Patrick Concannon

University of Florida, Gainesville, Florida, United States

Are you Patrick Concannon?

Claim your profile

Publications (77)635.8 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Killer Immunoglobulin-like Receptors (KIRs) are surface receptors of natural killer cells that bind to their corresponding Human Leukocyte Antigen (HLA) class I ligands, making them interesting candidate genes for HLA-associated autoimmune diseases, including type 1 diabetes (T1D). However, allelic and copy number variation in the KIR region effectively mask it from standard genome-wide association studies: single nucleotide polymorphism (SNP) probes targeting the region are often discarded by standard genotype callers since they exhibit variable cluster numbers. Quantitative Polymerase Chain Reaction (qPCR) assays address this issue. However, their cost is prohibitive at the sample sizes required for detecting effects typically observed in complex genetic diseases. We propose a more powerful and cost-effective alternative, which combines signals from SNPs with more than three clusters found in existing datasets, with qPCR on a subset of samples. First, we showed that noise and batch effects in multiplexed qPCR assays are addressed through normalisation and simultaneous copy number calling of multiple genes. Then, we used supervised classification to impute copy numbers of specific KIR genes from SNP signals. We applied this method to assess copy number variation in two KIR genes, \textit{KIR3DL1} and KIR3DS1, which are suitable candidates for T1D susceptibility since they encode the only KIR molecules known to bind with HLA-Bw4 epitopes. We find no association between KIR3DL1/3DS1 copy number and T1D in 6744 cases and 5362 controls; a sample size twenty-fold larger than in any previous KIR association study. Due to our sample size, we can exclude odds ratios larger than 1.1 for the common KIR3DL1/3DS1 copy number groups at the 5% significance level. We found no evidence of association of KIR3DL1/3DS1 copy number with T1D, either overall or dependent on HLA-Bw4 epitope. Five other KIR genes, KIR2DS4, KIR2DL3, KIR2DL5, KIR2DS5 and KIR2DS1, in high linkage disequilibrium with KIR3DL1 and KIR3DS1, are also unlikely to be significantly associated. Our approach could potentially be applied to other KIR genes to allow cost effective assaying of gene copy number in large samples.
    BMC Genomics 04/2014; 15(1):274. · 4.40 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin) deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip). Three loci located outside the Human Leukocyte Antigen (HLA) region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell receptor alpha (TRA@), variants in two additional narcolepsy loci, Cathepsin H () and Tumor necrosis factor (ligand) superfamily member 4 (, also called ), attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells in the pathophysiology of this autoimmune disease.
    PLoS Genetics 02/2013; 9(2):e1003270. · 8.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Kwashiorkor, an enigmatic form of severe acute malnutrition, is the consequence of inadequate nutrient intake plus additional environmental insults. To investigate the role of the gut microbiome, we studied 317 Malawian twin pairs during the first 3 years of life. During this time, half of the twin pairs remained well nourished, whereas 43% became discordant, and 7% manifested concordance for acute malnutrition. Both children in twin pairs discordant for kwashiorkor were treated with a peanut-based, ready-to-use therapeutic food (RUTF). Time-series metagenomic studies revealed that RUTF produced a transient maturation of metabolic functions in kwashiorkor gut microbiomes that regressed when administration of RUTF was stopped. Previously frozen fecal communities from several discordant pairs were each transplanted into gnotobiotic mice. The combination of Malawian diet and kwashiorkor microbiome produced marked weight loss in recipient mice, accompanied by perturbations in amino acid, carbohydrate, and intermediary metabolism that were only transiently ameliorated with RUTF. These findings implicate the gut microbiome as a causal factor in kwashiorkor.
