Mylene Perreault

Pfizer Inc., New York City, New York, United States

Are you Mylene Perreault?

Claim your profile

Publications (16)67.46 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Glycerol-3-phosphate acyltransferases (GPATs) catalyze the first step in the synthesis of glycerolipids and glycerophospholipids. Microsomal GPAT, the major GPAT activity, is encoded by at least two closely related genes, GPAT3 and GPAT4. To investigate the in vivo functions of GPAT3, we generated Gpat3-deficient mice (Gpat3(-/-)). Total GPAT activity in white adipose tissue of Gpat3(-/-) mice was reduced by 80%, suggesting that GPAT3 is the predominant GPAT in this tissue. In liver, GPAT3-deletion had no impact on total GPAT activity, but resulted in a 30% reduction in N-ethylmaleimide-sensitive GPAT activity. The Gpat3(-/-) mice were viable and fertile, and exhibited no obvious metabolic abnormalities on standard laboratory chow. However, when fed a high-fat diet, female Gpat3(-/-) mice showed decreased body weight gain and adiposity and increased energy expenditure. Increased energy expenditure was also observed in male Gpat3(-/-) mice, although it was not accompanied by a significant change in body weight. GPAT3-deficiency lowered fed, but not fasted, glucose levels, and tended to improve glucose tolerance in diet-induced obese male and female mice. On a high-fat diet, Gpat3(-/-) mice had enlarged livers and displayed a dysregulation in cholesterol metabolism. These data establish GPAT3 as the primary GPAT in white adipose tissue and reveal an important role of the enzyme in regulating energy, glucose, and lipid homeostasis.
    AJP Endocrinology and Metabolism 04/2014; · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TAM-163, an agonist monoclonal antibody targeting tyrosine receptor kinase-B (TrkB), is currently being investigated as a potential body weight modulatory agent in humans. To support the selection of the dose range for the first-in-human (FIH) trial of TAM-163, we conducted a mechanistic analysis of the pharmacokinetic (PK) and pharmacodynamic (PD) data (e.g., body weight gain) obtained in lean cynomolgus and obese rhesus monkeys following single doses ranging from 0.3 to 60 mg/kg. A target-mediated drug disposition (TMDD) model was used to describe the observed nonlinear PK and Emax approach was used to describe the observed dose-dependent PD effect. The TMDD model development was supported by the experimental determination of the binding affinity constant (9.4 nM) and internalization rate of the drug-target complex (2.08 h (-1) ). These mechanistic analyses enabled linking of exposure, target (TrkB) coverage, and pharmacological activity (e.g., PD) in monkeys, and indicated that ≥ 38% target coverage (time-average) was required to achieve significant body weight gain in monkeys. Based on the scaling of the TMDD model from monkeys to humans and assuming similar relationship between the target coverage and pharmacological activity between monkey and humans, subcutaneous (SC) doses of 1 and 15 mg/kg in humans were projected to be the minimally and the fully pharmacologically active doses, respectively. Based on the minimal anticipated biological effect level (MABEL) approach for starting dose selection, the dose of 0.05 mg/kg (3 mg for a 60 kg human) SC was recommended as the starting dose for FIH trials, because at this dose level < 10% target coverage was projected at Cmax (and all other time points). This study illustrates a rational mechanistic approach for the selection of FIH dose range for a therapeutic protein with a complex model of action.
    mAbs 03/2013; 5(3). · 5.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the conversion of inactive glucocorticoid cortisone to its active form, cortisol. The glucocorticoid receptor (GR) signaling pathway has been linked to the pathophysiology of diabetes and metabolic syndrome. Herein, the structure-activity relationship of a series of piperazine sulfonamide-based 11β-HSD1 inhibitors is described. (R)-3,3,3-Trifluoro-2-(5-(((R)-4-(4-fluoro-2-(trifluoromethyl)phenyl)-2-methylpiperazin-1-yl)sulfonyl)thiophen-2-yl)-2-hydroxypropanamide 18a (HSD-621) was identified as a potent and selective 11β-HSD1 inhibitor and was ultimately selected as a clinical development candidate. HSD-621 has an attractive overall pharmaceutical profile and demonstrates good oral bioavailability in mouse, rat, and dog. When orally dosed in C57/BL6 diet-induced obesity (DIO) mice, HSD-621 was efficacious and showed a significant reduction in both fed and fasting glucose and insulin levels. Furthermore, HSD-621 was well tolerated in drug safety assessment studies.
