Miguel A Perez-Pinzon

University of Miami Miller School of Medicine, Miami, Florida, United States

Are you Miguel A Perez-Pinzon?

Claim your profile

Publications (126)428.59 Total impact

  • Ashish K Rehni, Neha Nautiyal, Miguel A Perez-Pinzon, Kunjan R Dave
    [Show abstract] [Hide abstract]
    ABSTRACT: Enhancement of ischemic brain damage is one of the most serious complications of diabetes. Studies from various in vivo and in vitro models of cerebral ischemia have led to an understanding of the role of mitochondria and complex interrelated mitochondrial biochemical pathways leading to the aggravation of ischemic neuronal damage. Advancements in the elucidation of the mechanisms of ischemic brain damage in diabetic subjects have revealed a number of key mitochondrial targets that have been hypothesized to participate in enhancement of brain damage. The present review initially discusses the neurobiology of ischemic neuronal injury, with special emphasis on the central role of mitochondria in mediating its pathogenesis and therapeutic targets. Later it further details the potential role of various biochemical mediators and second messengers causing widespread ischemic brain damage among diabetics via mitochondrial pathways. The present review discusses preclinical data which validates the significance of mitochondrial mechanisms in mediating the aggravation of ischemic cerebral injury in diabetes. Exploitation of these targets may provide effective therapeutic agents for the management of diabetes-related aggravation of ischemic neuronal damage.
    Metabolic Brain Disease 04/2014; · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Preserving mitochondrial pools of nicotinamide adenine dinucleotide (NAD) or nicotinamide phosphoribosyltransferase (Nampt), an enzyme involved in NAD production, maintains mitochondrial function and confers neuroprotection after ischemic stress. However, the mechanisms involved in regulating mitochondrial-localized Nampt or NAD have not been defined. In this study, we investigated the roles of protein kinase C epsilon (PKCɛ) and AMP-activated protein kinase (AMPK) in regulating mitochondrial pools of Nampt and NAD after resveratrol or ischemic preconditioning (IPC) in the cortex and in primary neuronal-glial cortical cultures. Using the specific PKCɛ agonist ψɛRACK, we found that PKCɛ induced robust activation of AMPK in vitro and in vivo and that AMPK was required for PKCɛ-mediated ischemic neuroprotection. In purified mitochondrial fractions, PKCɛ enhanced Nampt levels in an AMPK-dependent manner and was required for increased mitochondrial Nampt after IPC or resveratrol treatment. Analysis of intrinsic NAD autofluorescence using two-photon microscopy revealed that PKCɛ modulated NAD in the mitochondrial fraction. Further assessments of mitochondrial NAD concentrations showed that PKCɛ has a key role in regulating the mitochondrial NAD(+)/nicotinamide adenine dinucleotide reduced (NADH) ratio after IPC and resveratrol treatment in an AMPK- and Nampt-dependent manner. These findings indicate that PKCɛ is critical to increase or maintain mitochondrial Nampt and NAD after pathways of ischemic neuroprotection in the brain.Journal of Cerebral Blood Flow & Metabolism advance online publication, 26 March 2014; doi:10.1038/jcbfm.2014.51.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 03/2014; · 5.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ischemic preconditioning is emerging as an innovative and novel cytoprotective strategy to counter ischemic vascular disease. At the root of the preconditioning response is the upregulation of endogenous defense systems to achieve ischemic tolerance. Identifying suitable biomarkers to show that a preconditioning response has been induced remains a translational research priority. Preconditioning leads to a widespread genomic and proteonomic response with important effects on hemostatic, endothelial, and inflammatory systems. The present article summarizes the relevant preclinical studies defining the mechanisms of preconditioning, reviews how the human preconditioning response has been investigated, and which of these bioresponses could serve as a suitable biomarker. Human preconditioning studies have investigated the effects of preconditioning on coagulation, endothelial factors, and inflammatory mediators as well as on genetic expression and tissue blood flow imaging. A biomarker for preconditioning would significantly contribute to define the optimal preconditioning stimulus and the extent to which such a response can be elicited in humans and greatly aid in dose selection in the design of phase II trials. Given the manifold biologic effects of preconditioning a panel of multiple serum biomarkers or genomic assessments of upstream regulators may most accurately reflect the full spectrum of a preconditioning response.Journal of Cerebral Blood Flow & Metabolism advance online publication, 19 March 2014; doi:10.1038/jcbfm.2014.42.