Alessandra Ottani

Università degli Studi di Modena e Reggio Emilia, Modène, Emilia-Romagna, Italy

Are you Alessandra Ottani?

Claim your profile

Publications (56)191.89 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that melanocortins induce neuroprotection in experimental acute and chronic neurodegenerative conditions, including Alzheimer's disease (AD) of mild severity. Here we investigated whether melanocortins afford neuroprotection and counteract cognitive decline in AD with a medium level of severity by using 24 week-old (at the start of the study) APPSwe transgenic mice (Tg2576). Saline-treated (days 1-50) control Tg2576 mice showed an impairment in spatial learning and memory, associated (at day 50, end of the study) with hippocampus low levels of the synaptic activity-dependent gene Zif268, relevant brain changes such as cerebral cortex/hippocampus increased level of β-amyloid (Aβ) deposit, and neuronal loss, in comparison with wild-type animals. Treatment of Tg2576 mice (once daily at days 1-50) with a nanomolar dose of the melanocortin analog [Nle(4),D-Phe(7)]α-melanocyte-stimulating hormone (NDP-α-MSH) reduced cerebral cortex/hippocampus level of Aβ deposit, decreased neuronal loss, increased hippocampus Zif268 expression and improved cognitive functions, relative to saline-treated Tg2576 mice. Pharmacological blockade of melanocortin MC4 receptors with the MC4 receptor antagonist HS024 prevented all favourable effects of NDP-α-MSH. Our data indicate that MC4 receptor-stimulating melanocortins are able to counteract cognitive decline in experimental AD of medium severity through induction of neuroprotection and improvement of synaptic transmission. After further studies, these agents could gain a role as disease modifying therapeutics for AD.
    European journal of pharmacology. 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Besides specific triggering causes, Alzheimer's disease (AD) involves pathophysiological pathways that are common to acute and chronic neurodegenerative disorders. Melanocortins induce neuroprotection in experimental acute neurodegenerative conditions, and low melanocortin levels have been found in occasional studies performed in AD-type dementia patients. Here we investigated the possible neuroprotective role of melanocortins in a chronic neurodegenerative disorder, AD, by using 12-week-old (at the start of the study) triple-transgenic (3xTg-AD) mice harboring human transgenes APPSwe, PS1M146V, and tauP301L. Treatment of 3xTg-AD mice, once daily until the end of the study (30 weeks of age), with the melanocortin analog [Nle(4),D-Phe(7)]-α-melanocyte-stimulating hormone (NDP-α-MSH) reduced cerebral cortex/hippocampus phosphorylation/level of all AD-related biomarkers investigated (mediators of amyloid/tau cascade, oxidative/nitrosative stress, inflammation, apoptosis), decreased neuronal loss, induced over-expression of the synaptic activity-dependent gene Zif268, and improved cognitive functions, relative to saline-treated 3xTg-AD mice. Pharmacological blockade of melanocortin MC4 receptors prevented all neuroprotective effects of NDP-α-MSH. Our study identifies, for the first time, a class of drugs, MC4 receptor-stimulating melanocortins, that are able to counteract the progression of experimental AD by targeting pathophysiological mechanisms up- and down-stream of β-amyloid and tau. These data could have important clinical implications.
    Neurobiology of aging 10/2013; · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been previously reported that brain hydrogen sulfide (H2S) synthesis is severely decreased in Alzheimer's disease (AD) patients, and plasma H2S levels are negatively correlated with the severity of AD. Here we extensively investigated whether treatment with a H2S donor and spa-waters rich in H2S induces neuroprotection and slows down progression of AD. Studies with sodium hydrosulfide (a H2S donor) and Tabiano's spa-water were carried out in three experimental models of AD. Short-term and long-term treatments with sodium hydrosulfide and/or Tabiano's spa-water significantly protected against impairment in learning and memory in rat models of AD induced by brain injection of β-amyloid1-40 (Aβ) or streptozotocin, and in an AD mouse model harboring human transgenes APPSwe, PS1M146V and tauP301L (3xTg-AD mice). The improvement in behavioral performance was associated with hippocampus reduced size of Aβ plaques and preservation of the morphological picture, as found in AD rats. Further, lowered concentration/phosphorylation levels of proteins thought to be the central events in AD pathophysiology, namely amyloid precursor protein, presenilin-1, Aβ1-42 and tau phosphorylated at Thr181, Ser396 and Ser202, were detected in 3xTg-AD mice treated with spa-water. The excitotoxicity-triggered oxidative and nitrosative stress was counteracted in 3xTg-AD mice, as indicated by the decreased levels of malondialdehyde and nitrites in the cerebral cortex. Hippocampus reduced activity of c-jun N-terminal kinases, extracellular signal-regulated kinases and p38, which have an established role not only in phosphorylation of tau protein but also in inflammation and apoptosis, was also found. Consistently, decrease in tumor necrosis factor-α level, up-regulation of Bcl-2, and down-regulation of BAX and the downstream executioner caspase-3, also occurred in the hippocampus of 3xTg-AD mice after treatment with Tabiano's spa-water, thus suggesting that it is also able to modulate inflammation and apoptosis. Our findings indicate that appropriate treatments with H2S donors and Tabiano's spa-waters, and may be other spa-waters rich in H2S content, might represent an innovative approach to slow down AD progression in humans by targeting multiple pathophysiological mechanisms.