    ACS Medicinal Chemistry Letters 01/2013; 4(1):118-23. · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Strong genetic data link the Tyrosine kinase receptor B (TrkB) and its major endogenous ligand brain-derived neurotrophic factor (BDNF) to the regulation of energy homeostasis, with loss-of-function mutations in either gene causing severe obesity in both mice and humans. It has previously been reported that peripheral administration of the endogenous TrkB agonist ligand neurotrophin-4 (NT-4) profoundly decreases food intake and body weight in rodents, while paradoxically increasing these same parameters in monkeys. We generated a humanized TrkB agonist antibody, TAM-163, and characterized its therapeutic potential in several models of type 2 diabetes and obesity. In vitro, TAM-163 bound to human and rodent TrkB with high affinity, activated all aspects of the TrkB signaling cascade and induced TrkB internalization and degradation in a manner similar to BDNF. In vivo, peripheral administration of TAM-163 decreased food intake and/or body weight in mice, rats, hamsters, and dogs, but increased food intake and body weight in monkeys. The magnitude of weight change was similar in rodents and non-human primates, occurred at doses where there was no appreciable penetration into deep structures of the brain, and could not be explained by differences in exposures between species. Rather, peripherally administered TAM-163 localized to areas in the hypothalamus and the brain stem located outside the blood-brain barrier in a similar manner between rodents and non-human primates, suggesting differences in neuroanatomy across species. Our data demonstrate that a TrkB agonist antibody, administered peripherally, causes species-dependent effects on body weight similar to the endogenous TrkB ligand NT-4. The possible clinical utility of TrkB agonism in treating weight regulatory disorder, such as obesity or cachexia, will require evaluation in man.
    PLoS ONE 01/2013; 8(5):e62616. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coiled-coil domain containing 80 (Ccdc80) is a secreted protein highly enriched in mouse and human white adipose tissue (WAT) that plays an important role during adipocyte differentiation in vitro. To investigate the physiological function of Ccdc80 in energy and glucose homeostasis, we generated mice in which the gene encoding Ccdc80 was disrupted. Mice lacking Ccdc80 showed increased sensitivity to diet-induced hyperglycemia and glucose intolerance while displaying reduced glucose-stimulated insulin secretion in vivo. Gene expression analysis by microarray revealed that only 10 transcripts were simultaneously altered in pancreas, skeletal muscle, and WAT from Ccdc80(-/-) mice, including some components of the circadian clock. Expression of the core clock member Arntl/Bmal1 was reduced whereas that of the oscillating transcription factors Dbp and Tef was increased in all tissues examined. Furthermore, knockdown of Ccdc80 in 3T3-L1 cells led to an increase of Dbp mRNA levels during adipocyte differentiation, suggesting that Ccdc80 might be involved in the regulation of this gene in a cell-autonomous manner. Importantly, transcriptional alterations in Ccdc80(-/-) mice were associated with changes in feeding behavior, increased caloric intake, decreased energy expenditure, and obesity. Taken together, our results suggest that Ccdc80 is a novel modulator of glucose and energy homeostasis during diet-induced obesity.