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 03/2014; · 5.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously showed that inhibition of protein kinase C delta (PKCδ) improves brain perfusion 24 hours after asphyxial cardiac arrest (ACA) and confers neuroprotection in the cortex and CA1 region of the hippocampus 7 days after arrest. Therefore, in this study, we investigate the mechanism of action of PKCδ-mediated hypoperfusion after ACA in the rat by using the two-photon laser scanning microscopy (TPLSM) to observe cortical cerebral blood flow (CBF) and laser Doppler flowmetry (LDF) detecting regional CBF in the presence/absence of δV1-1 (specific PKCδ inhibitor), nitric oxide synthase (NOS) substrate (L-arginine, L-arg) and inhibitor (N(ω)-Nitro-L-arginine, NLA), and nitric oxide (NO) donor (sodium nitroprusside, SNP). There was an increase in regional LDF and local (TPLSM) CBF in the presence of δV1-1+L-arg, but only an increase in regional CBF under δV1-1+SNP treatments. Systemic blood nitrite levels were measured 15 minutes and 24 hours after ACA. Nitrite levels were enhanced by pretreatment with δV1-1 30 minutes before ACA possibly attributable to enhanced endothelial NOS protein levels. Our results suggest that PKCδ can modulate NO machinery in cerebral vasculature. Protein kinase C delta can depress endothelial NOS blunting CBF resulting in hypoperfusion, but can be reversed with δV1-1 improving brain perfusion, thus providing subsequent neuroprotection after ACA.Journal of Cerebral Blood Flow & Metabolism advance online publication, 22 January 2014; doi:10.1038/jcbfm.2013.232.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 01/2014; · 5.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although outcome after stroke treatment has significantly improved over the last 30 years, there has been no revolutionary breakthrough. Among different combined approaches, systemic thrombolysis in combination with neuroprotection became a favorite research target. Recent studies suggest that transient ischemic attacks may represent a clinical model of such ischemic tolerance; thus, a new focus on this research has emerged. In this review, we show the parallels between ischemia and neuroprotection and discuss the potential therapeutic options that may be opened by this new molecular knowledge.
    Expert Review of Cardiovascular Therapy 01/2014; 7(10).
  • Source
    Jan F Cornelius, Nora Sandu, Miguel A Perez-Pinzon, Bernhard Schaller
    Expert Review of Cardiovascular Therapy 01/2014; 7(4).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intra-arterial (IA) delivery of mesenchymal stem cells (MSCs) for acute ischemic stroke is attractive for clinical translation. However, studies using rat model of stroke have demonstrated that IA MSCs delivery can decrease middle cerebral artery (MCA) flow, which may limit its clinical translation. The goal of this study is to identify a dose of IA MSCs (maximum tolerated dose; MTD) that does not compromise MCA flow and evaluate its efficacy and optimal timing in a rat model of reversible middle cerebral artery occlusion (rMCAo). We sought to determine if there is a difference in efficacy of acute (1 h) versus sub-acute (24 h) IA MSCs treatment after rMCAo. Adult female Sprague-Dawley rats underwent rMCAo (90 min) and an hour later a single dose of MSCs (at de-escalating doses 1×106, 5×105, 2×105, 1×105 and 5×104) was given using IA route. MSCs were suspended in phosphate buffered saline (PBS) and PBS alone was used for control experiments. We measured the percent change in mean laser Doppler flow signal over the ipsilateral MCA in de-escalating doses groups to determine MTD. The results demonstrated that the lowering of IA MSC dose to 1×105 and below did not compromise MCA flow and hence an IA MSC dose of 1×105 considered as MTD. Subsequently, 1 h and 24 h after rMCAo, rats were treated with IA MSCs or PBS. The 24 h delivery of IA MSCs significantly improved neurodeficit score and reduced the mean infarct volume at one month as compared to control, but not the 1 h delivery. Overall, this study suggests that the IA delivery of MSCs can be performed safely and efficaciously at the MTD of 1×105 delivered at 24 hours in rodent model of stroke.