    Neurobiology of Learning and Memory 05/2013; · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In experimental cerebral ischemia, melanocortin MC4 receptor agonists induce neuroprotection and neurogenesis with subsequent long-lasting functional recovery. Here we investigated the molecular mechanisms underlying melanocortin-induced neurogenesis. Gerbils were subjected to transient global cerebral ischemia, then they were treated every 12h, and until sacrifice, with 5-bromo-2'-deoxyuridine (BrdU; to label proliferating cells), and the melanocortin analog [Nle(4),D-Phe(7)]α-melanocyte-stimulating hormone (NDP-α-MSH) or saline. NDP-α-MSH increased hippocampus dentate gyrus (DG) expression of Wnt-3A, β-catenin, Sonic hedgehog (Shh), Zif268, interleukin-10 (IL-10) and doublecortin (DCX), as detected at days 3, 6 and 10 after the ischemic insult. Further, an elevated number of BrdU immunoreactive cells was found at days 3 and 10, and an improved histological picture with reduced neuronal loss at day 10, associated with learning and memory recovery. Pharmacological blockade of the Wnt-3A/β-catenin and Shh pathways, as well as of melanocortin MC4 receptors, prevented all effects of NDP-α-MSH. These data indicate that, in experimental brain ischemia, treatment with melanocortins acting at MC4 receptors induces neural stem/progenitor cell proliferation in the DG by promptly and effectively triggering the canonical Wnt-3A/β-catenin and Shh signaling pathways. Activation of these pathways is associated with up-regulation of the repair factor Zif268 and the neurogenesis facilitating factor IL-10, and it seems to address mainly towards a neuronal fate, as indicated by the increase in DCX positive cells.
    European journal of pharmacology 03/2013; · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The janus kinases (JAK), extracellular signal-regulated kinases (ERK) and signal transducers and activators of transcription (STAT) pathways have been shown to play a cardioprotective role. We previously gave evidence that melanocortins afford cardioprotection in conditions of myocardial ischemia/reperfusion. Here we aimed to investigate the influence of melanocortins on the JAK/ERK/STAT signaling in cardiac and systemic responses to prolonged myocardial ischemia/reperfusion. Ischemia was produced in rats by ligature of the left anterior descending coronary artery for 30min. At the end of the 2-h reperfusion, western blot analysis of the cardioprotective transcription factors pJAK2, pERK1/2, pTyr-STAT3 and pSer-STAT3, the inflammatory mediator tumor necrosis factor-α (TNF-α), the pro-apoptotic factors BAX and c-jun N-terminal kinases (pJNK), the anti-apoptotic protein Bcl-XL, as well as of the cardioprotective enzyme heme oxygenase-1 (HO-1), was performed in the left ventricle and spleen. Intravenous treatment, during coronary artery occlusion, with the melanocortin analogs [Nle(4), D-Phe(7)]α-melanocyte-stimulating hormone (NDP-α-MSH) and adrenocorticotropic hormone 1-24 [ACTH-(1-24)], induced a left ventricle up-regulation of pJAK2, pERK1/2 and pTyr-STAT3 (JAK-dependent), and a reduction in pJNK and TNF-α levels; these effects of NDP-α-MSH and ACTH-(1-24) were associated with over-expression of the pro-survival proteins HO-1 and Bcl-XL, and marked decrease of the myocardial infarct size. Melanocortin treatment did not affect left ventricle pSer-STAT3 (ERK1/2-dependent) and BAX levels. In the spleen, NDP-α-MSH and ACTH-(1-24) induced similar effects on the expression of the above transcription factors/proteins, except for pERK1/2 (down-regulated) and HO-1 (unaffected). Blockade of JAK and ERK pathways with AG490 and U0126, respectively, abrogated the myocardial infarct size reduction by NDP-α-MSH. These results indicate that melanocortins inhibit local and systemic inflammatory and apoptotic cascades triggered by prolonged myocardial ischemia/reperfusion, with consequent reduction in myocardium infarct size, seemingly via activation of the JAK/STAT signaling and with modulation of an ERK (STAT unrelated) signaling pathway.
