dose-dependent manner. Low-dose VPA (≤ 1.1 mM) enhanced CD69 expression on the activated lymphocytes, whereas at high doses (≥ 3.3 mM) it decreased CD69 expression. Furthermore, VPA reduced activation-induced apoptotic cell death at low doses, but at high doses it promoted apoptotic cell death of activated lymphocytes dramatically. It was found that the Bax/Bcl-2 ratio and phosphorylation of histone H2A.X was decreased at low doses of VPA but was increased at high doses. The phosphorylation of STAT3 was also differentially regulated by different doses of VPA. VPA, at 5 mM induced the phosphorylation of p38 but not JNK and extracellular signal-regulated kinase (ERK)1/2. In addition, VPA induced a dose-dependent increase in the acetylation of histone H3. These results demonstrate that VPA exhibits dose-dependent biphasic effect on apoptosis of activated lymphocytes probably through differential modulation of several apoptosis-related signaling pathways.
    Journal of Immunotoxicology 04/2011; 8(3):210-8. · 1.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the immunosuppressive effect of gossypol in mice both in vitro and in vivo. The in vitro effect of gossypol on the proliferation of lymphocytes isolated from lymph nodes of BALB/c mice was determined by CFSE staining and by an MTS assay. Lymphocyte activation and lymphoblastic transformation were evaluated with immunostaining. Cell apoptosis was detected by Annexin-V and Hoechst 33342 staining. The in vivo immunosuppressive effect of gossypol on the DTH reaction was evaluated using a mouse DTH model induced by 2,4-dinitro-1-fluorobenzene (DNFB). The thickness of the ears was measured, and the histological changes of the mouse auricles were observed after hematoxylin-eosin staining. The proliferation capacity of lymphocytes from DTH mice was also assayed. In vitro, gossypol could significantly inhibit the proliferation of mouse lymphocytes stimulated with phorbol ester plus ionomycin in a dose-dependent manner. Although the expression of the early activation antigen CD69 was not affected, the lymphoblastic transformation of both T and B lymphocyte subsets was significantly suppressed by gossypol. Moreover, gossypol could induce apoptosis of lymphocytes, and the effect was time- and dose-dependent. In vivo, the DTH reaction in mice was markedly alleviated by gossypol injected intraperitoneally. Lymphocytes from drug-treated DTH mice had a reduced proliferation capacity as compared with lymphocytes from untreated DTH mice. Gossypol treatment also markedly reduced the number of infiltrated lymphocytes in the auricles of DTH mice. Gossypol exhibited immunosuppressive effects in mice, probably by inhibition of lymphocyte proliferation and by induction of cell apoptosis.
    Acta Pharmacologica Sinica 05/2009; 30(5):597-604. · 2.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anti-viral CD8(+) T cell responses involve an initial expansion and effector phase, followed by contraction phase and formation of CD8(+) memory T cells. During this contraction phase, increased surface expression of the negative regulator PD-1 is associated with functional exhaustion of CD8(+) T cells. Although its role in T cell suppression has been established, the importance of PD-1 in the differentiation of CD8(+) T cells remains unclear. In this study, we examine PD-1 expression in relation to viral specificity of CD8(+) T cells against persistent or non-persistent viruses, and further define differentiation phenotypes of CD8(+) T cells by CD27 and CD28 expression. Surprisingly, the inhibitory receptor PD-1 was expressed by Flu-specific CD8(+) T cells in a level comparable to HCMV-and EBV-specific cells. Moreover, in virus-specific CD8(+) T cells, CD127(+)/CD127(-) and CD62L(+)/CD62L(-) cells expressed similar levels of PD-1 molecules. These results suggest that the PD-1/PD-L1 pathway may play a regulatory role in memory T cell subsets in addition to its association with T-cell exhaustion.
    Clinical Immunology 03/2008; 126(2):222-34. · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HLA-A* 2402 is one of the most frequently encountered HLA-A alleles in East Asian populations. In order to study the CD8+ T cell responses in Chinese populations, we have described the generation and functional test of HLA-A* 2402 tetramer loaded with HCMV pp65(341-349) peptide (QYDPVAALF, QYD). The cDNA of HLA-A* 2402 heavy chain was cloned by RT-PCR from one of the donors. DNA fragment encoding the ectodomain of HLA-A* 2402 heavy chain fused at its carboxyl-terminal a BirA substrate peptide (BSP) was amplified by PCR with the cloned heavy chain cDNA as a template. The wild-type gene of HLA-A* 2402-BSP was not expressed in Escherichia coli (E. coli), while mutant HLA-A* 2402-BSP gene with optimized codons was overexpressed as inclusion bodies in E. coli. Furthermore, the soluble HLA-A* 2402-QYD monomers were generated by in vitro refolding of washed inclusion bodies in the presence of beta2-microglobulin and QYD peptide. The tetramer was subsequently formed by mixing HLA-A* 2402-QYD monomers with streptavidin-PE at a molar ratio of 4:1. Flow cytometry analysis indicated that this tetramer possessed binding activity with specific CTL from HLA-A24+ donors and the frequencies of tetramer-binding CTL were 0.09% - 0.37% within total CD8+ T cells. This tetrameric agent provides a powerful tool to explore the secrets of CTL responses against HCMV antigens in HLA-A* 2402 individuals.