    Science 01/2013; · 31.20 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Tamoxifen has been shown to greatly reduce risk of recurrence and contralateral breast cancer (CBC). Still, second primary contralateral breast cancer is the most common malignancy to follow a first primary breast cancer. Genetic variants in CYP2D6 and other drug-metabolizing enzymes that alter the metabolism of tamoxifen may be associated with CBC risk in women who receive the drug. This is the first study to investigate the impact of this variation on risk of CBC in women who receive tamoxifen. From the population-based Women's Environment Cancer and Radiation Epidemiology (WECARE) Study, we included 624 Caucasian women with CBC (cases) and 1,199 women with unilateral breast cancer (controls) with complete information on tumor characteristics and treatment. Conditional logistic regression was used to assess the risk of CBC associated with 112 single nucleotide polymorphisms (SNPs) in 8 genes involved in the metabolism of tamoxifen among tamoxifen users and non-users. After adjustment for multiple testing, no significant association was observed between any of the genotyped variants and CBC risk in either tamoxifen users or non-users. These results suggest that when using a tagSNP approach, common variants in selected genes involved in the metabolism of tamoxifen are not associated with risk of CBC among women treated with the drug.
    International Journal of Molecular Epidemiology and Genetics 01/2013; 4(1):35-48.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: DNA sequence variation within human leukocyte antigen (HLA) genes mediate susceptibility to a wide range of human diseases. The complex genetic structure of the major histocompatibility complex (MHC) makes it difficult, however, to collect genotyping data in large cohorts. Long-range linkage disequilibrium between HLA loci and SNP markers across the major histocompatibility complex (MHC) region offers an alternative approach through imputation to interrogate HLA variation in existing GWAS data sets. Here we describe a computational strategy, SNP2HLA, to impute classical alleles and amino acid polymorphisms at class I (HLA-A, -B, -C) and class II (-DPA1, -DPB1, -DQA1, -DQB1, and -DRB1) loci. To characterize performance of SNP2HLA, we constructed two European ancestry reference panels, one based on data collected in HapMap-CEPH pedigrees (90 individuals) and another based on data collected by the Type 1 Diabetes Genetics Consortium (T1DGC, 5,225 individuals). We imputed HLA alleles in an independent data set from the British 1958 Birth Cohort (N = 918) with gold standard four-digit HLA types and SNPs genotyped using the Affymetrix GeneChip 500 K and Illumina Immunochip microarrays. We demonstrate that the sample size of the reference panel, rather than SNP density of the genotyping platform, is critical to achieve high imputation accuracy. Using the larger T1DGC reference panel, the average accuracy at four-digit resolution is 94.7% using the low-density Affymetrix GeneChip 500 K, and 96.7% using the high-density Illumina Immunochip. For amino acid polymorphisms within HLA genes, we achieve 98.6% and 99.3% accuracy using the Affymetrix GeneChip 500 K and Illumina Immunochip, respectively. Finally, we demonstrate how imputation and association testing at amino acid resolution can facilitate fine-mapping of primary MHC association signals, giving a specific example from type 1 diabetes.
    PLoS ONE 01/2013; 8(6):e64683. · 3.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We used the Immunochip array to analyze 2,86 individuals with juvenile idiopathic arthritis (JIA), comprising the most common subtypes (oligoarticular and rheumatoid factor–negative polyarticular JIA), and 3,056 controls. We confirmed association of 3 known JIA risk loci (the human leukocyte antigen (HLA) region, PTPN22 and PTPN2) and identified 4 loci reaching genome-wide significance (P < 5 × 0 −8) for the first time. Eleven additional new regions showed suggestive evidence of association with JIA (P < × 0 −6). Dense mapping of loci along with bioinformatics analysis refined the associations to one gene in each of eight regions, highlighting crucial pathways, including the interleukin (IL)-2 pathway, in JIA disease pathogenesis. The entire Immunochip content, the HLA region and the top 27 loci (P < × 0 −6) explain an estimated 8, 3 and 6% of the risk of JIA, respectively. In summary, this is the largest collection of JIA cases investigated so far and provides new insight into the genetic basis of this childhood autoimmune disease. JIA is the most common chronic