    Pharmacological Research 03/2013; · 4.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Melanocortin peptides with the adrenocorticotropin/melanocyte-stimulating hormone (ACTH/MSH) sequences and synthetic analogs have protective and life-saving effects in experimental conditions of circulatory shock, myocardial ischemia, ischemic stroke, traumatic brain injury, respiratory arrest, renal ischemia, intestinal ischemia and testicular ischemia, as well as in experimental heart transplantation. Moreover, melanocortins improve functional recovery and stimulate neurogenesis in experimental models of cerebral ischemia. These beneficial effects of ACTH/MSH-like peptides are mostly mediated by brain melanocortin MC(3)/MC(4) receptors, whose activation triggers protective pathways that counteract the main ischemia/reperfusion-related mechanisms of damage. Induction of signaling pathways and other molecular regulators of neural stem/progenitor cell proliferation, differentiation and integration seems to be the key mechanism of neurogenesis stimulation. Synthesis of stable and highly selective agonists at MC(3) and MC(4) receptors could provide the potential for development of a new class of drugs for a novel approach to management of severe ischemic diseases.
    Frontiers in Neuroendocrinology 04/2012; 33(2):179-93. · 7.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Centrally acting leptin induces the activation of the sympathetic nervous system with a pressor effect in normotensive rats. The purpose of the study was to examine central leptin-evoked action in critical haemorrhagic hypotension. In anaesthetized male Wistar rats subjected for irreversible haemorrhagic shock with mean arterial pressure (MAP) 20-25 mmHg haemodynamic parameters and plasma concentrations of adrenaline and noradrenaline were measured. Leptin given intracerebroventricularly (20 μg) evoked long-lasting rises in MAP and heart rate (HR), with a subsequent increase in renal, mesenteric and hindquarters blood flows and a 100% survival at 2 h. MAP and peripheral blood flow changes were inhibited by a pre-treatment with α(1)- and α(2)-adrenoceptor antagonists prazosin (0.5 mg/kg) and yohimbine (1 mg/kg), while β-adrenoceptor antagonist propranolol (1 mg/kg) blocked leptin-induced HR changes, without influence on MAP, peripheral blood flows and survival. Twenty min after leptin treatment, there were higher plasma concentrations of noradrenaline, but not adrenaline, in comparison with the saline-treated control group. In conclusion, centrally acting leptin induces a long-lasting pressor effect with an improvement in the survival rate in haemorrhage-shocked rats. The effect may be associated with the activation of the sympathetic nervous system.
    Regulatory Peptides 03/2012; 176(1-3):45-50. · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanocortin peptides improve hemodynamic parameters and prevent death during severe hemorrhagic shock. In the present research we determined influences of a synthetic melanocortin 1/4 receptor agonist on the molecular changes that occur in rat liver during hemorrhage. Controlled-volume hemorrhage was performed in adult rats under general anesthesia by a stepwise blood withdrawal until mean arterial pressure fell to 40 mmHg. Then rats received either saline or the synthetic melanocortin 1/4 receptor agonist Butir-His-D-Phe-Arg-Trp-Sar-NH2 (Ro27-3225; n = 6-8 per group). Hemogasanalysis was performed throughout a 60-min period. Gene expression in liver samples was determined at 1 or 3 h using quantitative real-time polymerase chain reaction. At 1 h, in saline-treated shocked rats, there were significant increases in activating transcription factor 3 (Atf3), early growth response 1 (Egr1), heme oxygenase (decycling) 1 (Hmox1), FBJ murine osteosarcoma viral oncogene homolog (Fos), and jun oncogene (Jun). These changes were prevented by Ro27-3225 (mean ± SEM: Atf3 152.83 ± 58.62 vs. 579.00 ± 124.13, P = 0.002; Egr1 13.21 ± 1.28 vs. 26.63 ± 1.02, P = 0.001; Hmox1 3.28 ± 0.31 vs. 166.54 ± 35.03, P = 0.002; Fos 4.36 ± 1.03 vs. 14.90 ± 3.44, P < 0.001; Jun 6.62 ± 1.93 vs. 15.07 ± 2.09, P = 0.005; respectively). Increases in alpha-2-macroglobulin (A2m), heat shock 70kD protein 1A (Hspa1a), erythropoietin (Epo), and interleukin-6 (Il6) occurred at 3 h in shocked rats and were prevented by Ro27-3225 treatment (A2m 6.90 ± 0.82 vs. 36.73 ± 4.00, P < 0.001; Hspa1a 10.34 ± 3.28 vs. 25.72 ± 3.64, P = 0.001; Epo 0.49 ± 0.13 vs. 2.37 ± 0.73, P = 0.002; Il6 1.05 ± 0.15 vs. 1.88 ± 0.23, P < 0.001; respectively). Further, at 3 h in shocked rats treated with Ro27-3225 there were significant increases in tight junction protein 1 (Tjp1; 27.30 ± 2.43 vs. 5.03 ± 1.68, P < 0.001) and nuclear receptor subfamily 4, group A, member 1 (Nr4a1; 91.03 ± 16.20 vs. 30.43 ± 11.0, P = 0.01) relative to sham animals. Treatment with Ro27-3225 rapidly restored blood pressure, hemogasanalysis parameters, and lactate blood levels. Melanocortin treatment significantly prevents most of the systemic and hepatic detrimental changes induced by hemorrhage.
