A Davoli

University of Verona, Verona, Veneto, Italy

Are you A Davoli?

Claim your profile

Publications (43)169.33 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study we compared the effects of a low-fat, high-carbohydrate (LFHC) diet at two levels of polyunsaturated fatty acids on plasma lipids of 20 patients affected by familial endogenous hypertriglyceridemia. During the intervention period the proportion of dietary energy derived from fat was reduced from about 45% to 20% in all the subjects. Ten patients (group I) consumed a LFHC diet with a polyunsaturated to saturated fat (P/S) ratio of 0.4, while the other 10 patients (group II) had a diet with a P/S ratio of 1–7. During the intervention period we observed a significant decrease of total plasma triglycerides and cholesterol in both groups. In spite of the different P/S ratio, the decrease of total triglycerides and cholesterol was superimposable in the two groups. The fall in plasma triglycerides and cholesterol was due only to the decrease in very low density lipoproteins (VLDL). On the contrary, low density lipoproteins (LDL) cholesterol was unchanged in both groups. Finally, during the intervention period we observed an increase of high density lipoproteins (HDL) cholesterol only in group I while it did not vary in group II. During the intervention period the HDL to LDL cholesterol ratio increased significantly only in group I while it did not vary in group II. The increase of HDL cholesterol levels observed in group I was due mainly to the rise of HDL2 cholesterol concentrations. The results show that when the intake of fat, and in particular, of saturates is reduced the effect of different amounts of polyunsaturates or monounsaturates on plasma triglycerides and cholesterol subfraction levels seems to be variable.
    07/2009; 1(2):95-105.
  • [Show abstract] [Hide abstract]
    ABSTRACT: To obtain further insight into the mechanism underlying the vasodilator effect of nebivolol. Since oxidative inactivation of nitric oxide (NO) is regarded as an important cause of its decreased biological activity, we studied (1) the effect of nebivolol on some oxidative parameters in essential hypertensive patients; (2) the effect of plasma of nebivolol-treated patients on reactive oxygen species production and NO availability in endothelial cells. A total of 20 healthy subjects and 20 matched essential hypertensive patients treated with atenolol or nebivolol according to a double-blind, randomized design participated in the study. We measured low-density lipoprotein (LDL) and plasma hydroperoxides, 8-isoprostanes, oxidized LDL, susceptibility of LDL to oxidation (lag phase) and LDL vitamin E and the effect of plasma of nebivolol- and atenolol-treated patients on reactive oxygen species production and NO availability in endothelial cells exposed to oxidative stress. In hypertensive patients, nebivolol and atenolol significantly reduced blood pressure values after 4 weeks of treatment. Plasma and LDL hydroperoxides, plasma 8-isoprostanes, plasma ox-LDL and LDL lag phase were significantly improved only in the patients receiving nebivolol compared with the atenolol group. Similarly there was a reduction of reactive oxygen species (ROS) and O2*- concentration in endothelial cells exposed to oxidative stress after incubation of the cells with plasma of the patients enrolled in the trial only in the patients receiving nebivolol compared to atenolol group. Furthermore, the reduction of basal and stimulated NO induced by oxidative stress in endothelial cells was significantly lower in the patients receiving nebivolol compared to atenolol group. The findings of the present study indicate that nebivolol, through its antioxidant properties, increases NO also by decreasing its oxidative inactivation.
