Akiko Kimura

Osaka University, Ōsaka-shi, Osaka-fu, Japan

Are you Akiko Kimura?

Claim your profile

Publications (18)90.12 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated whether inhibition of nuclear factor-kappaB (NFkappaB) increases the efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Treatment of paclitaxel-sensitive Caov-3 cells with paclitaxel transiently activated the phosphorylation of Akt, the phosphorylation of IkappaB kinase (IKK), and the phosphorylation of inhibitor of NFkappaB (IkappaBalpha). Paclitaxel also caused a transient increase in NFkappaB activity, followed by a decrease in NFkappaB activity. We show an association between Akt and IKK and show that the phosphorylation of IKK induced by paclitaxel is blocked by treatment with a phosphatidylinositol 3-kinase inhibitor (wortmannin or LY294002). Furthermore, interference of the Akt signaling cascade inhibits the transient induction of IkappaBalpha phosphorylation and NFkappaB activity by paclitaxel. Inhibition of NFkappaB activity by treatment with an IkappaBalpha phosphorylation inhibitor (BAY 11-7085) attenuated both basal and transient induction of IkappaBalpha phosphorylation by paclitaxel. Treatment with BAY 11-7085 also enhanced the inhibition of NFkappaB activity by paclitaxel for up to 24 hours. In addition, treatment with BAY 11-7085 decreased the viability of cells treated with paclitaxel. Moreover, treatment with BAY 11-7085 increased the efficacy of paclitaxel-induced inhibition of intraabdominal dissemination and production of ascites in athymic nude mice inoculated intraperitoneally with Caov-3 cells. These results suggest that paclitaxel transiently induces NFkappaB activity via the phosphatidylinositol 3-kinase/Akt cascade and that combination therapy with paclitaxel and an NFkappaB inhibitor would increase the therapeutic efficacy of paclitaxel.
    Clinical Cancer Research 12/2004; 10(22):7645-54. · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucose transporter 1 (GLUT1) plays an important role in the transport of glucose in the placenta. During early pregnancy, placentation occurs in a relatively hypoxic environment that is essential for appropriate embryonic development, and GLUT1 expression is enhanced in response to oxygen deficiency in the placenta. Hypoxia-inducible factor-1 (HIF-1)alpha is involved in the induction of GLUT1 expression in other cells. The present study was designed to test whether HIF-1alpha is involved in hypoxia-induced activation of GLUT1 expression using trophoblast-derived human BeWo and rat Rcho-1 cells as models. GLUT1 mRNA and protein expression were elevated under 5% O2 or in the presence of cobalt chloride, which has been shown to mimic hypoxia. Using rat GLUT1 (rGLUT1) promoter-luciferase constructs, we showed that this up-regulation was mediated at the transcriptional level. Deletion mutant analysis of the rGLUT1 promoter indicated that a 184 bp hypoxia-responsive element (HRE) of the promoter was essential to increase GLUT1 reporter gene expression in response to low-oxygen conditions. BeWo and Rcho-1 cells cultured under 5% O2 or with CoCl2 showed increased expression of HIF-1alpha protein compared with those cultured under 20% O2. To test whether this factor is directly involved in hypoxia-induced GLUT1 promoter activation, BeWo and Rcho-1 cells were transiently transfected with an HIF-1alpha expression vector. Exogeneous HIF-1alpha markedly increased the GLUT1 promoter activity from constructs containing the HRE site, while the GLUT1 promoter constructs lacking the HRE site were not activated by exogenous HIF-1alpha These data demonstrate that GLUT1 is up-regulated under 5% O2 or in the presence of CoCl2 in the placental cell lines through HIF-1alpha interaction with a consensus HRE site of the GLUT1 promoter.