    Anesthesiology 03/2012; 116(3):692-700. · 5.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Treatment for traumatic brain injury remains elusive despite compelling evidence from animal models for a variety of therapeutic targets. Melanocortins have established neuroprotective effects against experimental ischemic stroke. We investigated whether melanocortin treatment of traumatic brain injury induces neuroprotection and promotes functional recovery. Randomized experiment. Research laboratory at a university hospital. Male Sprague-Dawley rats (n = 215). Experimental rat model of diffuse traumatic brain injury, the impact-acceleration model. Brain tissue nitrites, phosphorylation level of extracellular signal-regulated kinases, and c-jun N-terminal kinases; and expression of active caspase-3, tumor necrosis factor-α, BAX, and Bcl-2 as well as serum levels of interleukin-6, high mobility group box-1, interleukin-10, and brain histologic damage were evaluated 24 or 48 hrs after the insult. Sensorimotor orientation and limb use were evaluated at day 7 and learning and memory at days 23-30 after injury. Posttraumatic treatment every 12 hrs with the melanocortin analog [Nle, D-Phe]-α-melanocyte-stimulating hormone (starting 3 or 6 hrs after injury) inhibited traumatic brain injury-induced upregulation of nitric oxide synthesis, phosphorylation level of extracellular signal-regulated kinases, phosphorylation level of c-jun N-terminal kinases, and active caspase-3; reduced expressions/levels of tumor necrosis factor-α, BAX, interleukin-6, and high mobility group box-1; and increased those of Bcl-2 and interleukin-10. These molecular changes were associated with a reduction in brain tissue damage, as highlighted by histopathological findings and improved functional recovery. Pretreatment with the melanocortin MC4 receptor antagonist HS024 abated the positive effects of [Nle, D-Phe]-α-melanocyte-stimulating hormone. Our data indicate that melanocortins protect against traumatic brain injury, in a broad time window and through activation of MC4 receptors, by counteracting the main traumatic brain injury-related mechanisms of damage. These findings could have major clinical implications.
    Critical care medicine 03/2012; 40(3):945-51. · 6.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Indirect evidence indicates that, in cerebral ischemia, melanocortins have neuroprotective effects likely mediated by MC₄ receptors. To gain direct insight into the role of melanocortin MC₄ receptors in ischemic stroke, we investigated the effects of a highly selective MC₄ receptor agonist. Gerbils were subjected to transient global cerebral ischemia by occluding both common carotid arteries for 10 min. In saline-treated stroke animals, an impairment in learning and memory occurred that, at day 11 after stroke, was associated with hippocampus up-regulation of tumor necrosis factor-α (TNF-α), BAX, activated extracellular signal-regulated kinases (ERK1/2), c-jun N-terminal kinases (JNK1/2) and caspase-3, down-regulation of Bcl-2, and neuronal loss. Treatment for 11days with the selective melanocortin MC₄ receptor agonist RO27-3225, as well as with the well known non-selective [Nle⁴,D-Phe⁷]α-melanocyte-stimulating hormone (NDP-α-MSH) as a reference non-selective melanocortin, counteracted the inflammatory and apoptotic responses, as indicated by the changes in TNF-α, BAX, ERK1/2, JNK1/2, caspase-3 and Bcl-2 protein expression. Furthermore, melanocortin treatment reduced neuronal loss and dose-dependently improved learning and memory. These positive effects were associated with overexpression of Zif268, an immediate early gene involved in injury repair, synaptic plasticity and memory formation. Pharmacological blockade of MC₄ receptors with the selective MC₄ receptor antagonist HS024 prevented all effects of RO27-3225 and NDP-α-MSH. These data give direct evidence that stimulation of MC₄ receptors affords neuroprotection and promotes functional recovery from stroke, by counteracting prolonged and/or recurrent inflammatory and apoptotic responses, and likely by triggering brain repair pathways.
