Saula Checquolo

Sapienza University of Rome, Roma, Latium, Italy

Are you Saula Checquolo?

Claim your profile

Publications (16)105.8 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Notch signaling plays a complex role in carcinogenesis, and its signaling pathway has both tumor-suppressor and oncogenic components. In this study we investigated the effects of reactive oxygen species (ROS) on Notch1 signaling outcome in keratinocyte biology. We demonstrate that Notch1 function contributes to the arsenic-induced keratinocyte transformation. We found that acute exposure to arsenite increases oxidative stress and inhibits proliferation of keratinocyte cells by upregulation of p21(waf1/Cip1). The necessity of p21(waf1/Cip1) for arsenite-induced cell death was demonstrated by targeted downregulation of p21(waf1/Cip1) by using RNA interference. We further demonstrated that on acute exposure to arsenite, p21(waf1/Cip1) is upregulated and Notch1 downmodulated, whereas on chronic exposure to arsenite, malignant progression of arsenite-treated keratinocytes cells was accompanied by regained expression and activity of Notch1. Notch1 activity in arsenite-transformed keratinocytes inhibits arsenite-induced upregulation of p21(waf1/Cip1) by sustaining c-myc expression. We further demonstrated that c-myc collaborates with Nrf2, a key regulator for the maintenance of redox homeostasis, to promote metabolic activities that support cell proliferation and cytoprotection. Therefore, Notch1-mediated repression of p21(waf1/Cip1) expression results in the inhibition of cell death and keratinocytes transformation. Our results not only demonstrate that sustained Notch1 expression is at least one key event implicated in the arsenite human skin carcinogenic effect, but also may provide mechanistic insights into the molecular aspects that determine whether Notch signaling will be either oncogenic or tumor suppressive.
    Cell cycle (Georgetown, Tex.) 05/2014; 13(13). · 5.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Notch signaling deregulation is linked to the onset of several tumors including T cell acute lymphoblastic leukemia (T-ALL). Deregulated microRNA (miRNA) expression is also associated to several cancers, including leukemias. However, the transcriptional regulators of miRNAs as well as the relationships between Notch signaling and miRNA deregulation are poorly understood. In order to identify miRNAs regulated by Notch pathway, we performed microarray-based miRNA profiling of several Notch-expressing T-ALL models. Among 7 miRNAs, consistently regulated by overexpressing or silencing Notch3, we focused our attention on miR-223, whose putative promoter analysis revealed a conserved RBPjk binding site, which was nested to a NF-kB consensus. Luciferase and ChIP-assays on the promoter region of miR-223 show that both Notch and NF-kB are novel co-regulatory signals of miR-223 expression, being able to cooperatively activate the transcriptional activity of miR-223 promoter. Notably, the Notch-mediated activation of miR-223 represses the tumor suppressor FBXW7 in T-ALL cell lines. Moreover, we observed the inverse correlation of miR-223 and FBXW7 expression in a panel of T-ALL patient-derived xenografts. Finally, we show that miR-223 inhibition prevents T-ALL resistance to GSI-treatment, suggesting that miR-223 could be involved in GSI-sensitivity and its inhibition may be exploited in target therapy protocols.Leukemia accepted article peview online, 14 April 2014. doi:10.1038/leu.2014.133.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 04/2014; · 10.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Notch receptors have attracted considerable attention for their ability to control cellular functions that regulate embryo development and tissue homeostasis. Notch receptors act by controlling the expression of a specific set of target genes. If Notch signaling system can be so simple, and yet so complex in its pleiotropic effects, then a sophisticated network of regulatory mechanisms is required to maintain the control over the initiation, activity and termination of this signaling pathway. A multitude of regulatory mechanisms has been discovered that controls the interaction of Notch receptors with their ligands, the assembling of a Notch transcriptional activation complex and the termination of Notch signals. The intracellular and extracellular domains of the Notch receptors are synthesized as single proteins, pairing with each other during their trafficking through the exocytotic route. The mechanisms operating in the phase preceding the generation of the heterodimeric signal-competent Notch receptors can be as elaborate and physiologically important as those operating downstream of Notch receptor activation. These regulatory mechanisms, which are essential to understand the role of Notch signaling in human physiology and pathology are reviewed here.