    Endocrinology 06/2012; 153(9):4290-303. · 4.72 Impact Factor
  • Journal of Bioequivalence & Bioavailability 06/2012; 4(6):69-77.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is one of two known DGAT enzymes that catalyze the final step in triglyceride synthesis. Findings from genetically modified mice as well as pharmacological studies suggest that inhibition of DGAT1 is a promising strategy for the treatment of obesity and type 2 diabetes. Here we characterize a tool DGAT1 inhibitor compound, T863. We found that T863 is a potent inhibitor for both human and mouse DGAT1 in vitro, which acts on the acyl-CoA binding site of DGAT1 and inhibits DGAT1-mediated triacylglycerol formation in cells. In an acute lipid challenge model, oral administration of T863 significantly delayed fat absorption and resulted in lipid accumulation in the distal small intestine of mice, mimicking the effects of genetic ablation of DGAT1. In diet-induced obese mice, oral administration of T863 for 2 weeks caused weight loss, reduction in serum and liver triglycerides, and improved insulin sensitivity. In addition to the expected triglyceride-lowering activity, T863 also lowered serum cholesterol. Hepatic IRS2 protein was dramatically up-regulated in mice treated with T863, possibly contributing to improved insulin sensitivity. In differentiated 3T3-L1 adipocytes, T863 enhanced insulin-stimulated glucose uptake, suggesting a possible role for adipocytes to improve insulin sensitivity upon DGAT1 inhibition. These results reveal novel mechanistic insights into the insulin-sensitizing effects of DGAT1 inhibition in mouse models. Taken together, our study provides a comprehensive evaluation of a small molecule inhibitor for DGAT1 and suggests that pharmacological inhibition of DGAT1 holds promise in treating diverse metabolic disorders.
    Journal of Biological Chemistry 12/2011; 286(48):41838-51. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is one of two known DGAT enzymes that catalyze the final step in triglyceride synthesis. Findings from genetically modified mice as well as pharmacological studies suggest that inhibition of DGAT1 is a promising strategy for the treatment of obesity and type 2 diabetes. Here we characterize a tool DGAT1 inhibitor compound, T863. We found that T863 is a potent inhibitor for both human and mouse DGAT1 in vitro, which acts on the acyl-CoA binding site of DGAT1, and inhibits DGAT1-mediated triacylglycerol formation in cells. In an acute lipid challenge model, oral administration of T863 significantly delayed fat absorption and resulted in lipid accumulation in the distal small intestine of mice, mimicking the effects of genetic ablation of DGAT1. In diet-induced obese mice, oral administration of T863 for two weeks caused weight loss, reduction in serum and liver triglycerides, and improved insulin sensitivity. In addition to the expected triglyceride-lowering activity, T863 also lowered serum cholesterol. Hepatic IRS2 protein was dramatically upregulated in mice treated with T863, possibly contributing to improved insulin sensitivity. In differentiated 3T3-L1 adipocytes, T863 enhanced insulin-stimulated glucose uptake, suggesting a possible role for adipocytes to improve insulin sensitivity upon DGAT1 inhibition. These results reveal novel mechanistic insights into the insulin-sensitizing effects of DGAT1 inhibition in mouse models. Taken together, our study provides a comprehensive evaluation of a small molecule inhibitor for DGAT1 and suggests that pharmacological inhibition of DGAT1 holds promise in treating diverse metabolic disorders.
    Journal of Biological Chemistry 10/2011; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisome proliferator activated receptors (PPARs) are nuclear receptors involved in glucose and lipid metabolism. Three isoforms of PPARs have been identified with different tissue distribution and biological functions. Although the pharmacology of each receptor is well studied, the physiological effect of simultaneous activation of PPARalpha, gamma and delta is only starting to emerge. We sought to determine the biological effects of a novel PPAR pan activator and elucidate the physiological mechanisms involved. Ob/ob, diet-induced obese (DIO) or PPARalpha knockout mice were administered a novel agonist that activates all PPARs to various degrees to determine the effect on body weight, body composition, food intake and energy expenditure. In addition, serum parameters including glucose, insulin, triglycerides and ketone bodies as well as tissue acylcarnitine were evaluated. The effect of the novel agonist on liver and skeletal muscle histopathology was also studied. We report that simultaneous activation of all PPARs resulted in substantial weight loss in ob/ob and DIO mice. Consistent with known PPAR pharmacology, we observed that agonist treatment increased lipid oxidation, although appetite suppression was mainly responsible for the weight loss. Agonist-induced weight loss was completely absent in PPARalpha knockout mice suggesting that PPARalpha pharmacology was the major contributor to weight regulation in mice. Our work provides evidence that simultaneous activation of PPARalpha, gamma and delta decreases body weight by regulating appetite. These effects of the pan agonist were completely absent in PPARalpha knockout mice, suggesting that PPARalpha pharmacology was the major contributor to weight loss.