    European journal of pharmacology 09/2011; 670(2-3):479-86. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanocortins produce neuroprotection against ischemic stroke with subsequent long-lasting functional recovery, through melanocortin MC(4) receptor activation. Here we investigated whether the long-lasting beneficial effect of melanocortins in stroke conditions is associated with a stimulation of neurogenesis. Gerbils were subjected to transient global cerebral ischemia by occluding both common carotid arteries for 10 min; then, they were prepared for 5-bromo-2'-deoxyuridine (BrdU) labeling of proliferating cells. Delayed treatment (up to 9 h after the ischemic injury) for 11 days with the melanocortin analog [Nle(4),D-Phe(7)]α-melanocyte-stimulating hormone (NDP-α-MSH) improved learning and memory throughout the 50-day observation period. Immunohistochemical examination of the hippocampus on day 50 showed, in the dentate gyrus, an elevated number of BrdU immunoreactive cells colocalized with NeuN (used as indicator of mature neurons) and Zif268 (used as indicator of functionally integrated neurons). Retrospective analysis during the early stage of neural stem/progenitor cell development (days 3 and 4 after stroke) showed, in NDP-α-MSH-treated gerbils, a high degree of daily cell proliferation and revealed that NDP-α-MSH favorably affects Wnt-3A signaling pathways and doublecortin expression. Pharmacologic blockade of MC(4) receptors prevented all effects of NDP-α-MSH. These data indicate that treatment of cerebral ischemia with MC(4) receptor agonists induces, with a broad window of therapeutic opportunity, long-lasting functional recovery associated with a large number of mature and likely functional newborn neurons in brain injured areas. Our findings reveal previously undescribed effects of melanocortins which might have major clinical implications.
    Acta Neuropathologica 09/2011; 122(4):443-53. · 9.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Melanocortins (MC) trigger a vagus nerve-mediated cholinergic-antiinflammatory pathway projecting to the testis. We tested whether pharmacological activation of brain MC receptors might protect the testis from the damage induced by ischemia-reperfusion. Adult male rats were subjected to 1-h testicular ischemia, followed by 24-h reperfusion [testicular ischemia-reperfusion (TI/R)]. Before TI/R, groups of animals were subjected to bilateral cervical vagotomy, or pretreated with the nicotinic acetylcholine receptor antagonist chlorisondamine or the selective MC(4) receptor antagonist HS024. Immediately after reperfusion, rats were ip treated with saline or the MC analog [Nle(4),D-Phe(7)]α-melanocyte-stimulating hormone (NDP-α-MSH) (340 μg/kg). We evaluated testicular IL-6 and TNF-α by Western blot analysis and organ damage by light microscopy. Some experimental groups were prepared for neural efferent activity recording along the vagus nerve starting 30 min after treatment with NDP-α-MSH or saline, and for a 30-min period. Additional groups of TI/R rats were treated for 30 d with saline, NDP-α-MSH, chlorisondamine plus NDP-α-MSH, or HS024 plus NDP-α-MSH to evaluate spermatogenesis, organ damage, and the apoptosis machinery. After a 24-h reperfusion, in TI/R saline-treated rats, there was an increase in IL-6 and TNF-α expression and a marked damage in both testes. NDP-α-MSH inhibited IL-6 and TNF-α expression, decreased histological damage, and increased neural efferent activity. Furthermore, NDP-α-MSH administration for 30 d greatly improved spermatogenesis, reduced organ damage, and inhibited apoptosis. All positive NDP-α-MSH effects were abrogated by vagotomy, chlorisondamine, or HS024. Our data suggest that selective MC(4) receptor agonists might be therapeutic candidates for the management of testicular torsion.