    Journal of Hypertension 04/2005; 23(3):589-96. · 4.22 Impact Factor
  • High Blood Pressure & Cardiovascular Prevention 01/2005; 12(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of the present study was to elucidate the vasodilator mechanisms of nebivolol, a high selective beta(1)-receptor antagonist with antioxidant properties. Oxidative inactivation of nitric oxide (NO) is regarded as an important cause of its decreased biological activity. Oxidative stress was induced through the binding of oxidized (ox)-low-density lipoprotein (LDL) to its specific endothelial receptor, called "lectin-like oxidized LDL receptor-1" (LOX-1), in bovine and human endothelial cells and in Chinese hamster ovary cells stably expressing bovine LOX-1 (BLOX-1-CHO cells). Reactive oxygen species (ROS), superoxide (O(2)(*-)), and NO were measured in cells by flow cytometry. Nebivolol and its 4-keto derivative prevented in a dose-dependent manner the increase of ROS (p < 0.001) and O(2)(*-) (p < 0.001) in bovine aortic endothelial cells (BAECs), human umbilical vein endothelial cells (HUVECs), and BLOX-1-CHO cells stimulated with ox-LDL. Atenolol had no effect. The incubation of HUVECs and BAECs with ox-LDL reduced basal and bradykinin-induced NO and nitrite concentration (p from <0.001 to <0.01). Nebivolol and its 4-keto derivative prevented the reduction of basal and stimulated NO and nitrite concentration (p from <0.001 to <0.01) while atenolol had no effect. The preincubation of BAECs with blocking anti-LOX-1 monoclonal antibody (LOX-1 mAb) significantly counteracted the effect of ox-LDL on stimulated generation of NO (p < 0.001), but the effect was significantly lower than that of nebivolol and its 4-keto derivative alone (p < 0.01). In conclusion, the findings of the present study indicate that nebivolol increases NO also by decreasing its oxidative inactivation.
    Journal of the American College of Cardiology 11/2003; 42(10):1838-44. · 14.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lacidipine, a dihydropyridine-based calcium antagonist (DHP), has already been demonstrated to possess antioxidant activity and to reduce the intracellular production of reactive oxygen species (ROS). To verify if this effect is a peculiarity of this molecule, or belongs to other DHPs, the activity of lacidipine was compared with those of amlodipine, lercanidipine, nimodipine, and nifedipine. The DHPs were incorporated in bovine aortic endothelial cells (BAECs). Cu(2+)-oxidized LDL (ox-LDL, 5 microM) was incubated with BAECs for 5 min. 2',7'-Dichlorofluorescein (DCF) as expression of intracellular ROS production was measured by flow cytometry. Ox-LDL induced a strong increase in intracellular ROS formation (p<0.001) that was significantly reduced only with lacidipine and lercanidipine (p from <0.05 to <0.01); the effect of lacidipine, however, resulted in being much more evident than lercanidipine (p<0.01); amlodipine, nimodopine, and nifedipine had no effect on ROS formation. The lowest IC50s, i.e. the concentrations determining the 50% reduction of ROS, were obtained with lacidipine (p<0.01). The inhibitory effect of lacidipine on ox-LDL-induced ROS production in endothelial cells is a peculiarity of this molecule through its antioxidant activity.
    Biochemical and Biophysical Research Communications 03/2003; 302(4):679-84. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To address the potential role of the endothelial lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in the thrombotic system, in this study we first examined whether platelet interaction with LOX-1 generated reactive oxygen species (ROS) and superoxide (O2.-) and then investigated the relationship between the intracellular production of O2.- and the availability of nitric oxide (NO). Oxidative inactivation of NO is regarded as an important cause of its decreased biologic activity which may favor platelet-dependent arterial thrombosis. Bovine aortic endothelial cells (BAECs) and Chinese hamster ovary-K1 cells stably expressing bovine LOX-1 (BLOX-1-CHO) were incubated at different times with human platelets. The ROS, O2.-, and NO were measured in cells by flow cytometry. The incubation of BAECs and BLOX-1-CHO cells with human platelets induced a sharp and dose-dependent increase in intracellular concentration of ROS and O2.- (p from <0.01 to <0.001). The increase in intracellular concentration of O2.- was followed by a dose-dependent reduction in basal and bradykinin-induced intracellular NO concentration (p from <0.01 to <0.001). The increase in O2.- and the reduction of NO were inhibited by the presence of vitamin C and anti-LOX-1 monoclonal antibody (p < 0.001). The results of this study show that one of the pathophysiologic consequences of platelet binding to LOX-1 may be the inactivation of NO through an increased cellular production of O2.-.