    Sheng wu gong cheng xue bao = Chinese journal of biotechnology 04/2007; 23(2):284-91.
  • [Show abstract] [Hide abstract]
    ABSTRACT: To optimize expression condition of HLA-A*0203 heavy chain ectodomain fused with a BirA substrate peptide (BSP) (HLA-A*0203-BSP) for E.coli BL21(DE3) transformant and to prepare a functional HLA-A*0203 tetramer loaded with an antigenic peptide derived from EBNA3(596-604) of Epstein-Barr virus (EBV). The temperature, IPTG concentration and inductive duration of HLA-A*0203-BSP fusion protein expressed for E.coli BL21(DE3) transformant were optimized. SDS-PAGE and Western blot analyses were employed to detect the expressed fusion protein. The monomer of soluble HLA-A*0203-peptide was generated from the fusion protein by in vitro refolding of washed inclusion bodies in the presence of beta2-microglobulin (beta2m) and HLA-A*0203 restricted EBV EBNA3(596-604) peptide (SVRDRLARL, SVR). Refolded and purified monomer was then biotinylated with BirA. Following the purification of the obtained biotinylated monomer, the tetramer was formed by incubation with streptavidin-PE at a ratio of 4:1. Flow cytometry (FCM) analysis was performed to determine its binding activity with specific cytotoxic T lymphocytes (CTL). SDS-PAGE and Western blot showed that the optimized expression condition was overnight induction at 37 degrees C with 0.4 mmol/L IPTG. The expressed protein of about 34 kDa in the form of inclusion bodies accumulated up to about 30% of total bacterial protein under the optimized expression condition. The monomer of soluble HLA-A*0203/SVR was successfully generated and purified. Non-reducing SDS-PAGE analysis showed that the biotinylation was above 85%. HLA-A*0203/SVR tetramer was constructed by mixing the monomer with streptavidin-PE at a ratio of 4:1. FCM analysis indicated that this tetramer could bind specific CTL from HLA-A2+ donors. HLA-A*0203-BSP fusion protein was overexpressed in E.coli under the optimized condition. The tetramers of HLA-A*0203/SVR were prepared from this fusion protein and it possessed binding activity with specific CTL, which provided a powerful tool for direct visualization and quantification of specific CTL from HLA-A*0203 donors.
    Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology 03/2007; 23(2):97-101.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study reports the preparation and identification of soluble programmed death-1 (PD-1) ligand-1 (sPD-L1) and its antibodies of mouse origin. Immobilized metal ion affinity chromatography was used to perform on-column refolding with simultaneous purification of denatured sPD-L1, and soluble sPD-L1 with purity of 95% was obtained. The purified sPD-L1 was verified by immunoblotting using a commercial goat-anti-human PD-L1 antibody. An ELISA-based assay showed that it also had high binding activity for its cognate receptor PD-1. Furthermore, mouse anti-sPD-L1 antiserum of high titer was raised using the purified sPD-L1 as an immunogen, and the specific IgG antibodies were purified using sPD-L1-HiTrap affinity chromatography. In addition, a sensitive sandwich ELISA was established using the purified IgG antibodies together with the commercial goat antibodies. In conclusion, the preparation of soluble sPD-Ll and its antibodies provide the basis for detection of the potential anti-PD-L1 antibodies and soluble PD-L1 in humans as well as for further investigation of its in vivo bioactivities and characterization of its potential receptors.
    Sheng wu gong cheng xue bao = Chinese journal of biotechnology 02/2007; 23(1):106-11.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human cytomegalovirus (HCMV) is a ubiquitous beta-herpesvirus which persists lifelong after primary infection and can lead to a significant disease in the immunocompromised individuals. CD8(+) T cells are believed to play a crucial role in both the elimination of active infection and maintenance of HCMV latency. Large expansions of CD8(+) T cells specific for a single epitope of HCMV have been well documented in Caucasoid population. To date, no similar study has been performed in Chinese populations. Here we report the characteristics of HCMV-specific CD8(+) T cells in healthy young and elderly Chinese donors using pp65(495-503)-loaded HLA-A*0201 tetramers. Cells were stained with a combination of the tetramers and antibodies for CD28 and CD57 or a panel of TCR Vbeta and analyzed by three-color flow cytometry. The frequencies of pp65(495-503)-specific T cells within total CD8(+) T cell population were between 0.14 and 6.84% (mean 2.45%) in the young donors and were from 0.33 to 6.89% (mean 1.95%) in the elderly donors, respectively. There was no significant difference between the two groups. The expression of CD28 was decreased whereas CD57 expression was increased in tetramer-negative CD8(+) T cells in the elderly when compared with the young group. However, neither of these changes was found within tetramer-positive cell populations. Moreover, TCR Vbeta usage within tetramer-positive population was predominated by certain TCR Vbeta subsets. These results demonstrate that large expansions of HCMV-specific CD8(+) T cells with certain subsets TCR Vbeta exist both in the healthy young and in the elderly Chinese individuals, which may play a role in the maintenance of virus latency but have potential detrimental influence on the immune responses to other pathogens or vaccinations.
    Journal of Clinical Immunology 10/2006; 26(5):417-29. · 3.38 Impact Factor