    Endocrinology 08/2011; 152(10):3852-61. · 4.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acute pancreatitis is an inflammatory condition that may lead to multisystemic organ failure. Melanocortin peptides have been successfully used in experimental models of organ failure and shock, and their protective effect occurs through the activation of a vagus nerve-mediated cholinergic anti-inflammatory pathway by acting at brain melanocortin 4 receptors. In the light of these observations, we studied the effects of the selective melanocortin 4 receptor agonist RO27-3225 in an experimental model of cerulein-induced pancreatitis. Randomized experiment. Research laboratory at a university hospital. Experimental pancreatitis in rats. Acute pancreatitis was induced in male Sprague-Dawley rats by intraperitoneal injections of cerulein (80 μg/kg, four injections at hourly intervals). Before pancreatitis induction, groups of animals were subjected to bilateral cervical vagotomy, pretreated with the nicotinic acetylcholine receptor antagonist chlorisondamine or the selective melanocortin 4 receptor antagonist HS024, or not pretreated. Thirty minutes after the first cerulein injection, rats were intraperitoneally treated with a nanomolar dose of RO27-3225 or vehicle. Some experimental groups were prepared for neural efferent activity recording along the vagus nerve starting 30 mins after treatment with RO27-3225 or vehicle, and for a 30-min period. Serum lipase and amylase activity, tumor necrosis factor-α and interleukin-6 expression, pancreatic myeloperoxidase activity, and histologic damage were evaluated; neural efferent activity of vagal fibers was also assessed. RO27-3225 reduced cerulein-induced serum lipase and amylase activity, blunted the expression of tumor necrosis factor-α and interleukin-6, abated the increase in pancreatic myeloperoxidase activity, and protected against histologic damage. Furthermore, RO27-3225 markedly increased neural efferent activity along the vagus nerve. Vagotomy, chlorisondamine, and HS024 abated these protective effects of RO27-3225. Our data show that melanocortin 4 receptor agonists reduce pancreatitis severity through the activation of the cholinergic anti-inflammatory pathway. These findings could be of particular interest in the clinical setting.
    Critical care medicine 01/2011; 39(5):1089-96. · 6.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanocortins reverse circulatory shock and improve survival by counteracting the systemic inflammatory response, and through the activation of the vagus nerve-mediated cholinergic anti-inflammatory pathway. To gain insight into the potential therapeutic value of melanocortins against multiple organ damage following systemic inflammatory response, here we investigated the effects of the melanocortin analogue [Nle⁴ D-Phe⁷]α-MSH (NDP-α-MSH) in a widely used murine model of multiple organ dysfunction syndrome (MODS). MODS was induced in mice by a single intraperitoneal injection of lipopolysaccharide followed, 6 days later (= day 0), by zymosan. After MODS or sham MODS induction, animals were randomized to receive intraperitoneally NDP-α-MSH (340 µg·kg⁻¹ day) or saline for up to 16 days. Additional groups of MODS mice were concomitantly treated with the melanocortin MC₄ receptor antagonist HS024, or the nicotinic acetylcholine receptor antagonist chlorisondamine, and NDP-α-MSH. At day 7, in the liver and lung NDP-α-MSH, significantly reduced mRNA expression of tumour necrosis factor-α (TNF-α), increased mRNA expression of interleukin-10 and improved the histological picture, as well as reduced TNF-α plasma levels; furthermore, NDP-α-MSH dose-dependently increased survival rate, as assessed throughout the 16 day observation period. HS024 and chlorisondamine prevented all the beneficial effects of NDP-α-MSH in MODS mice. These data indicate that NDP-α-MSH protects against experimental MODS by counteracting the systemic inflammatory response, probably through brain MC₄ receptor-triggered activation of the cholinergic anti-inflammatory pathway. These findings reveal previously undescribed effects of melanocortins and could have clinical relevance in the MODS setting.
    British Journal of Pharmacology 10/2010; 162(4):917-28. · 5.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently we reported that an efferent vagal fibre-mediated cholinergic protective pathway, activated by melanocortins acting at brain melanocortin MC(3) receptors, is operative in a condition of short-term myocardial ischemia/reperfusion associated with a high incidence of severe arrhythmias and death. Here we investigated melanocortin effects, and the role of the vagus nerve-mediated cholinergic protective pathway, in a rat model of prolonged myocardial ischemia/reperfusion associated with marked inflammatory and apoptotic reactions, and a large infarct size. Ischemia was produced in rats by ligature of the left anterior descending coronary artery for 30 min. At the end of the 2-h reperfusion, western blot analysis of the inflammatory and apoptotic markers tumor necrosis factor-alpha (TNF-alpha), c-jun N-terminal kinases (JNK) and caspase-3, as well as of the anti-apoptotic extracellular signal-regulated kinases (ERK 1/2), was performed in the left ventricle. In saline-treated ischemic rats there was an increase in TNF-alpha levels and in the activity of JNK and caspase-3 accompanied, despite an appreciable ERK 1/2 activation, by a large infarct size. Intravenous treatment, during coronary artery occlusion, with the melanocortin analog [Nle(4), D-Phe(7)]alpha-melanocyte-stimulating hormone (NDP-alpha-MSH) produced a reduction in TNF-alpha levels and in the activity of JNK and caspase-3, associated with marked activation of the pro-survival kinases ERK 1/2, and consequent attenuation of infarct size. Bilateral cervical vagotomy blunted the protective effects of NDP-alpha-MSH. These results indicate that melanocortins modulate the inflammatory and apoptotic cascades triggered by prolonged myocardial ischemia/reperfusion, and reduce infarct size, seemingly by activation of the vagus nerve-mediated cholinergic protective pathway.