    PLoS ONE 01/2014; 9(5):e93735. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is the second most frequent neurodegenerative disorder afflicting 2% of the population older than 65 years worldwide. Recently, brain organotypic slices have been used to model neurodegenerative disorders, including PD. They conserve brain three-dimensional architecture, synaptic connectivity and its microenvironment. This model has allowed researchers a simple and rapid method to observe cellular interactions and mechanisms. In the present study, we developed an organotypic PD model from rat brains that includes all the areas involved in the nigrostriatal pathway in a single slice preparation, without using neurotoxins to induce the dopaminergic lesion. The mechanical transection of the nigrostriatal pathway obtained during slice preparation induced PD-like histopathology. Progressive nigrostriatal degeneration was monitored combining innovative approaches, such as diffusion tensor magnetic resonance imaging (DT-RMI) to follow fiber degeneration and mass spectrometry to quantify striatal dopamine content, together with bright field and fluorescence microscopy imaging. A substantia nigra dopaminergic cell number decrease was observed by immunohistochemistry against rat tyrosine-hydroxylase (TH) reaching 80% after two days in culture associated with a 30% decrease of striatal TH-positive fiber density, a 15% loss of striatal dopamine content quantified by mass spectrometry and a 70% reduction of nigrostriatal fiber fractional anisotropy quantified by DT-RMI. In addition, a significant decline of medium spiny neuron density was observed from day 7 to 16. These sagittal organotypic slices could be used to study the early stage of PD, namely dopaminergic degeneration, and the late stage of the pathology with dopaminergic and GABAergic neuron loss. This novel model might improve the understanding of PD and may represent a promising tool to refine the evaluation of new therapeutic approaches.
    Neuroscience 10/2013; · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiopulmonary arrest remains one of the leading causes of death and disability in Western countries. Although ventricular fibrillation (VF) models in rodents mimic the "square wave" type of insult (rapid loss of pulse and pressure) commonly observed in adult humans at the onset of cardiac arrest (CA), they are not popular because of the complicated animal procedure, poor animal survival and thermal injury. Here we present a modified, simple, reliable, ventricular fibrillation-induced rat model of CA that will be useful in studying mechanisms of CA-induced delayed neuronal death as well as the efficacy of neuroprotective drugs. CA was induced in male Sprague Dawley rats using a modified method of von Planta et al. In brief, VF was induced in anesthetized, paralyzed, mechanically ventilated rats by an alternating current delivered to the entrance of the superior vena cava into the heart. Resuscitation was initiated by administering a bolus injection of epinephrine and sodium bicarbonate followed by mechanical ventilation and manual chest compressions and countershock with a 10-J DC current. Neurologic deficit score was higher in the CA group compared to the sham group during early reperfusion periods, suggesting brain damage. Significant damage in CA1 hippocampus (21% normal neurons compared to control animals) was observed following histopathological assessment at seven days of reperfusion. We propose that this method of VF-induced CA in rat provides a tool to study the mechanism of CA-induced neuronal death without compromising heart functions.
    Translational stroke research. 10/2013; 4(5).
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously showed that palmitic acid methyl ester (PAME) and stearic acid methyl ester (SAME) are simultaneously released from the sympathetic ganglion and PAME possesses potent vasodilatory properties which may be important in cerebral ischemia. Since PAME is a potent vasodilator simultaneously released with SAME, our hypothesis was that PAME/SAME confers neuroprotection in rat models of focal/global cerebral ischemia. We also examined the neuroprotective properties of Solutol HS15, a clinically approved excipient because it possesses similar fatty acid compositions as PAME/SAME. Asphyxial cardiac arrest (ACA, 6 min) was performed 30 min after PAME/SAME treatment (0.02 mg/kg, IV). Solutol HS15 (2 ml/kg, IP) was injected chronically for 14 days (once daily). Histopathology of hippocampal CA1 neurons was assessed 7 days after ACA. For focal ischemia experiments, PAME, SAME, or Solutol HS15 was administered following reperfusion after 2 h of middle cerebral artery occlusion (MCAO). 2,3,5-Triphenyltetrazolium staining of the brain was performed 24 h after MCAO and the infarct volume was quantified. Following ACA, the number of surviving hippocampal neurons was enhanced by PAME-treated (68 %), SAME-treated (69 %), and Solutol-treated HS15 (68 %) rats as compared to ACA only-treated groups. Infarct volume was decreased by PAME (83 %), SAME (68 %), and Solutol HS15 (78 %) as compared to saline (vehicle) in MCAO-treated animals. PAME, SAME, and Solutol HS15 provide robust neuroprotection in both paradigms of ischemia. This may prove therapeutically beneficial since Solutol HS15 is already administered as a solublizing agent to patients. With proper timing and dosage, administration of Solutol HS15 and PAME/SAME can be an effective therapy against cerebral ischemia.