    Current Molecular Medicine 11/2013; · 4.20 Impact Factor
  • Source
  • Source
  • Source
    British Journal of Haematology 07/2012; 159(1):115-9. · 4.94 Impact Factor
  • Source
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 07/2012; · 10.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Post-translational modifications of Notch3 and their functional role with respect to Notch3 overexpression in T-cell leukemia are still poorly understood. We identify here a specific novel property of Notch3 that is acetylated and deacetylated at lysines 1692 and 1731 by p300 and HDAC1, respectively, a balance impaired by HDAC inhibitors (HDACi) that favor hyperacetylation. By using HDACi and a non-acetylatable Notch3 mutant carrying K/R(1692-1731) mutations in the intracellular domain, we show that Notch3 acetylation primes ubiquitination and proteasomal-mediated degradation of the protein. As a consequence, Notch3 protein expression and its transcriptional activity are decreased both in vitro and in vivo in Notch3 transgenic (tg) mice, thus impairing downstream signaling upon target genes. Consistently, Notch3-induced T-cell proliferation is inhibited by HDACi, whereas it is enhanced by the non-acetylatable Notch3-K/R(1692-1731) mutant. Finally, HDACi-induced Notch3 hyperacetylation prevents in vivo growth of T-cell leukemia/lymphoma in Notch3 tg mice. Together, our findings suggest a novel level of Notch signaling control in which Notch3 acetylation/deacetylation process represents a key regulatory switch, thus representing a suitable druggable target for Notch3-sustained T-cell acute lymphoblastic leukemia therapy.
    Oncogene 11/2011; 31(33):3807-17. · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies.
    The American Journal of Human Genetics 08/2010; 87(2):250-7. · 11.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Notch3 and pTalpha signaling events are essential for T-cell leukemogenesis and characterize murine and human T-cell acute lymphoblastic leukemia. Genetic ablation of pTalpha expression in Notch3 transgenic mice abrogates tumor development, indicating that pTalpha signaling is crucial to the Notch3-mediated leukemogenesis. Here we report a novel direct interaction between Notch3 and pTalpha. This interaction leads to the recruitment and persistence of the E3 ligase protein c-Cbl to the lipid rafts in Notch3-IC transgenic thymocytes. Conversely, deletion of pTalpha in Notch3 transgenic mice leads to cytoplasmic retention of c-Cbl that targets Notch3 protein to the proteasomal-degradative pathway. It appears that protein kinase C theta (PKCtheta), by regulating tyrosine and serine phosphorylation of Cbl, is able to control its function. We report here that the increased Notch3-IC degradation correlates with higher levels of c-Cbl tyrosine phosphorylation in Notch3-IC/pTalpha(-/-) double-mutant thymocytes, which also display a decreased PKCtheta activity. Our data indicate that pTalpha/pre-T-cell receptor is able to regulate the different subcellular localization of c-Cbl and, by regulating PKCtheta activity, is also able to influence its ubiquitin ligase activity upon Notch3 protein.
    Oncogene 12/2009; 29(10):1463-74. · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dysregulated generation and/or function of naturally occurring 'CD4(+)CD25(+) regulatory T cells' (T(reg)s) play key role in the development of autoimmune diseases, including type 1 diabetes. Recent findings suggest that Notch3 signaling activation promotes thymic generation and peripheral expansion and in vivo function of naturally occurring T(reg)s, thus preventing autoimmune diabetes progression in mouse models. However, the mechanisms underlying these effects have remained elusive, thus far. Here, we show that the expression of pTalpha gene is up-regulated in naturally occurring T(reg)s, at both mRNA and protein levels. Moreover, by using double mutant mice, with T cell-targeted constitutive activation of Notch3 in a pTalpha(-/-) background, we demonstrate that pTalpha deletion significantly counteracts the Notch3-dependent expansion, the increased FoxP3 expression and the enhanced in vitro activity of naturally occurring T(reg)s. Notably, the absence of pTalpha also impairs the Notch3-dependent protection against experimentally induced autoimmune diabetes. Finally, by adoptive cell transfer experiments, we demonstrated that this failure is directly related to the impaired in vivo function of naturally occurring T(reg)s bearing pTalpha deletion. Collectively, our data suggest that pTalpha expression is required for the in vivo function of naturally occurring T(reg)s and that the activation of Notch3 signaling may positively regulate the function of this population, through the pTalpha/pre-T cell receptor pathway.
    International Immunology 06/2009; 21(6):727-43. · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Notch3 gene was identified, at the beginning of 90s, as the third mammalian Notch and was initially reported as being expressed in proliferating neuroepithelium. Since then, increasing evidence has demonstrated a number of structural and functional differences between Notch3 and both Notch1 and Notch2, which exhibit the highest structural similarity among the four mammalian Notch receptors. Possibly due to its more restricted tissue distribution, targeted deletion of murine Notch3 does not lead to embryonic lethality as is observed with targeted deletion of Notch1 and Notch2. However, genetic mutation, amplification and deregulated expression of Notch3 have been correlated with the disruption of cell differentiation in transgenic mice and to development of diseases in mice and humans. This review discusses the possible relationships between the structural differences and the nonredundant roles that Notch3 plays in the pathogenesis of the human disease cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy and in the regulation of murine T-cell differentiation and leukemogenesis.