    Journal of Endocrinology 11/2004; 183(1):145-54. · 4.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined the mechanism by which estrogen regulates telomerase activity in Caov-3 human ovarian cancer cell lines, which express ER, to determine whether the regulation affects the expression and/or phosphorylation of the telomerase catalytic subunit (hTERT). 17beta-Estradiol (E(2)) induced telomerase activity and hTERT expression. Transient expression assays using luciferase reporter plasmids containing various fragments of hTERT promoter showed that the estrogen-responsive element appeared to be partially responsible for the E(2)-induced activation of the hTERT promoter. Either pretreatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, or transfection with a dominant-negative Akt attenuated the E(2)-induced activation of the hTERT promoter. In addition, estrogen induced the phosphorylation of IkappaB inhibitor protein via the Akt cascade, and cotransfection with a dominant-negative subunit of NFkappaB attenuated the response of the ERE-deleted hTERT promoter to E(2). Moreover, E(2) induced the phosphorylation of hTERT, the association of 14-3-3 protein and NFkappaB with hTERT, and nuclear accumulation of hTERT in an Akt-dependent manner. These results indicate that E(2) induces telomerase activity not only by transcriptional regulation of hTERT via an ERE-dependent mechanism and a PI3K/Akt/NFkappaB cascade, but also by post-transcriptional regulation via Akt-dependent phosphorylation of hTERT. Thus, the phosphorylation of Akt is a key event in the induction of telomerase activity by E(2) in human ovarian cancer cells.
    Oncogene 07/2004; 23(26):4505-15. · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Whether or not inhibition of NFkappaB increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models was investigated. We compared the basal levels of phosphorylation of IkappaBalpha and activity of NFkappaB between cisplatin-sensitive A2780 cells and cisplatin-resistant Caov-3 cells. The basal levels of phosphorylation of IkappaBalpha and activity of NFkappaB in Caov-3 cells were significantly higher than those in A2780 cells. Cisplatin caused a more marked decrease in the phosphorylation of IkappaBalpha and activity of NFkappaB in A2780 cells than in Caov-3 cells. Thus, high basal levels of phosphorylation of IkappaBalpha and activation of NFkappaB and less marked inhibition of the phosphorylation of IkappaBalpha and activation of NFkappaB by cisplatin seem to reduce the sensitivity of cells to cisplatin. Inhibition of NFkappaB activity either by treatment with the IkappaBalpha phosphorylation inhibitor (BAY 11-7085) or a specific NFkappaB nuclear translocation inhibitor (SN-50) or by transfection of p50DeltaNLS (which lacks the nuclear localization signal domain) increased the efficacy of both the cisplatin-induced attenuation of IkappaBalpha phosphorylation and NFkappaB activity and the cisplatin-induced apoptosis. In addition, treatment with BAY 11-7085 increased the efficacy of the cisplatin-induced attenuation of both the expression of X-linked inhibitor of apoptosis protein (XIAP) and cell invasion through Matrigel. Moreover, treatment with BAY 11-7085 increased the efficacy of the cisplatin-induced inhibition of the intra-abdominal dissemination and production of ascites using athymic nude mice inoculated intraperitoneally with Caov-3 cells. These results suggest that combination therapy of cisplatin with the NFkappaB inhibitor should increase the therapeutic efficacy of cisplatin.