    Translational Stroke Research. 08/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cell therapy is a promising treatment for neurological disorders such as cerebral ischemia, Parkinson's disease and Huntington's disease. In recent years, many clinical trials with various cell types have been performed often showing mixed results. Major problems with cell therapies are the limited cell availability and engraftment and the reduced integration of grafted cells into the host tissue. Stem cell-based therapies can provide a limitless source of cells but survival and differentiation remain a drawback. An improved understanding of the behaviour of stem cells and their interaction with the host tissue, upon implantation, is needed to maximize the therapeutic potential of stem cells in neurological disorders. Organotypic cultures made from brain slices from specific brain regions that can be kept in culture for several weeks after injecting molecules or cells represent a remarkable tool to address these issues. This model allows the researcher to monitor/assess the behaviour and responses of both the endogenous as well as the implanted cells and their interaction with the microenvironment leading to cell engraftment. Moreover, organotypic cultures could be useful to partially model the pathological state of a disease in the brain and to study graft-host interactions prior to testing such grafts for pre-clinical applications. Finally, they can be used to test the therapeutic potential of stem cells when combined with scaffolds, or other therapeutic enhancers, among other aspects, needed to develop novel successful therapeutic strategies or improve on existing ones.
    Experimental Neurology 07/2013; · 4.65 Impact Factor
  • John W Thompson, Kunjan R Dave, Juan I Young, Miguel A Perez-Pinzon
    [Show abstract] [Hide abstract]
    ABSTRACT: Ischemic preconditioning is an innate neuroprotective mechanism in which a sub-injurious ischemic exposure increases the brain's ability to withstand a subsequent, normally injurious ischemic insult. Part of ischemic preconditioning neuroprotection stems from an epigenetic reprogramming of the brain to a phenotype of ischemic tolerance, which results in a gene expression profile different from that observed in the non-injured and ischemia-injured brains. Such neuroprotective reprograming, activated by ischemic preconditioning, requires specific changes in DNA accessibility coordinated with activation of transcriptional activator and repressor proteins, which allows for expression of specific neuroprotective proteins despite a general repression of gene expression. In this review we examine the effects of injurious ischemia and ischemic preconditioning on the regulation of DNA methylation, histone post-translational modifications, and non-coding RNA expression. There is increasing interest in the role of epigenetics in disease pathobiology, and whether and how pharmacological manipulation of epigenetic processes may allow for ischemic neuroprotection. Therefore, a better understanding of the epigenomic determinants underlying the modulation of gene expression that lead to ischemic tolerance or cell death offers the promise of novel neuroprotective therapies that target global reprograming of genomic activity versus individual cellular signaling pathways.
    Journal of the American Society for Experimental NeuroTherapeutics 07/2013; · 5.38 Impact Factor
  • H W Lin, M Perez-Pinzon
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral circulation is tightly regulated by vasoactive substances. There is a delicate balance among vasoconstriction and vasodilation factors. During ischemia/stroke, cerebral blood flow autoregulation may be compromised triggering hyperemia (early phase) or hypoperfusion (late phase or post-ischemia) deranging cerebral blood flow that can lead to subsequent neuronal cell death due to blood flow abnormalities. Traditional vasoactive mediators such as nitric oxide and calcitonin gene-related peptide have been well-documented to provide vasodilation and neuroprotection in the ischemic brain. An emerging field is the identification of fatty acids (polyunsaturated or saturated) that can lead to vasodilation possibly causing neuroprotection. This review investigates fatty acids such as palmitic acid methyl esters, α-linolenic acid, and docahexaenoic acid as novel vasoactive substances that can modulate cerebral blood flow as well as offer neuroprotection after ischemia.