rheumatic disease of childhood and describes a group of clinically heterogeneous arthritides that begin before the age of 16 years, persist for at least 6 weeks and have an unknown cause 1 . It has been established that there is a strong genetic contribution to the risk of JIA, with a sibling risk ratio of ~11.6 (ref. 2) and higher risk for other autoimmune diseases in the families of individuals with JIA 3 . Using International League of Associations for Rheumatology (ILAR) criteria, JIA can be divided into subtypes on the basis of clinical features 4 . A recent genome-wide association study (GWAS) identified a number of JIA susceptibility regions 5,6 . Additional loci have been identified through candidate gene asso-ciation studies and confirmed in multiple independent studies 7–14 . However, until now, only three loci have reached genome-wide significance (the HLA region, PTPN22 and PTPN2) 5 . Many confirmed and nominally associated JIA susceptibility loci show association with other autoimmune diseases 5 . This marked overlap of autoimmune disease susceptibility loci may occur when Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis
  • [show abstract] [hide abstract]
    ABSTRACT: PURPOSETo fully characterize the risk of contralateral breast cancer (CBC) in patients with breast cancer with a family history who test negative for BRCA1 and BRCA2 mutations. PATIENTS AND METHODS From our population-based case-control study comparing women with CBC to women with unilateral breast cancer (UBC), we selected women who tested negative for BRCA1 and BRCA2 mutations (594 patients with CBC/1,119 control patients with UBC). Rate ratios (RRs) and 95% CIs were estimated to examine the association between family history of breast cancer and risk of asynchronous CBC. Age- and family history-specific 10-year cumulative absolute risks of CBC were estimated.ResultsFamily history of breast cancer was associated with increased CBC risk; risk was highest among young women (< 45 years) with first-degree relatives affected at young ages (< 45 years; RR, 2.5; 95% CI, 1.1 to 5.3) or women with first-degree relatives with bilateral disease (RR, 3.6; 95% CI, 2.0 to 6.4). Women diagnosed with UBC before age 55 years with a first-degree family history of CBC had a 10-year risk of CBC of 15.6%. CONCLUSION Young women with breast cancer who have a family history of breast cancer and who test negative for deleterious mutations in BRCA1 and BRCA2 are at significantly greater risk of CBC than other breast cancer survivors. This risk varies with diagnosis age, family history of CBC, and degree of relationship to an affected relative. Women with a first-degree family history of bilateral disease have risks of CBC similar to mutation carriers. This has important implications for the clinical management of patients with breast cancer with family history of the disease.
    Journal of Clinical Oncology 12/2012; · 18.04 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: Body mass index (BMI), a known breast cancer risk factor, could influence breast risk through mechanistic pathways related to sex hormones, insulin resistance, chronic inflammation and altered levels of adipose derived hormones. Results from studies of the relationship between BMI and second primary breast cancer have been mixed. To explore the relationship between BMI and asynchronous contralateral breast cancer (CBC), we examined whether variants in genes related to obesity, weight and weight change are associated with CBC risk. METHODS: Variants in twenty genes (182 single nucleotide polymorphisms) involved in adipose tissue metabolism, energy balance, insulin resistance and inflammation, as well as those identified through genome-wide association studies of BMI and type II diabetes were evaluated. We examined the association between variants in these genes and the risk of CBC among Caucasian participants (643 cases with CBC and 1,271 controls with unilateral breast cancer) in the population-based Women's Environmental Cancer and Radiation Epidemiology (WECARE) Study using conditional logistic regression. RESULTS: After adjustment for multiple comparisons, no statistically significant associations between any variant and CBC risk were seen. Stratification by menopausal or estrogen receptor status did not alter these findings. CONCLUSIONS: Among women with early onset disease who survive a first breast cancer diagnosis there was no association between variation in obesity-related genes and risk of CBC. Impact:Genetic variants in genes related to obesity are not likely to strongly influence subsequent risk of developing a second primary breast cancer.