    Diabetes Obesity and Metabolism 03/2010; 12(3):234-45. · 5.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cortisol and the glucocorticoid receptor signaling pathway have been implicated in the development of diabetes and obesity. The reduction of cortisone to cortisol is catalyzed by 11beta-hydroxysteroid dehydrogenase type I (11beta-HSD1). 2,4-Disubsituted benzenesulfonamides were identified as potent inhibitors of both the human and mouse enzymes. The lead compounds displayed good pharmacokinetics and ex vivo inhibition of the target in mice. Cocrystal structures of compounds 1 and 20 bound to human 11beta-HSD1 were obtained. Compound 20 was found to achieve high concentrations in target tissues, resulting in 95% inhibition in the ex vivo assay when dosed with a food mix (0.5 mg of drug per g of food) after 4 days. Compound 20 was efficacious in a mouse diet-induced obesity model and significantly reduced fed glucose and fasted insulin levels. Our findings suggest that 11beta-HSD1 inhibition may be a valid target for the treatment of diabetes.
    Journal of Medicinal Chemistry 09/2009; 52(17):5449-61. · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GPR39 is a G protein-coupled receptor expressed in liver, gastrointestinal tract, adipose tissue, and pancreas. We have recently shown that young GPR39(-/-) mice have normal body weight, food intake, and fasting glucose and insulin levels. In this study, we examined the role of GPR39 in aging and diet-induced obese mice. Body weight and food intake were similar in wild-type and GPR39(-/-) mice as they aged from 12 to 52 wk or when fed a low-fat/high-sucrose or high-fat/high-sucrose diet. Fifty-two-week-old GPR39(-/-) mice showed a trend toward decreased insulin levels after oral glucose challenge. When fed either a low-fat/high-sucrose or high-fat/high-sucrose diet, GPR39(-/-) mice had increased fed glucose levels and showed decreased serum insulin levels during an oral glucose tolerance test in the face of unchanged insulin tolerance. Pancreas morphology and glucose-stimulated insulin secretion in isolated islets from wild-type and GPR39(-/-) mice were comparable, suggesting that GPR39 is not required for pancreas development or ex vivo insulin secretion. Small interfering RNA-mediated knockdown of GPR39 in clonal NIT-1 beta-cells revealed that GPR39 regulates the expression of insulin receptor substrate-2 and pancreatic and duodenal homeobox-1 in a cell-autonomous manner; insulin receptor substrate-2 mRNA was also significantly decreased in the pancreas of GPR39(-/-) mice. Taken together, our data indicate that GPR39 is required for the increased insulin secretion in vivo under conditions of increased demand, i.e. on development of age-dependent and diet-induced insulin resistance. Thus, GPR39 agonists may have potential for the treatment of type 2 diabetes.
    Endocrinology 03/2009; 150(6):2586-95. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a search for more effective anti-diabetic treatment, we used a process coupling low-affinity biochemical screening with high-throughput co-crystallography in the design of a series of compounds that selectively modulate the activities of all three peroxisome proliferator-activated receptors (PPARs), PPARalpha, PPARgamma, and PPARdelta. Transcriptional transactivation assays were used to select compounds from this chemical series with a bias toward partial agonism toward PPARgamma, to circumvent the clinically observed side effects of full PPARgamma agonists. Co-crystallographic characterization of the lead molecule, indeglitazar, in complex with each of the 3 PPARs revealed the structural basis for its PPAR pan-activity and its partial agonistic response toward PPARgamma. Compared with full PPARgamma-agonists, indeglitazar is less potent in promoting adipocyte differentiation and only partially effective in stimulating adiponectin gene expression. Evaluation of the compound in vivo confirmed the reduced adiponectin response in animal models of obesity and diabetes while revealing strong beneficial effects on glucose, triglycerides, cholesterol, body weight, and other metabolic parameters. Indeglitazar has now progressed to Phase II clinical evaluations for Type 2 diabetes mellitus (T2DM).