    Journal of Biological Chemistry 06/2004; 279(22):23477-85. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Forkhead family transcription factor FKHRL1 is an inducer of apoptosis in its unphosphorylated form and was recently reported to be a substrate of Akt kinase. We studied the roles of FKHRL1 in both cisplatin-resistant Caov-3 (a papillary adenocarcinoma cell line) and cisplatin-sensitive A2780 human ovarian cancer cell lines. Treatment of Caov-3 cells but not A2780 cells with cisplatin transiently stimulated the phosphorylation of FKHRL1. Transfection experiments revealed that a kinase inactive-mutant of Akt or a triple mutant (TM) of FKHRL1, in which all three of the putative Akt phosphorylation sites were converted to alanine, was unable to phosphorylate the FKHRL1 protein in cells treated with cisplatin. Because the phosphorylated form of FKHRL1 is known to be localized in the cytoplasm, we examined whether cisplatin-induced phosphorylation of FKHRL1 might have an effect on the subcellular distribution of FKHRL1. Cisplatin induced the localization of FKHRL1 in the cytoplasm in Caov-3 cells but not in A2790 cells. Moreover, cisplatin induced the association of 14-3-3 protein with phosphorylated-FKHRL1 in Caov-3 cells but not in A2790 cells. Because the unphosphorylated form of FKHRL1 binds the Fas ligand promoter, thereby inducing apoptosis, we further examined the effect of the phosphorylation status of FKHRL1 on the activity of the Fas ligand promoter in the presence of cisplatin. Transfection with the kinase-inactive mutant of Akt or TM of FKHRL1 induced the activity of the Fas ligand promoter in Caov-3 cells. Moreover, exogenous expression of TM of FKHRL1 in Caov-3 cells decreased the cell viability after treatment with cisplatin. Our findings suggest that cisplatin causes the phosphorylation of FKHRL1 via a phosphatidylinositol 3-kinase/Akt cascade, and inhibition of this cascade sensitizes ovarian cancer cells to cisplatin.
    Endocrinology 05/2004; 145(4):2014-22. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although tamoxifen (TAM), which is widely used in the treatment of breast cancer, also has a beneficial effect on cisplatin-refractory ovarian cancer, the biological mechanism of this effect has remained obscure. TAM, besides its action as an antiestrogen, also inhibits cell proliferation of estrogen receptor (ER)-negative cells by an unknown mechanism. Therefore, we examined the roles of the MAPK family in the antiproliferative effect of TAM on cisplatin-resistant Caov-3, which expresses ER and cisplatin-sensitive A2780, which does not express ER. The number of viable cells was reduced by TAM dose-dependently. TAM induced the activation of ERK, c-Jun N-terminal protein kinase (JNK), and p38 with different time courses. PD98059 canceled the reduction of the number of viable cells by 1 microM TAM and inhibited the TAM-induced cell-cycle arrest at the G(1) phase and dephosphorylation of the retinoblastoma protein. Either expression of dominant-negative JNK or pretreatment with SB203580 canceled the reduction of the number of viable cells by 5 microM TAM and inhibited the apoptotic nuclear changes and the cleavage of poly (ADP-ribose) polymerase induced by TAM. These results provide evidence that whereas the ERK cascade is involved in the induction of cell-cycle arrest at the G(1) phase by lower concentrations of TAM, the JNK or p38 cascade is involved in the induction of apoptosis by higher concentrations of TAM in both types of cells.
    Endocrinology 04/2004; 145(3):1302-13. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The influence of postoperative estrogen replacement therapy on the sensitivity of ovarian cancer to paclitaxel remains elusive. We examined whether estrogen affects paclitaxel-induced apoptosis in the Caov-3 human ovarian cancer cell line, which expresses estrogen receptor. 17beta-Estradiol (E2) significantly reversed the paclitaxel-induced apoptosis and reduction of cell viability, and a highly selective estrogen receptor antagonist, ICI182,780, and a phosphatidylinositol 3-kinase inhibitor, LY294002, attenuated the reversal effect of E2 on paclitaxel-induced apoptosis and reduction of cell viability. E2 significantly induced the phosphorylation of Akt. Akt and apoptosis signal-regulating kinase 1 (ASK1) were physically associated, and E2 induced the phosphorylation of ASK1 at serine-83, which is a consensus Akt phosphorylation site. We confirmed a previous report showing that paclitaxel induces cell damage via the ASK1-c-Jun N-terminal protein kinase (JNK) cascade. E2 inhibited the paclitaxel-induced JNK activation, and the E2-induced inhibition of the paclitaxel-induced JNK activation was attenuated in cells treated with either ICI182,780 or LY294002 or transfected with ASK1S83A, in which a consensus Akt phosphorylation site at serine-83 was converted to alanine. The inhibitory effect of E2 on the paclitaxel-induced reduction of cell viability and apoptosis was diminished in cells transfected with ASK1S83A. These results indicate that E2 inhibits paclitaxel-induced cell damage by inhibiting JNK activity via phosphorylation of Akt-ASK1. Thus, treatment of ovarian cancer with paclitaxel might be less effective in the setting of postoperative estrogen replacement therapy.