    Cancer Epidemiology Biomarkers &amp Prevention 10/2012; · 4.56 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The common genetic loci that independently influence the risk of type 1 diabetes have largely been determined. Their interactions with age-at-diagnosis of type 1 diabetes, sex, or the major susceptibility locus, HLA class II, remain mostly unexplored. A large collection of more than 14,866 type 1 diabetes samples (6,750 British diabetic individuals and 8,116 affected family samples of European descent) were genotyped at 38 confirmed type 1 diabetes-associated non-HLA regions and used to test for interaction of association with age-at-diagnosis, sex, and HLA class II genotypes using regression models. The alleles that confer susceptibility to type 1 diabetes at interleukin-2 (IL-2), IL2/4q27 (rs2069763) and renalase, FAD-dependent amine oxidase (RNLS)/10q23.31 (rs10509540), were associated with a lower age-at-diagnosis (P = 4.6 × 10(-6) and 2.5 × 10(-5), respectively). For both loci, individuals carrying the susceptible homozygous genotype were, on average, 7.2 months younger at diagnosis than those carrying the protective homozygous genotypes. In addition to protein tyrosine phosphatase nonreceptor type 22 (PTPN22), evidence of statistical interaction between HLA class II genotypes and rs3087243 at cytotoxic T-lymphocyte antigen 4 (CTLA4)/2q33.2 was obtained (P = 7.90 × 10(-5)). No evidence of differential risk by sex was obtained at any loci (P ≥ 0.01). Statistical interaction effects can be detected in type 1 diabetes although they provide a relatively small contribution to our understanding of the familial clustering of the disease.
    Diabetes 08/2012; 61(11):3012-7. · 7.90 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Germline mutations in the PALB2 gene are associated with an increased risk of developing breast cancer but little is known about the frequencies of rare variants in PALB2 and the nature of the variants that influence risk. We selected participants recruited to the Women's Environment, Cancer, and Radiation Epidemiology (WECARE) Study and screened lymphocyte DNA from cases with contralateral breast cancer (n = 559) and matched controls with unilateral breast cancer (n = 565) for PALB2 mutations. Five pathogenic PALB2 mutations were identified among the cases (0.9%) versus none among the controls (P = 0.04). The first-degree female relatives of these five carriers demonstrated significantly higher incidence of breast cancer than relatives of noncarrier cases, indicating that pathogenic PALB2 mutations confer an estimated 5.3-fold increase in risk (95% CI: 1.8-13.2). The frequency of rare (<1% MAF) missense mutations was similar in both groups (23 vs. 21). Our findings confirm in a population-based study setting of women with breast cancer the strong risk associated with truncating mutations in PALB2 that has been reported in family studies. Conversely, there is no evidence from this study that rare PALB2 missense mutations strongly influence breast cancer risk.
    Human Mutation 01/2012; 33(4):674-80. · 5.21 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Genome-wide association studies, focusing primarily on unilateral breast cancer, have identified single nucleotide polymorphisms (SNPs) in a number of genomic regions that have alleles associated with a significantly increased risk of breast cancer. In the current study we evaluate the contributions of these previously identified regions to the risk of developing contralateral breast cancer. The most strongly disease-associated SNPs from prior studies were tested for association with contralateral breast cancer. A subset of these SNPs, selected upon their main effects on contralateral breast cancer risk was further evaluated for interaction with treatment modalities and estrogen receptor (ER) status. We genotyped 21 SNPs in 708 women with contralateral breast cancer and 1394 women with unilateral breast cancer who serve as the cases and controls in the Women's Environment, Cancer and Radiation Epidemiology (WECARE) Study. Records of treatment and ER status were available for most of WECARE Study participants. Associations of SNP genotypes and risk for contralateral breast cancer were calculated with multivariable adjusted conditional logistic regression methods. Multiple SNPs in the FGFR2 locus were significantly associated with contralateral breast cancer, including rs1219648 (per allele rate ratio (RR) = 1.25, 95%CI = 1.08-1.45). Statistically significant associations with contralateral breast cancer were also observed at rs7313833, near the PTHLH gene (per allele RR = 1.26, 95%CI = 1.08-1.47), rs13387042 (2q35) (per allele RR = 1.19, 95%CI = 1.02-1.37), rs13281615 (8q24) (per allele RR = 1.21, 95%CI = 1.04-1.40), and rs11235127 near TMEM135 (per allele RR = 1.26, 95%CI = 1.04-1.53). The A allele of rs13387042 (2q35) was significantly associated with contralateral breast cancer in ER negative first tumors while the A allele of rs11235127 (near TMEM135) was significantly associated with contralateral breast cancer in ER positive first tumors. Although some SNP genotypes appeared to modify contralateral breast cancer risk with respect to tamoxifen treatment or particular radiation doses, trend tests for such effects were not significant. Our results indicate that some common risk variants associated with primary breast cancer also increase risk for contralateral breast cancer, and that these risks vary with the ER status of the first tumor.