    Journal of the American College of Cardiology 02/2003; 41(3):499-507. · 14.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypertension and coronary artery disease are intimately connected. The migration of circulating monocytes into the subendothelial occurs through the expression of some adhesion molecules on endothelial cells. The nuclear factor (NF)-kappaB, a redox-sensitive element, plays a key role in adhesion molecule gene induction. In this study we have compared the effects of two different angiotensin converting enzyme (ACE) inhibitors, one possessing an active sulfhydryl group (zofenopril) and one lacking this group (enalapril) on the cellular redox state (monitored by measuring intracellular reactive oxygen species and thiol status), expression of adhesion molecules, and activation of NF-kappaB in human umbilical vein endothelial cells (HUVECs). Zofenoprilat, the active form of zofenopril, significantly and dose dependently reduced the intracellular reactive oxygen species (ROS) and superoxide formation induced by oxidized low-density lipoprotein (ox-LDL) (P <.001) and tumor necrosis factor-alpha (TNF-alpha) (P <.001). Enalaprilat, the active form of enalapril, was ineffective. Zofenoprilat but not enalaprilat also decreased the consumption of the intracellular GSH induced by ox-LDL (P <.01) and TNF-alpha (P <.01). Although zofenoprilat significantly and dose dependently reduced the expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), and E-selectin induced by ox-LDL (P <.01) and TNF-alpha (P <.01) on HUVECs, enalaprilat did not. Ox-LDL and TNF-alpha increased the activation of NF-kappaB and the preincubation of HUVECs with zofenoprilat, but not with enalaprilat, dose dependently reduced its activation (P <.001). The conclusion is that the sulfhydryl (SH)-containing ACE inhibitors may be useful in inhibiting foam cell formation and thus slow the development of atherosclerosis.
    American Journal of Hypertension 10/2002; 15(10 Pt 1):891-5. · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidized low density lipoprotein (ox-LDL) has been suggested to affect endothelium-dependent vascular tone through a decreased biological activity of endothelium-derived nitric oxide (NO). Oxidative inactivation of NO is regarded as an important cause of its decreased biological activity, and in this context superoxide (O(2)) is known to inactivate NO in a chemical reaction during which peroxynitrite is formed. In this study we examined the effect of ox-LDL on the intracellular NO concentration in bovine aortic endothelial cells and whether this effect is influenced by ox-LDL binding to the endothelial receptor lectin-like ox-LDL receptor-1 (LOX-1) through the formation of reactive oxygen species and in particular of O(2). ox-LDL induced a significant dose-dependent decrease in intracellular NO concentration both in basal and stimulated conditions after less than 1 min of incubation with bovine aortic endothelial cells (p < 0.01). In the same experimental conditions ox-LDL also induced O(2) generation (p < 0.001). In the presence of radical scavengers and anti-LOX-1 monoclonal antibody, O(2) formation induced by ox-LDL was reduced (p < 0.001) with a contemporary rise in intracellular NO concentration (p < 0.001). ox-LDL did not significantly modify the ability of endothelial nitric oxide synthase to metabolize l-arginine to l-citrulline. The results of this study show that one of the pathophysiological consequences of ox-LDL binding to LOX-1 may be the inactivation of NO through an increased cellular production of O(2).
    Journal of Biological Chemistry 04/2001; 276(17):13750-5. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study we examined the effect of oxidized low density lipoprotein (ox-LDL) on the intracellular production of reactive oxygen species (ROS) in bovine aortic endothelial cells (BAECs) and whether this increase occurs through its binding to the endothelial receptor lectin-like ox-LDL receptor-1 (LOX-1). Furthermore, this study also aimed to ascertain whether the binding of ox-LDL to LOX-1 is associated with NF-kappaB activation. ox-LDL induced a significant dose-dependent increase in ROS production after a 30-s incubation with BAECs (p < 0.01). ROS formation was markedly reduced in BAECs incubated with anti-LOX-1 monoclonal antibody (p < 0.001), while control nonimmune IgG produced no effect. ox-LDL induced a time- and dose-dependent significant increase in ROS formation only in CHO-K1 cells stably expressing bovine LOX-1 (p < 0.001), while no increase was present in CHO-K1 cells. The activation of the transcription factor NF-kappaB in BAECs was evident after a 5-min incubation with ox-LDL and was attenuated by anti-LOX-1 monoclonal antibody. The conclusion is that one of the pathophysiological consequences of ox-LDL binding to LOX-1 may be the activation of NF-kappaB through an increased ROS production.