    European journal of pharmacology 04/2010; 637(1-3):124-30. · 2.59 Impact Factor
  • ALESSANDRA OTTANI, DANIELA GIULIANI, FRANCESCA FERRARI
    [Show abstract] [Hide abstract]
    ABSTRACT: To ascertain whether the cannabinoid agonist HU 210 (25, 50 or 100μ kg−1, i.p.) influenced rat spatial learning, animal performance was examined using the Morris water maze during and after treatments. Vocalization and wall-hugging, examples of unlearned behaviour, were examined also.HU 210 at 50 or 100μ kg−1 (once daily for four days, 60 min before a daily session) impaired learning; wall-hugging and enhanced vocalization were also displayed by the animals in the fourth session. When the drug treatment was discontinued, the effects produced by 50μ kg−1 HU 210 reversed in three days, while disruption of acquisition and vocalization caused by 100μ kg−1 HU 210 remained after seven days' abstinence. Rats sub-chronically treated with 100μ kg−1 HU 210 for ten days and then submitted to the water-maze task thirty days after last injection, did not differ with respect to controls in learning, memory, vocalization and wall-hugging.The anxiety-like state may be a specific factor contributing to the reversible impairment of spatial learning induced by HU 210.
    Pharmacy and Pharmacology Communications. 02/2010; 6(6):243 - 246.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Experimental evidence indicates that small concentrations of inflammatory molecules produced by damaged tissues activate afferent signals through ascending vagus nerve fibers, that act as the sensory arm of an "inflammatory reflex". The subsequent activation of vagal efferent fibers, which represent the motor arm of the inflammatory reflex, rapidly leads to acetylcholine release in organs of the reticuloendothelial system. Acetylcholine interacts with α7 subunit-containing nicotinic receptors in tissue macrophages and other immune cells and rapidly inhibits the synthesis/release of tumor necrosis factor-α and other inflammatory cytokines. This neural anti-inflammatory response called "cholinergic anti-inflammatory pathway" is fast and integrated through the central nervous system. Preclinical studies are in progress, with the aim to develop therapeutic agents able to activate the cholinergic anti-inflammatory pathway. Melanocortin peptides bearing the adrenocorticotropin/α-melanocyte-stimulating hormone sequences exert a protective and life-saving effect in animals and humans in conditions of circulatory shock. These neuropeptides are likewise protective in other severe hypoxic conditions, such as prolonged respiratory arrest, myocardial ischemia, renal ischemia and ischemic stroke, as well as in experimental heart transplantation. Moreover, experimental evidence indicates that melanocortins reverse circulatory shock, prevent myocardial ischemia/reperfusion damage and exert neuroprotection against ischemic stroke through activation of the cholinergic anti-inflammatory pathway. This action occurs via stimulation of brain melanocortin MC3/MC4 receptors. Investigations that determine the molecular mechanisms of the cholinergic anti-inflammatory pathway activation could help design of superselective activators of this pathway.