    Breast cancer research: BCR 11/2011; 13(6):R114. · 5.87 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: In an effort to explore the possible causes of human radiosensitivity and identify more rapid assays for cellular radiosensitivity, we interrogated a set of assays that evaluate cellular functions involved in recognition and repair of DNA double-strand breaks: (1) neutral comet assay, (2) radiation-induced γ-H2AX focus formation, (3) the temporal kinetics of structural maintenance of chromosomes 1 phosphorylation, (4) intra-S-phase checkpoint integrity, and (5) mitochondrial respiration. We characterized a unique panel of 19 "radiosensitive" human lymphoblastoid cell lines from individuals with undiagnosed diseases suggestive of a DNA repair disorder. Radiosensitivity was defined by reduced cellular survival using a clonogenic survival assay. Each assay identified cell lines with defects in DNA damage response functions. The highest concordance rate observed, 89% (17/19), was between an abnormal neutral comet assay and reduced survival by the colony survival assay. Our data also suggested that the neutral comet assay would be a more rapid surrogate for analyzing DNA repair/processing disorders.
    Radiation Research 09/2011; 177(2):176-86. · 2.70 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Ionizing radiation (IR) is a breast carcinogen that induces DNA double-strand breaks (DSBs), and variation in genes involved in the DNA DSB response has been implicated in radiation-induced breast cancer. The Women's Environmental, Cancer, and Radiation Epidemiology (WECARE) study is a population-based study of cases with contralateral breast cancer (CBC) and matched controls with unilateral breast cancer. The location-specific radiation dose received by the contralateral breast was estimated from radiotherapy records and mathematical models. One hundred fifty-two SNPs in six genes (CHEK2, MRE11A, MDC1, NBN, RAD50, TP53BP1) involved in the DNA DSBs response were genotyped. No variants or haplotypes were associated with CBC risk (649 cases and 1,284 controls) and no variants were found to interact with radiation dose. Carriers of a RAD50 haplotype exposed to ≥1 gray (Gy) had an increased risk of CBC compared with unexposed carriers (Rate ratios [RR] = 4.31 [95% confidence intervals [CI] 1.93-9.62]); with an excess relative risk (ERR) per Gy = 2.13 [95% CI 0.61-5.33]). Although the results of this study were largely null, carriers of a haplotype in RAD50 treated with radiation had a greater CBC risk than unexposed carriers. This suggests that carriers of this haplotype may be susceptible to the DNA-damaging effects of radiation therapy associated with radiation-induced breast cancer.
    Human Mutation 09/2011; 33(1):158-64. · 5.21 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Current evidence suggests that the genetic risk of breast cancer may be caused primarily by rare variants. However, while classification of protein-truncating mutations as deleterious is relatively straightforward, distinguishing as deleterious or neutral the large number of rare missense variants is a difficult on-going task. In this article, we present one approach to this problem, hierarchical statistical modeling of data observed in a case-control study of contralateral breast cancer (CBC) in which all the participants were genotyped for variants in BRCA1 and BRCA2. Hierarchical modeling permits leverage of information from observed correlations of characteristics of groups of variants with case-control status to infer with greater precision the risks of individual rare variants. A total of 181 distinct rare missense variants were identified among the 705 cases with CBC and the 1,398 controls with unilateral breast cancer. The model identified three bioinformatic hierarchical covariates, align-GV, align-GD, and SIFT scores, each of which was modestly associated with risk. Collectively, the 11 variants that were classified as adverse on the basis of all the three bioinformatic predictors demonstrated a stronger risk signal. This group included five of six missense variants that were classified as deleterious at the outset by conventional criteria. The remaining six variants can be considered as plausibly deleterious, and deserving of further investigation (BRCA1 R866C; BRCA2 G1529R, D2665G, W2626C, E2663V, and R3052W). Hierarchical modeling is a strategy that has promise for interpreting the evidence from future association studies that involve sequencing of known or suspected cancer genes.