    Journal of Biological Chemistry 04/2000; 275(17):12633-8. · 4.65 Impact Factor
  • Atherosclerosis 01/2000; 151(1):261-261. · 3.71 Impact Factor
  • Atherosclerosis 01/2000; 151(1):58-59. · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lacidipine has already been demonstrated to reduce the expression of some adhesion molecules induced by pro-oxidant signals on endothelial cells. In order to verify if this effect is a peculiarity of this molecule, or belongs to other dihydropyridinic compounds (DHPs), the activity of lacidipine was compared with that of lercanidipine, amlodipine, nimodipine and nifedipine. The compounds were incorporated in human umbilical vein endothelial cells (HUVECs) using native low-density lipoprotein as a carrier. The drug concentrations in HUVECs were measured by mass spectrometry. Human recombinant tumour necrosis factor-alpha was then incubated with HUVECs for 7 h at 37 degrees C for adhesion molecule expression. The cellular amount of lacidipine, lercanidipine and amlodipine was similar, while nimodipine and nifedipine were almost undetectable or undetectable, respectively. Lacidipine, at any concentration, determined a dose-dependent significant decrease of the expression of intercellular adhesion molecule-1 (ICAM-1) ICAM-1, vascular cell adhesion molecule-1 (VCAM-1) VCAM-1 and E-selectin (P < 0.01). Lercanidipine and amlodipine determined variable decreases of adhesion molecules at the intermediate and highest concentrations. Nimodipine and nifedipine determined no effect on ICAM-1, VCAM-1 and E-selectin. The lowest IC50, i.e. the concentration determining the 50% reduction of ICAM-1, VCAM-1 and E-selectin expression was obtained with lacidipine for all the adhesion molecules considered (P < 0.01). It is concluded that the effect of the DHPs used in this study on adhesion molecule expression is determined first by their lipophilicity and then by their intrinsic antioxidant activity.
    Journal of Hypertension 01/2000; 17(12 Pt 2):1837-41. · 4.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adhesion of monocytes to endothelium, an early event in atherosclerosis, is mediated by cell adhesion molecules. Signal-transduction pathways for these binding molecules include the translocation of the transcription factor NF-kappaB; moreover, intracellularly generated oxygen-derived free radicals (ODFR) play a major role in this process. This study evaluated the extent to which troglitazone, an oral antidiabetic agent with antioxidant properties, affects the expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin on human umbilical vein endothelial cells (HUVECs), induced by different prooxidant signals such as oxidized LDL and tumor necrosis factor-alpha (TNF-alpha). Furthermore we assessed whether the NF-kappaB activation is modulated by the antioxidative effect of troglitazone. Oxidized LDL not only caused a dose-dependent increase of ICAM-1, VCAM-1 and E-selectin (p<0.001), but also synergically increased their TNF-alpha-induced expression (p<0.001). Troglitazone reduced in a dose-dependent manner the expression of VCAM-1, ICAM-1 and E-selectin induced by different amounts of oxidized LDL (p<0.001). The addition of troglitazone to HUVECs significantly reduced the expression of ICAM-1, VCAM-1 and E-selectin induced by TNF-alpha alone or in combination with oxidized LDL (p<0.001); this reduction was paralleled by a significant fall in NF-kappaB translocation. The results suggest that troglitazone may have prevented NF-kappaB-mediated adhesion molecule expression by exerting its antioxidant effect on ODFR.