    Oncogene 10/2008; 27(38):5092-8. · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase (PK)C theta is a critical regulator of mature T-cell activation and proliferation, being implicated in TCR-triggered nuclear factor (NF)-kappa B activation and providing important survival signals to leukemic T cells. We previously showed that overexpression of pT alpha/pre-TCR and constitutive activation of NF-kappa B characterize the T-cell leukemia/lymphoma developing in Notch3-IC transgenic mice. We report here that PKC theta is a downstream target of Notch3 signaling and that its activation and membrane translocation require a functional pre-TCR in order to trigger NF-kappa B activation in thymocytes and lymphoma cells of transgenic mice. Furthermore, deletion of PKC theta in Notch3-IC transgenic mice reduces the incidence of leukemia, correlating with decreased NF-kappa B activation. This paper therefore suggests that PKC theta mediates the activation of NF-kappa B by pre-TCR in immature thymocytes and contributes to the development of Notch3-dependent T-cell lymphoma.
    Oncogene 03/2005; 24(6):992-1000. · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Notch and basic helix-loop-helix E2A pathways specify cell fate and regulate neoplastic transformation in a variety of cell types. Whereas Notch enhances tumorigenesis, E2A suppresses it. However, whether and how Notch and E2A interact functionally in an integrative mechanism for regulating neoplastic transformation remains to be understood. It has been shown that Notch3-induced T-cell leukaemia is abrogated by the inactivation of pTalpha/pre-T-cell antigen receptor (pre-TCR). We report here that Notch3-induced transcriptional activation of pTalpha/pre-TCR is responsible for the downregulation of E2A DNA binding and transcriptional activity. Further, the E2A messenger RNA and protein levels remain unaltered but the E2A inhibitor Id1 expression is augmented in thymocytes and T lymphoma cells derived from Notch3 transgenic mice. The increase in Id1 expression is achieved by pre-TCR-induced extracellular-signalling-regulated kinase 1/2. These observations support a model in which the upregulation of pre-TCR signalling seems to be the prerequi-site for Notch3-induced inhibition of E2A, thus leading to the development of lymphoma in Notch3 transgenic mice.
    EMBO Reports 12/2003; 4(11):1067-72. · 7.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thymic-derived dysregulated tolerance has been suggested to occur in type 1 diabetes via impaired generation of CD4(+)CD25(+) T regulatory cells, leading to autoimmune beta cell destruction. In this study, we demonstrate that Notch3 expression is a characteristic feature of CD4(+)CD25(+) cells. Furthermore, streptozotocin-induced autoimmune diabetes fails to develop in transgenic mice carrying the constitutively active intracellular domain of Notch3 in thymocytes and T cells. The failure to develop the disease is associated with an increase of CD4(+)CD25(+) T regulatory cells, accumulating in lymphoid organs, in pancreas infiltrates and paralleled by increased expression of IL-4 and IL-10. Accordingly, CD4(+) T cells from Notch3-transgenic mice inhibit the development of hyperglycemia and insulitis when injected into streptozotocin-treated wild-type mice and display in vitro suppressive activity. These observations, therefore, suggest that Notch3-mediated events regulate the expansion and function of T regulatory cells, leading to protection from experimental autoimmune diabetes and identify the Notch pathway as a potential target for therapeutic intervention in type 1 diabetes.
    The Journal of Immunology 11/2003; 171(9):4504-11. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Notch receptors are conserved regulators of cell fate and have been implicated in the regulation of T cell differentiation and lymphomagenesis. However, neither the generality of Notch involvement in leukemia, nor the molecules with which Notch may interact have been clarified. Recently, we showed that transgenic mice expressing the constitutively active intracellular domain of Notch3 in thymocytes and T cells developed early and aggressive T cell neoplasias. Although primarily splenic, the tumors sustained features of immature thymocytes, including expression of pTalpha, a defining component of the pre T cell receptor, known to be a potent signaling complex provoking thymocyte survival, proliferation, and activation. Thus, enforced expression of Notch3, which is ordinarily down-regulated as thymocytes mature, may sustain pre T cell receptor expression, causing dysregulated hyperplasia. This hypothesis has been successfully tested in this article by the observation that deletion of pTalpha in Notch3 transgenic mice abrogates tumor development, indicating a crucial role for pTalpha in T cell leukemogenesis. Parallel observations were made in humans, in that all T cell acute lymphoblastic leukemias examined showed expression of Notch3 and of the Notch target gene HES-1, as well as of pTalpha a and b transcripts, whereas the expression of all these genes was dramatically reduced or absent in remission. Together, these results suggest that the combined expression of Notch3 and pTalpha sustains T cell leukemogenesis and may represent pathognomonic molecular features of human T-ALL.
    Proceedings of the National Academy of Sciences 04/2002; 99(6):3788-93. · 9.81 Impact Factor