    Genetic Epidemiology 07/2011; 35(5):389-97. · 4.02 Impact Factor
  • Source
    Nature Genetics 01/2011; 44(1):3-5. · 35.21 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Rare deleterious mutations in BRCA1 and BRCA2 are associated with an elevated risk of breast and ovarian cancer. Whether or not common variants in these genes are independently associated with risk of breast cancer remains unclear. In this study, we included 632 Caucasian women with asynchronous contralateral breast cancer (CBC, cases) and 1,221 women with unilateral breast cancer (UBC, controls) from the WECARE (Women's Environment, Cancer and Radiation Epidemiology) Study. BRCA1 and BRCA2 deleterious mutation status was measured using denaturing high-performance liquid chromatography followed by direct sequencing, yielding including 88 BRCA1 and 60 BRCA2 deleterious mutation carriers. We also genotyped samples on the Illumina Omni1-Quad platform. We assessed the association between CBC risk and common (minor allele frequency (MAF) > 0.05) single-nucleotide polymorphisms (SNPs) in BRCA1 (n SNPs = 22) and BRCA2 (n SNPs = 30) and haplotypes using conditional logistic regression accounting for BRCA1/BRCA2 mutation status. We found no significant associations between any single-SNPs or haplotypes of BRCA1 or BRCA2 and risk of CBC among all women. When we stratified by BRCA1 and BRCA2 mutation carrier status, we found suggestive evidence that risk estimates for selected SNPs in BRCA1 (rs8176318, rs1060915, and rs16940) and BRCA2 (rs11571686, rs206115, and rs206117) may differ in non-carriers and carriers of deleterious mutations in BRCA1 and BRCA2. One common haplotype on BRCA1 was inversely significantly associated with risk only among non-BRCA1 and BRCA2 carriers. The association between common variants in BRCA1 and BRCA2 and risk of CBC may differ depending on BRCA1 and BRCA2 mutation carrier status.
    Breast Cancer Research and Treatment 12/2010; 127(3):819-29. · 4.47 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We report here genotyping data and type 1 diabetes association analyses for HLA class I loci (A, B, and C) on 1,753 multiplex pedigrees from the Type 1 Diabetes Genetics Consortium (T1DGC), a large international collaborative study. Complete eight-locus HLA genotyping data were generated. Expected patient class I (HLA-A, -B, and -C) allele frequencies were calculated, based on linkage disequilibrium (LD) patterns with observed HLA class II DRB1-DQA1-DQB1 haplotype frequencies. Expected frequencies were compared to observed allele frequencies in patients. Significant type 1 diabetes associations were observed at all class I HLA loci. After accounting for LD with HLA class II, the most significantly type 1 diabetes-associated alleles were B*5701 (odds ratio 0.19; P = 4 × 10(-11)) and B*3906 (10.31; P = 4 × 10(-10)). Other significantly type 1 diabetes-associated alleles included A*2402, A*0201, B*1801, and C*0501 (predisposing) and A*1101, A*3201, A*6601, B*0702, B*4403, B*3502, C*1601, and C*0401 (protective). Some alleles, notably B*3906, appear to modulate the risk of all DRB1-DQA1-DQB1 haplotypes on which they reside, suggesting a class I effect that is independent of class II. Other class I type 1 diabetes associations appear to be specific to individual class II haplotypes. Some apparent associations (e.g., C*1601) could be attributed to strong LD to another class I susceptibility locus (B*4403). These data indicate that HLA class I alleles, in addition to and independently from HLA class II alleles, are associated with type 1 diabetes.