    Cell adhesion and communication 01/1999; 7(3):223-31.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms by which oxidized low-density lipoprotein (ox-LDL) induces the expression of adhesion molecules on endothelial cells (HUVECs) are still not clear. The signal transduction pathways for these binding molecules include the translocation of the transcription factor NF-kB and the intracellular reactive oxygen species (ROS) are said to play a key role in this process. Aim of this study was (1) to evaluate the effect of ox-LDL on intracellular production of ROS in culture of HUVECs; (2) to evaluate if the intracellular increase of ROS induced by ox-LDL is mediated by the binding to a specific endothelial receptor; (3) to ascertain if lacidipine can decrease ox-LDL-induced ROS production in HUVECs. Five microM Cu2+ ox-LDL were incubated with HUVECs for 5 min. 2',7'-Dichlorofluorescein (DCF) as an expression of intracellular ROS production, was measured by flow cytometry. ox-LDL induced a significant dose-dependent increase in DCF production (P < 0.001) through the binding to a specific receptor. The preincubation of HUVECs with radical scavengers compounds and lacidipine significantly reduced (P < 0.001) the ox-LDL-induced DCF production. ox-LDL increased the intracellular formation of ROS through the ligation to a specific endothelial receptor. Preincubation of HUVECs with lacidipine, a calcium antagonist with antioxidant properties, significantly reduced the intracellular ROS formation induced by ox-LDL. We propose that the effect of lacidipine on adhesion molecule expression and on NF-kB activation can be explained by its effect on intracellular ROS formation.
    Journal of Hypertension 12/1998; 16(12 Pt 2):1913-9. · 4.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study tested the effects of ox-low density lipoprotein (LDL) on nitric oxide (NO)-dependent decrease in agonist-stimulated [Ca2+]i. The effects of ox-LDL on platelet aggregation were also evaluated. Platelets loaded with FURA 2 AM (2 micromol/litre) were incubated with NO-donors for 2-10 min to obtain a 40-50% reduction in \[Ca2+]i and with NO-donors plus ox-LDL (100 microg of protein/ml). Thrombin (0.03 U/ml) was used as an agonist. In some experiments 8-Br-cGMP (0.5-1 mmol/l) was used to investigate the NO-dependent intraplatelet signalling system. Slightly oxidized LDL was obtained by leaving native LDL in the light at room temperature for at least 7 days. Ox-LDL did not cause any increase in thrombin-induced [Ca2+] (control: 215.4 +/- 44.3 nmol/l, ox-LDL 223.4 +/- 35.3 nmol/l, M +/- SEM; n = 8) and platelet aggregation (control: 78.7 +/- 4.9% , ox-LDL: 78.9 +/- 4.2% , n = 12). Ox-LDL antagonized the effects of NO-donors on platelet [Ca2+]i (NO-donor: 137.4 +/- 22.1 nmol/l, NO + ox-LDL: 177.3 +/- 27.6 nmol/l, n = 11; P < 0.001) and platelet aggregation (NO-donor: 15.4 +/- 3.4% , NO + ox-LDL: 28.9 +/- 3.8%, n = 24; P < 0.001). Ox-LDL did not affect the inhibitory activities of 8-Br-cGMP on platelet aggregation (8-Br-cGMP: 22.0 +/- 8.5%, 8-Br-cGMP + ox-LDL: 19.3 +/- 7.8%, n = 5) and platelet [Ca2+]i . In conclusion, slightly oxidized LDL does not directly activate platelets and does not i affect the intracellular NO-dependent signalling system. The present results suggest that LDL reduces the antiplatelet activity of NO mainly by preventing its biological effects.
    Platelets 02/1998; 9(3-4):269-72. · 2.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Troglitazone, an oral antidiabetic agent with antioxidant properties, has previously been shown to increase the resistance of LDL to oxidation in vitro and in vivo in healthy volunteers. In a randomized, placebo-controlled, parallel-group study in 29 patients with NIDDM, we tested the effect of troglitazone (200 mg once daily) on the resistance of LDL to oxidation and on circulating levels of preformed lipid hydroperoxides and the adhesion molecule E-selectin. Resistance of LDL to oxidation was assessed by measuring 1) fluorescence development induced by copper treatment (lag phase), and 2) amount of thiobarbituric acid-reactive substances (TBARS) generated by incubation with umbilical vein endothelial cells. At 8 weeks, the lag phase was increased by 23% (P < 0.01 by analysis of covariance [ANCOVA]) in the patients receiving troglitazone (n = 18) compared with the group receiving placebo (n = 11). At the same time, TBARS were 3.63 +/- 0.10 nmol/l (vs. 5.32 +/- 0.10 nmol/l in the placebo group, P = 0.009), LDL hydroperoxide concentration was reduced from 1.48 +/- 0.03 to 1.19 +/- 0.03 ng/mg (no change in the placebo group, P < 0.01), and plasma E-selectin levels decreased from 56.5 +/- 2.33 to 43.7 +/- 1.77 microg/l (no change in the placebo group, P < 0.01). In NIDDM, troglitazone may slow down the development of atherosclerosis by modifying LDL-related atherogenic events.