    Endocrinology 02/2004; 145(1):49-58. · 4.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mechanism by which raloxifene acts in the chemoprevention of breast cancer remains unclear. Because telomerase activity is involved in estrogen-induced carcinogenesis, we examined the effect of raloxifene on estrogen-induced up-regulation of telomerase activity in MCF-7 human breast cancer cell line. Raloxifene inhibited the induction of cell growth and telomerase activity by 17beta-estradiol (E2). Raloxifene inhibited the E2-induced expression of the human telomerase catalytic subunit (hTERT), and transient expression assays using luciferase reporter plasmids containing various fragments of the hTERT promoter showed that the estrogen-responsive element appeared to be partially responsible for the action of raloxifene. E2 induced the phosphorylation of Akt, and pretreatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, attenuated the E2-induced increases of the telomerase activity and hTERT promoter activity. Raloxifene inhibited the E2-induced Akt phosphorylation. In addition, raloxifene also inhibited the E2-induced hTERT expression via the PI3K/Akt/NFkappaB cascade. Moreover, raloxifene also inhibited the E2-induced phosphorylation of hTERT, association of NFkappaB with hTERT, and nuclear accumulation of hTERT. These results show that raloxifene inhibited the E2-induced up-regulation of telomerase activity not only by transcriptional regulation of hTERT via an estrogen-responsive element-dependent mechanism and the PI3K/Akt/NFkappaB cascade but also by post-translational regulation via phosphorylation of hTERT and association with NFkappaB.
    Journal of Biological Chemistry 11/2003; 278(44):43363-72. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We studied the roles of the phosphatidylinositol 3-kinase (PI-3K)-Akt-BAD cascade, ERK-BAD cascade, and Akt-Raf-1 cascade in the paclitaxel-resistant SW626 human ovarian cancer cell line, which lacks functional p53. Treatment of SW626 cells with paclitaxel activates Akt and ERK with different time frames. Interference with the Akt cascade either by treatment with PI-3K inhibitor (wortmannin or LY294002) or by exogenous expression of a dominant negative Akt in SW626 cells caused decreased cell viability following treatment with paclitaxel. Interference with the ERK cascade by treatment with an MEK inhibitor, PD98059, in SW626 cells also caused decreased cell viability following treatment with paclitaxel. Treatment of cells with paclitaxel also stimulated the phosphorylation of BAD at both the Ser-112 and Ser-136 sites. The phosphorylation of BAD at Ser-136 was blocked by treatment with wortmannin or cotransfection with the dominant negative Akt. On the other hand, the phosphorylation of BAD at Ser-112 was blocked by PD98059. We further examined the role of BAD in the viability following paclitaxel treatment using BAD mutants. Exogenous expression of doubly substituted BAD2SA in SW626 cells caused decreased viability following treatment with paclitaxel. Moreover, because paclitaxel-induced apoptosis is mediated by activated Raf-1 and the region surrounding Ser-259 in Raf-1 conforms to a consensus sequence for phosphorylation by Akt, the regulation of Raf-1 by Akt was examined. We demonstrated an association between Akt and Raf-1 and showed that the phosphorylation of Raf-1 on Ser-259 induced by paclitaxel was blocked by treatment with wortmannin or LY294002. Furthermore, interference with the Akt cascade induced by paclitaxel up-regulated Raf-1 activity, and expression of constitutively active Akt inhibited Raf-1 activity, suggesting that Akt negatively regulates Raf-1. Our findings suggest that paclitaxel induces the phosphorylation of BAD Ser-112 via the ERK cascade, and the phosphorylation of both BAD Ser-136 and Raf-1 Ser-259 via the PI-3K-Akt cascade, and that inhibition of either of these cascades sensitizes ovarian cancer cells to paclitaxel.