    CNS & neurological disorders drug targets 02/2013; · 3.57 Impact Factor
  • Source
    Sebastian Koch, Miguel A Perez-Pinzon
    Translational Stroke Research 02/2013; 4(1):1-2.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ischemic preconditioning is a neuroprotective mechanism whereby a sublethal ischemic exposure is protective against a subsequent lethal ischemic attack. We previously demonstrated that SIRT1, a nuclear localized stress-activated deacetylase, is vital for ischemic preconditioning neuroprotection. However, a recent study demonstrated that SIRT1 can also localize to the mitochondria. Mitochondrial localized SIRT1 may allow for a direct protection of mitochondria following ischemic preconditioning. The objective of this study was to determine whether ischemic preconditioning increases brain mitochondrial SIRT1 protein levels and to determine the role of PKCɛ and HSP90 in targeting SIRT1 to the mitochondria. Here we report that preconditioning rats, with 2 min of global cerebral ischemia, induces a delayed increase in non-synaptic mitochondrial SIRT1 protein levels which was not observed in synaptic mitochondria. This increase in mitochondrial SIRT1 protein was found to occur only in neuronal cells and was mediated by PKCε activation. Inhibition of HSP90, a protein chaperone involved in mitochondrial protein import, prevented preconditioning induced increases in mitochondrial SIRT1 and PKCε protein. Our work provides new insights into a possible direct role of SIRT1 in modulating mitochondrial function under both normal and stress conditions, and to a possible role of mitochondrial SIRT1 in activating preconditioning induced ischemic tolerance.
    PLoS ONE 01/2013; 8(9):e75753. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although chronic 17β-estradiol (E2) has been shown to be a cognition-preserving and neuroprotective agent in animal brain injury models, concern regarding its safety was raised by the failed translation of this phenomenon to the clinic. Previously, we demonstrated that a single bolus of E2 48 hr prior to ischemia protected the hippocampus from damage in ovariectomized rats via phosphorylation of cyclic-AMP response element binding protein, which requires activation of estrogen receptor subtype beta (ER-β). The current study tests the hypothesis that long-term periodic E2-treatment improves cognition and reduces post-ischemic hippocampal injury by means of ER-β activation. Ovariectomized rats were given ten injections of E2 at 48 hr intervals for 21 days. Hippocampal-dependent learning, memory and ischemic neuronal loss were monitored. Results demonstrated that periodic E2 treatments improved spatial learning, memory and ischemic neuronal survival in ovariectomized rats. Additionally, periodic ER-β agonist treatments every 48 hr improved post-ischemic cognition. Silencing of hippocampal ER-β attenuated E2-mediated ischemic protection suggesting that ER-β plays a key role in mediating the beneficial effects of periodic E2 treatments. This study emphasizes the need to investigate a periodic estrogen replacement regimen to reduce cognitive decline and cerebral ischemia incidents/impact in post-menopausal women.
    PLoS ONE 01/2013; 8(4):e60716. · 3.53 Impact Factor
  • Source
    John W Thompson, Srinivasan V Narayanan, Miguel A Perez-Pinzon
    [Show abstract] [Hide abstract]
    ABSTRACT: There is extensive evidence that the restoration of blood flow following cerebral ischemia contributes greatly to the pathophysiology of ischemia mediated brain injury. The initiating stimulus of reperfusion injury is believed to be the excessive production of reactive oxygen (ROS) and nitrogen (RNS) species by the mitochondria. ROS and RNS generation leads to mitochondrial protein, lipid and DNA oxidation which impedes normal mitochondrial physiology and initiates cellular death pathways. However not all ROS and RNS production is detrimental. It has been demonstrated that low levels of ROS production are protective and may serve as a trigger for activation of ischemic preconditioning. Ischemic preconditioning is a neuroprotective mechanism which is activated upon a brief sublethal ischemic exposure and is sufficient to provide protection against a subsequent lethal ischemic insult. Numerous proteins and signaling pathways have been implicated in the ischemic preconditioning neuroprotective response. In this review we examine the origin and mechanisms of ROS and RNS production following ischemic/reperfusion and the role of free radicals in modulating proteins associated with ischemic preconditioning neuroprotection.