    Diabetes 01/1998; 47(1):130-3. · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adhesion of monocytes to endothelium, an early event in atherosclerosis is mediated by cell adhesion molecules. Signal-transduction pathways for these binding molecules include the translocation of the transcription factor NF-kappaB; moreover, intracellularly generated oxygen-derived free radicals play a major role in this process. In this study we evaluated the extent to which lacidipine, a calcium antagonist with antioxidant properties, affects the expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin on human umbilical vein endothelial cells, induced by different pro-oxidant signals such as oxidized low density lipoprotein (LDL) and tumor necrosis factor-alpha (TNF-alpha). We incubated 5 micromol/l Cu2+-oxidized LDL and TNF-alpha (2 ng/ml) with human umbilical vein endothelial cells for 48 and 6 h, respectively. ICAM-1, VCAM-1 and E-selectin were measured by flow cytometry. NF-kappaB was evaluated by electrophoretic mobility shift assay. The incubation of 5 micromol/l Cu2+-oxidized LDL not only caused a dose-dependent increase in ICAM-1, VCAM-1 and E-selectin (P < 0.001), but also synergically increased their TNF-alpha-induced expression (P < 0.001). The addition of lacidipine to human umbilical vein endothelial cells significantly reduced the expression of ICAM-1, VCAM-1 and E-selectin induced by TNF-alpha alone or with oxidized LDL (P < 0.001). The reduction in adhesion molecule expression caused by lacidipine was paralleled by a significant fall in NF-kappaB translocation. The results suggest that lacidipine may have prevented NF-kappaB-mediated adhesion molecule expression by exerting its effects on oxygen-derived free radicals. The results support previous observations that lacidipine may have therapeutic effects in atherosclerosis.
    Journal of Hypertension 12/1997; 15(12 Pt 2):1633-40. · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The oxidative modification of low density lipoprotein is of importance in atherogenesis. Antioxidant supplementation has been shown, in published work, to increase low density lipoprotein resistance to oxidation in both healthy subjects and diabetic subjects; in animal studies a contemporary reduction in atherogenesis has been demonstrated. Troglitazone is a novel oral antidiabetic drug which has similarities in structure with vitamin E. The present study assessed the effect of troglitazone 400 mg twice daily for 2 weeks on the resistance of low density lipoprotein to oxidation in healthy male subjects. Ten subjects received troglitazone and ten received placebo in a randomised, placebo-controlled, parallel-group design. The lag phase (a measure of the resistance of low density lipoprotein to oxidation) was determined by measurement of fluorescence development during copper-catalysed oxidative modification of low density lipoprotein. The lag phase was increased by 27 % (p < 0.001) at week 1 and by 24% (p < 0.001) at week 2 in the troglitazone treated group compared with the placebo group. A number of variables known to influence the resistance of low density lipoprotein to oxidation were measured. They included macronutrient consumption, plasma and lipoprotein lipid profile, alpha-tocopherol, beta-carotene levels in low density lipoprotein, low density lipoprotein particle size, mono and polyunsaturated fatty acid content of low density lipoprotein and pre-formed low density lipoprotein hydroperoxide levels in low density lipoprotein. Troglitazone was associated with a significant reduction in the amount of pre-formed low density lipoprotein lipid hydroperoxides. At weeks 1 and 2, the low density lipoprotein hydroperoxide content was 17% (p < 0.05) and 18% (p < 0.05) lower in the troglitazone group compared to placebo, respectively. In summary the increase in lag phase duration in the troglitazone group appeared to be due to the compound's activity as an antioxidant and to its ability to reduce the amount of preformed low density lipoprotein lipid hydroperoxides. This antioxidant activity could provide considerable benefit to diabetic patients where atherosclerosis accounts for the majority of total mortality.