    Journal of Biological Chemistry 10/2002; 277(36):33490-500. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of the mitogen-activated protein kinase (MAPK) family by gonadotropin-releasing hormone (GnRH) in the gonadotrope cell line LbetaT2 was investigated. Treatment with gonadotropin-releasing hormone agonist (GnRHa) activates extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK). Activation of ERK by GnRHa occurred within 5 min, and declined thereafter, whereas activation of JNK by GnRHa occurred with a different time frame, i.e. it was detectable at 5 min, reached a plateau at 30 min, and declined thereafter. GnRHa-induced ERK activation was dependent on protein kinase C or extracellular and intracellular Ca(2+), whereas GnRHa-induced JNK activation was not dependent on protein kinase C or on extracellular or intracellular Ca(2+). To determine whether a mitogen-activated protein kinase family cascade regulates rat luteinizing hormone beta (LHbeta) promoter activity, we transfected the rat LHbeta (-156 to +7)-luciferase construct into LbetaT2 cells. GnRH activated the rat LHbeta promoter activity in a time-dependent manner. Neither treatment with a mitogen-activated protein kinase/ERK kinase (MEK) inhibitor, PD98059, nor cotransfection with a catalytically inactive form of a mitogen-activated protein kinase construct inhibited the induction of the rat LHbeta promoter by GnRH. Furthermore, cotransfection with a dominant negative Ets had no effect on the response of the rat LHbeta promoter to GnRH. On the other hand, cotransfection with either dominant negative JNK or dominant negative c-Jun significantly inhibited the induction of the rat LHbeta promoter by GnRH. In addition, GnRH did not induce either the rat LHbeta promoter activity in LbetaT2 cells transfected stably with dominant negative c-Jun. These results suggest that GnRHa differentially activates ERK and JNK, and a JNK cascade is necessary to elicit the rat LHbeta promoter activity in a c-Jun-dependent mechanism in LbetaT2 cells.
    Journal of Biological Chemistry 08/2000; 275(28):21639-47. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of the mitogen-activated protein kinase (MAPK) family by prolactin-releasing peptide (PrRP) in both GH3 rat pituitary tumor cells and primary cultures of rat anterior pituitary cells was investigated. PrRP rapidly and transiently activated extracellular signal-regulated protein kinase (ERK) in both types of cells. Both pertussis toxin, which inactivates G(i)/G(o) proteins, and exogenous expression of a peptide derived from the carboxyl terminus of the beta-adrenergic receptor kinase I, which specifically blocks signaling mediated by the betagamma subunits of G proteins, completely blocked the PrRP-induced ERK activation, suggesting the involvement of G(i)/G(o) proteins in the PrRP-induced ERK activation. Down-regulation of cellular protein kinase C did not significantly inhibit the PrRP-induced ERK activation, suggesting that a protein kinase C-independent pathway is mainly involved. PrRP-induced ERK activation was not dependent on either extracellular Ca(2+) or intracellular Ca(2+). However, the ERK cascade was not the only route by which PrRP communicated with the nucleus. JNK was also shown to be significantly activated in response to PrRP. JNK activation in response to PrRP was slower than ERK activation. Moreover, to determine whether a MAPK family cascade regulates rat prolactin (rPRL) promoter activity, we transfected the intact rPRL promoter ligated to the firefly luciferase reporter gene into GH3 cells. PrRP activated the rPRL promoter activity in a time-dependent manner. Co-transfection with a catalytically inactive form of a MAPK construct or a dominant negative JNK, partially but significantly inhibited the induction of the rPRL promoter by PrRP. Furthermore, co-transfection with a dominant negative Ets completely abolished the response of the rPRL promoter to PrRP. These results suggest that PrRP differentially activates ERK and JNK, and both cascades are necessary to elicit rPRL promoter activity in an Ets-dependent mechanism.