    Advances in experimental medicine and biology 01/2010; 681:71-87. · 1.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A vagus nerve-mediated, efferent cholinergic protective pathway activated by melanocortins is operative in circulatory shock and myocardial ischemia. Moreover, melanocortins have neuroprotective effects against brain damage after ischemic stroke. Here we investigated cerebral and systemic pathophysiologic reactions to focal cerebral ischemia in rats induced by intrastriatal microinjection of endothelin-1, and the possible protective role of the melanocortin-activated vagal cholinergic pathway. In the striatum and liver of saline-treated control rats, the activation of extracellular signal-regulated kinases, c-jun N-terminal kinases, and caspase-3, the increase in tumor necrosis factor-alpha (TNF-alpha) concentration and DNA fragmentation, as well as the increase in TNF-alpha plasma levels, occurred 10 and 20 h after the ischemic insult suggesting an activation of inflammatory and apoptotic responses. Treatment with [Nle(4), D-Phe(7)]alpha-melanocyte-stimulating hormone (NDP-alpha-MSH; 3 or 9 h after stroke) suppressed the inflammatory and apoptotic cascades at central and peripheral level. Bilateral vagotomy and pharmacologic blockade of peripheral nicotinic acetylcholine receptors blunted the protective effect of NDP-alpha-MSH. The present results show that focal brain ischemia in rats causes significant effects not only in the brain, but also in the liver. Moreover, our data support the hypothesis that a protective, melanocortin-activated, vagal cholinergic pathway is likely operative in conditions of ischemic stroke.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 11/2009; 29(3):512-23. · 5.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chest trauma is frequently followed by pulmonary contusion and sepsis. High mobility group box-1 (HMGB-1) is a late mediator of severe sepsis that has been associated with mortality under experimental conditions. We studied HMGB-1 mRNA expression in patients with lung injury and its relationship with the severity of trauma and survival. A total of 24 consecutive patients with chest trauma referring to the Intensive Care Unit of Messina University Hospital, were enrolled. Lung trauma was established on the basis of chest X-ray and computed tomography. Injury Severity Score (ISS), Revised Trauma Score (RTS) and Glasgow Coma Scale (GCS) were also assessed. Accordingly to these results 6 patients were considered as controls because of no penetrating trauma and low ISS. Blood and broncho-alveolar lavage fluid (BALF) from chest trauma patients were withdrawn at admission and 24h after the beginning of the standard therapeutic protocol. HMGB-1 mRNA increased significantly in blood (r=0.84) and BALF (r=0.87) from patients with trauma and pulmonary contusion and positively correlated with the severity of trauma (based on ISS and RTS) and the final outcome. HMGB-1 protein levels were also elevated in BALF macrophages from severe trauma patients compared to control subjects, furthermore TNF-alpha and its receptor TNFR-1 mRNA levels were also markedly increased in patients with a poor outcome respect to other subjects. Our study suggests that HMGB-1 may be an early indicator of poor clinical outcome in patients with chest trauma.
    Pharmacological Research 09/2009; 61(2):116-20. · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanocortin peptides afford strong neuroprotection and improve functional recovery in experimental ischemic stroke; they also have established neurotrophic actions. The expression of the immediate early gene Zif268 is dependent on synaptic activity and is involved in injury repair and memory formation. Here, we investigated the role of Zif268 in learning and memory recovery after delayed treatment of ischemic stroke with the melanocortin analog [Nle(4), D-Phe(7)]alpha-MSH (NDP-alpha-MSH). A 10-min period of global cerebral ischemia was induced by occluding both common carotid arteries in gerbils. Treatment with a nanomolar dose of NDP-alpha-MSH (every 12h for 11 days) was performed starting 3h or 9h after stroke induction; where indicated, gerbils were pretreated with the melanocortin MC(4) receptor antagonist HS024. Animals were subjected to the Morris water-maze test (four sessions from 4 to 50 days after the ischemic episode). Fifty days after stroke, histological damage and Zif268 expression were investigated in the hippocampus. Treatment with NDP-alpha-MSH significantly reduced hippocampal damage, including neuronal death, and improved learning and memory recovery. This protective effect was long-lasting (50 days, at least) and associated with Zif268 overexpression, with both schedules of NDP-alpha-MSH treatment. Pharmacological blockade of MC(4) receptors prevented these effects. Our data indicate that MC(4) receptor-mediated actions of melanocortins could trigger repair mechanisms able to improve neuronal functionality and synaptic plasticity, and to promote long-lasting functional recovery from ischemic stroke with Zif268 gene involvement.
    Brain Behavior and Immunity 05/2009; 23(6):844-50. · 5.61 Impact Factor

Publication Stats

1k Citations
191.89 Total Impact Points

Institutions

  • 1998–2014
    • Università degli Studi di Modena e Reggio Emilia
      • Department of Biomedical, Metabolical and Neurosciences
      Modène, Emilia-Romagna, Italy
  • 2012
    • Medical University of Silesia in Katowice
      Catowice, Silesian Voivodeship, Poland
    • Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico
      Milano, Lombardy, Italy
  • 2011–2012
    • Università degli Studi di Messina
      • Dipartimento di Medicina Clinica e Sperimentale
      Messina, Sicily, Italy