    Current Neuropharmacology 12/2012; 10(4):354-69. · 2.03 Impact Factor
  • Srinivasan V Narayanan, Kunjan R Dave, Miguel A Perez-Pinzon
    [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE OF REVIEW: Ischemic preconditioning (IPC) is gaining attention as a novel neuroprotective therapy and could provide an improved mechanistic understanding of tolerance to cerebral ischemia. The purpose of this article is to review the recent work in the field of IPC and its applications to clinical scenarios. RECENT FINDINGS: The cellular signaling pathways that are activated following IPC are now better understood and have enabled investigators to identify several IPC mimetics. Most of these studies were performed in rodents, and efficacy of these mimetics remains to be evaluated in human patients. Additionally, remote ischemic preconditioning (RIPC) may have higher translational value than IPC. Repeated cycles of temporary ischemia in a remote organ can activate protective pathways in the target organ, including the heart and brain. Clinical trials are underway to test the efficacy of RIPC in protecting brain against subarachnoid hemorrhage. SUMMARY: IPC, RIPC, and IPC mimetics have the potential to be therapeutic in various clinical scenarios. Further understanding of IPC-induced neuroprotection pathways and utilization of clinically relevant animal models are necessary to increase the translational potential of IPC in the near future.
    Current opinion in neurology 11/2012; · 5.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiopulmonary arrest is one of the leading causes of death and disability, primarily occurring in the aged population. Numerous global cerebral ischemia animal models induce neuronal damage similar to cardiac arrest. These global cerebral ischemia models range from vessel occlusion to total cessation of cardiac function, both of which have allowed for the investigation of this multifaceted disease and detection of numerous agents that are neuroprotective. Synapses endure a variety of alterations after global cerebral ischemia from the resulting excitotoxicity and have been a major target for neuroprotection; however, neuroprotective agents have proven unsuccessful in clinical trials, as neurological outcomes have not displayed significant improvements in patients. A majority of these neuroprotective agents have specific neuronal targets, where the success of future neuroprotective agents may depend on non-specific targets and numerous cognitive improvements. This review focuses on the different models of global cerebral ischemia, neuronal synaptic alterations, synaptic neuroprotection and behavioral tests that can be used to determine deficits in cognitive function after global cerebral ischemia.
    Current drug targets 11/2012; · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A subthreshold ischemic insult applied to an organ such as the heart and/or brain may help to reduce damage caused by subsequent ischemic episodes. This phenomenon is known as ischemic tolerance mediated by ischemic preconditioning (IPC) and represents the most powerful endogenous mechanism against ischemic injury. Various molecular pathways have been implicated in IPC, and several compounds have been proposed as activators or mediators of IPC. Recently, it has been established that the protective phenotype in response to ischemia depends on a coordinated response at the genomic, molecular, cellular and tissue levels by introducing the concept of 'genomic reprogramming' following IPC. In this article, we sought to review the genetic expression profiles found in cardiac and cerebral IPC studies, describe the differences between young and aged organs in IPC-mediated protection, and discuss the potential therapeutic application of IPC and pharmacological preconditioning based on the genomic response.
    Pharmacogenomics 11/2012; 13(15):1741-57. · 3.86 Impact Factor

Publication Stats

3k Citations
428.59 Total Impact Points

Institutions

  • 1992–2013
    • University of Miami Miller School of Medicine
      • Department of Neurology
      Miami, Florida, United States
    • University of Miami
      • • Department of Neurology
      • • Department of Medicine
      Coral Gables, FL, United States
  • 2011
    • South Florida Veterans Affairs Foundation for Research and Education
      Miami, Florida, United States
  • 2008
    • San Francisco VA Medical Center
      San Francisco, California, United States
  • 2001
    • University of Tampere
      Tammerfors, Province of Western Finland, Finland
  • 1997
    • Stanford University
      • Stanford Stroke Center
      Stanford, CA, United States
  • 1996
    • NYU Langone Medical Center
      New York City, New York, United States
    • Florida Atlantic University
      • Department of Biological Sciences
      Boca Raton, FL, United States