    Diabetes 11/2010; 59(11):2972-9. · 7.90 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Immunodeficiency and lymphoid malignancy are hallmarks of the human disease Nijmegen breakage syndrome (NBS; OMIM 251260), which is caused by NBS1 mutations. Although NBS1 has been shown to bind to the T-cell receptor alpha (TCRα) locus, its role in TCRβ rearrangement is unclear. Hypomorphic mutations of Nbs1 in mice and patients result in relatively mild T-cell deficiencies, raising the question of whether the truncated Nbs1 protein might have clouded a certain function of NBS1 in T-cell development. Here we show that the deletion of the entire Nbs1 protein in T-cell precursors (Nbs1(T-del)) results in severe lymphopenia and a hindrance to the double-negative 3 (DN3)-to-DN4 transition in early T-cell development, due to abnormal TCRβ coding and signal joints as well as the functions of Nbs1 in T-cell expansion. Chromatin immunoprecipitation (ChIP) analysis of the TCR loci reveals that Nbs1 depletion compromises the loading of Mre11/Rad50 to V(D)J-generated DNA double-strand breaks (DSBs) and thereby affects resection of DNA termini and chromatin conformation of the postcleavage complex. Although a p53 deficiency relieves the DN3→DN4 transition block, neither a p53 deficiency nor ectopic expression of TCRαβ rescues the major T-cell loss in Nbs1(T-del) mice. All together, these results demonstrate that Nbs1's functions in both repair of V(D)J-generated DSBs and proliferation are essential for T-cell development.
    Molecular and cellular biology 10/2010; 30(23):5572-81. · 6.06 Impact Factor
  • Source
    Diabetes 07/2010; 59(7):1561-71. · 7.90 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Reproductive factors, such as early age at menarche, late age at menopause, and nulliparity are known risk factors for breast cancer. Previously, we reported these factors to be associated with risk of developing contralateral breast cancer (CBC). In this study, we evaluated the association between these factors and CBC risk among BRCA1 and BRCA2 (BRCA1/2) mutation carriers and non-carriers. The WECARE Study is a population-based multi-center case-control study of 705 women with CBC (cases) and 1,397 women with unilateral breast cancer (controls). All participants were screened for BRCA1/2 mutations and 181 carriers were identified. Conditional logistic regression models were used to evaluate associations between reproductive factors and CBC for mutation carriers and non-carriers. None of the associations between reproductive factors and CBC risk differed between mutation carriers and non-carriers. The increase in risk with younger age at menarche and decrease in risk in women with more than two full-term pregnancies seen in non-carriers were not significantly different in carriers (adjusted RRs = 1.31, 95% CI 0.65-2.65 and 0.53, 95% CI 0.19-1.51, respectively). No significant associations between the other reproductive factors and CBC risk were observed in mutation carriers or non-carriers. For two reproductive factors previously shown to be associated with CBC risk, we observed similar associations for BRCA1/2 carriers. This suggests that reproductive variables that affect CBC risk may have similar effects in mutation carriers and non-carriers.
    Cancer Causes and Control 06/2010; 21(6):839-46. · 3.20 Impact Factor

Publication Stats

3k Citations
513 Downloads
635.80 Total Impact Points

Institutions

  • 2013
    • University of Florida
      • Department of Pathology, Immunology, and Laboratory Medicine
      Gainesville, Florida, United States
  • 2008–2013
    • University of Virginia
      • Department of Biochemistry, Molecular Biology and Genetics
      Charlottesville, Virginia, United States
    • Charité Universitätsmedizin Berlin
      Berlín, Berlin, Germany
  • 2006–2012
    • Memorial Sloan-Kettering Cancer Center
      • Epidemiology & Biostatistics Group
      New York City, NY, United States
  • 2002–2012
    • University of Cambridge
      • • Department of Medical Genetics
      • • Diabetes and Inflammation Laboratory
      Cambridge, ENG, United Kingdom
    • Russian Children's Clinical Hospital
      Moskva, Moscow, Russia
    • Hospital of the University of Pennsylvania
      • Department of Genetics
      Philadelphia, Pennsylvania, United States
  • 2004–2011
    • University of California, Los Angeles
      • Department of Pathology and Laboratory Medicine
      Los Angeles, CA, United States
  • 2010
    • Lund University
      • Department of Oncology
      Lund, Skane, Sweden
  • 2009–2010
    • University of Southern California
      • Department of Preventive Medicine
      Los Angeles, CA, United States
  • 2004–2009
    • Benaroya Research Institute
      Seattle, Washington, United States
  • 2003
    • Wake Forest School of Medicine
      • Division of Public Health Sciences
      Winston-Salem, NC, United States
    • Mount Sinai School of Medicine
      • Department of Radiation Oncology
      Manhattan, NY, United States
  • 1994–2003
    • Virginia Mason Medical Center
      Seattle, Washington, United States