    Diabetologia 10/1997; 40(10):1211-8. · 6.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although elevated levels of soluble E-selectin and intercellular cell adhesion molecules-1 (ICAM-1) have been reported in non-insulin-dependent diabetes mellitus (NIDDM), it is not clear by what mechanism this elevation occurs and whether or not it is related to glycaemic control. In this study we analyse: 1) the relation of glycaemic control with the concentrations of E-selectin, vascular cell adhesion molecules-1 (VCAM-1) and ICAM-1 in NIDDM patients: 2) whether metabolic control can affect the oxidative stress (as measured by plasma hydroperoxide concentration and susceptibility of LDL to in vitro oxidation) and hence the adhesion molecule plasma concentrations. Thirty-four (19 males and 15 females) poorly controlled NIDDM patients were studied. All parameters were evaluated at the beginning of the study and after 90 days of dietary and pharmacological treatment. The treatment decreased HbA1c (p < 0.001), E-selectin (p < 0.001), plasma hydroperoxides (p < 0.003) and the susceptibility of LDL to in vitro oxidation (lag phase) (p < 0.0001). Before treatment HbA1c, lag phase and lipid hydroperoxides correlated with E-selectin plasma concentration (r = 0.51, -0.57 and 0.54, respectively, p < 0.01). There was also a correlation between HbA1c and lag phase (p < 0.01) and between HbA1c and lipid hydroperoxides (p < 0.01). In addition, the variations of HbA1c, lag phase and lipid hydroperoxide values correlated with those for E-selectin concentration after 90 days' treatment (r = 0.54, -0.64 and 0.61, respectively, p < 0.01). In multiple linear correlation analysis, however, the partial correlation coefficients of HbA1c (basal and variations) with E-selectin concentration (basal and variations) fell to non-significant values (r = 0.12 and 0.25, respectively) when LDL lag phase and plasma hydroperoxides were kept constant. The results indicate that the improvement of metabolic control in NIDDM patients is associated with a decrease of E-selectin plasma levels; they also suggest that glycaemic control per se is not directly implicated in determining E-selectin plasma concentration; glycaemic control could affect E-selectin concentration through its effect on oxidative stress.
    Diabetologia 06/1997; 40(5):584-9. · 6.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trolitazone is a new oral antidiabetic agent able to reduce lipid peroxidation. In this study we evaluated its effect on the susceptibility of LDL and HDL to in vitro oxidation induced by copper ions and endothelial cells. In Cu(++)-induced LDL modification, different amounts of troglitazone were added to aliquots of the same pool of plasma with subsequent ultracentrifuge separation of LDL and HDL. Differences in LDL and HDL susceptibility to in vitro oxidation with Cu(++) were studied by measuring the changes in fluorescence intensity (expressed as lag phase). LDL derived from plasma incubated with different amounts of troglitazone were also incubated with umbilical vein endothelial cells (HUVEC), the modification being monitored by LDL relative electrophoretic mobility and fluorescence. During Cu(++)- and HUVEC-induced LDL oxidation, the decay rate of vitamin E, and the potency of troglitazone as a radical scavenger in comparison with vitamin E were also studied. Troglitazone determined a significant, dose-dependent decrease in Cu(++)-induced LDL and HDL oxidation. Incubation with HUVEC was also followed by a progressive, significant decrease of LDL relative electrophoretic mobility and fluorescence intensity. During Cu(++)- and HUVEC-induced-LDL modification, troglitazone significantly reduced the rate of vitamin E decay. In this study we also demonstrated that under the same oxidative stress, troglitazone was much more potent as a radical scavenger than vitamin E. In conclusion, the results demonstrate that troglitazone can reduce LDL and HDL in vitro oxidation and that, during this process, it can protect vitamin E. In addition to ensuring blood glucose control, the drug may therefore be useful in inhibiting lipoprotein peroxidation.
    Diabetologia 03/1997; 40(2):165-72. · 6.49 Impact Factor