    Proceedings of the National Academy of Sciences 01/2009; 106(1):262-7. · 9.81 Impact Factor
  • Source
    Mylène Perreault, David V Erbe, James F Tobin
    [Show abstract] [Hide abstract]
    ABSTRACT: The prevalence of obesity in the USA and worldwide has reached epidemic proportions during the last two decades. Drugs currently available for the treatment of obesity provide no more than 5% placebo-adjusted weight loss and are associated with undesirable side effects. Peroxisome proliferator-activated receptor (PPAR) modulators offer potential benefits for the treatment of obesity and its associated complications but their development has been complicated by biological, technical, and regulatory challenges. Despite significant challenges, PPAR modulators are attractive targets for the treatment of obesity and could offer a viable alternative to the millions of patients who fail to lose weight following rigorous dieting and exercise protocols. In addition, PPAR modulators have the potential-added benefit of ameliorating the associated comorbidities.
    PPAR Research 02/2008; 2008:125387. · 2.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been recently proposed that obestatin, a peptide encoded by the ghrelin gene, reduces food intake by activating the orphan G protein-coupled receptor GPR39. To gain further insights into the role of GPR39 in body weight homeostasis, we characterized the phenotype of mice with targeted disruption of the GPR39 gene. Body weight, adiposity, and food intake were found to be similar between GPR39(+/+) and GPR39(-/-) mice. Furthermore, fasting glucose and insulin levels were similar between both genotypes. Injection of obestatin peptide (1 micromol/kg, ip) obtained from multiple sources did not consistently inhibit food intake in wild-type mice after an overnight fast, and no difference in food intake was observed between wild-type and GPR39 knockout mice after injection of the peptide. Finally, ectopic expression of GPR39 in HEK293T cells revealed a constitutive activation of the receptor that was unaffected by stimulation with obestatin. Our phenotypic characterization suggests that GPR39 is not a major modulator of food intake in mice, although a more subtle role cannot be excluded. The role of GPR39 in normal physiology requires further study and should be conducted independently of the function of obestatin.
    Endocrinology 03/2007; 148(2):501-6. · 4.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Elevated blood pressure and insulin resistance are strongly associated in patients. We explored the potential for the anti-hypertensive angiotensin II type 1-receptor (ATR(1)) antagonists to improve insulin sensitivity through modulation of the nuclear receptor PPARgamma, in vitro and in vivo compared to the potent insulin sensitizer, rosiglitazone. PPARgamma modulation by ATR(1) antagonists was measured first by direct recruitment of PGC-1, followed by trans-activation reporter assays in cells, and promotion of adipogenesis in fibroblast and pre-adipocyte cell lines. Improvement of insulin sensitivity was measured as changes in levels of glucose, insulin, and adiponectin in ob/ob mice. Telmisartan, candesartan, irbesartan, and losartan (but not valsartan or olmesartan) each served as bona fide PPARgamma ligands in vitro, with EC(50) values between 3 and 5 micro mol/l. However, only telmisartan, and to a lesser extent candesartan, resulted in significant PPARgamma agonism in cells. In vivo, although rosiglitazone significantly lowered both glucose (33%, p<0.01) and insulin (61%, p<0.01) levels and increased expression of adiponectin (74%, p<0.001), sartan treatment had no effect. Many members of the sartan family of ATR(1) antagonists are PPARgamma ligands in cell-free assays but their modulation of PPARgamma in cells is relatively weak. Furthermore, none appear to improve insulin sensitivity in a rodent model under conditions where other insulin sensitizers, including rosiglitazone, do. These results question whether reported effects of sartans on insulin sensitivity may be through other means, and should guide further efforts to develop dual agents to treat hypertension and insulin resistance.
    Vascular Pharmacology 10/2006; 45(3):154-62. · 3.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The physiological links between abnormalities in glucose regulation and blood pressure provide novel means to treat patients with the Metabolic Syndrome. In fact, recent data indicate that ATR1 antagonists may also improve insulin resistance. We explored one proposed explanation for these effects, namely activation of the PPAR nuclear hormone receptor. These studies should guide further efforts to develop agents to treat hypertension and insulin resistance. Drug Dev. Res. 67:579–581, 2006. © 2006 Wiley-Liss, Inc.
    Drug Development Research 06/2006; 67(7):579 - 581. · 0.87 Impact Factor

Publication Stats

236 Citations
67.46 Total Impact Points

Institutions

  • 2012
    • Pfizer Inc.
      New York City, New York, United States
  • 2011
    • Novartis
      Bâle, Basel-City, Switzerland
  • 2009
    • Plexxicon
      Berkeley, California, United States