    Journal of Biological Chemistry 03/2000; 275(5):3667-74. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain reperfusion may be of particular importance in the etiology of periventricular leukomalacia, of which the common findings are gliosis and ventricular dilatation. To investigate the mechanism of this pathogenesis, we used a metabolic inhibition (MI) model using cyanide plus deoxyglucose treatment of cultured glia isolated from fetal rat brain and examined the activity of extracellular signal-regulated protein kinase (ERK) during MI and also during the recovery from MI of 30 min. ERK activation was stimulated during MI and the recovery from MI. The time course and extent of activation of ERK during MI and the recovery from MI, however, were distinctly different. Activation of ERK was stimulated within 5 min of MI and declined thereafter. Activation of ERK was sustained during the recovery phase from MI and the extent of the activation was much greater than that during MI. Pretreatment with EGTA to eliminate extracellular Ca(2+), or with APV, an NMDA receptor antagonist, to inhibit Ca(2+) influx through the NMDA receptor, attenuated the activation of ERK. Moreover, pretreatment with PMA to downregulate PKC abolished the activation of ERK. PD98059, an inhibitor of ERK kinase, attenuated the cell proliferation induced by MI followed by recovery from MI. These results suggest that ERK is involved in gliosis during the recovery phase from MI and may play a role in the etiology of periventricular leukomalacia.
    Biochemical and Biophysical Research Communications 02/2000; 267(3):892-6. · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although gonadotropin-releasing hormone agonists (GnRHa) have been used in the therapy of the endocrine-dependent cancers, their biological mechanism remained obscure. We have studied the roles of mitogen-activated protein kinase family in the antiproliferative effect of GnRHa on the Caov-3 human ovarian cancer cell line. Reverse transcription-PCR assays confirmed mRNA for GnRH receptor in Caov-3 cells. In the presence of 1 microM GnRHa, the proliferation of cells was significantly reduced to 76% of controls after 24 h, and the effect was sustained up to 4 days. Although GnRHa had no effect on the activation of the Jun N-terminal kinase (JNK), treatment of Caov-3 cells with GnRHa activated extracellular signal-regulated protein kinase (ERK), and its effect was more than that induced by GnRH. Activation of ERK by GnRHa occurred within 5 min, with the maximum occurring at 3 h and sustained until 24 h. GnRHa also activated ERK kinase (mitogen-activated protein/ERK kinase) and resulted in an increase in phosphorylation of son of sevenless (Sos), and Shc. Furthermore, we examined the mechanism by which GnRHa induced ERK activation. Both pertussis toxin (10 ng/ml), which inactivates Gi/Go proteins, and expression of a peptide derived from the carboxyl terminus of the beta-adrenergic receptor kinase I, which specifically blocks signaling mediated by the betagamma subunits of G proteins, blocked the GnRHa-induced ERK activation. Phorbol 12-myristate 13-acetate (PMA) also induced the ERK activity, but pretreatment of the cultured cells with PMA to down-regulate protein kinase C did not abolish the activation of ERK by GnRHa. Elimination of extracellular Ca2+ by EGTA also did not abolish the activation of ERK by GnRHa. To examine the role of ERK cascade in the antiproliferative effect of GnRHa, PD98059, an inhibitor of mitogen-activated protein/ERK kinase, was used. This inhibitor canceled the antiproliferative effect of GnRHa and apparently reversed the GnRH-induced dephosphorylation of the retinoblastoma protein, the hyperphosphorylation of which is a hallmark of G1-S transition in the cell cycle. These results provide evidence that GnRHa stimulation of ERK activity may be mediated by Gbetagamma protein, not by PMA-sensitive protein kinase C nor extracellular Ca2+ in the Caov-3 human ovarian cancer cell line, suggesting that this cascade may play an important role in the antiproliferative effect of GnRHa.
    Cancer Research 11/1999; 59(20):5133-42. · 8.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have studied the roles of c-Jun N-terminal protein kinase (JNK) and extracellular signal-regulated protein kinase (ERK) cascade in both the cisplatin-resistant Caov-3 and the cisplatin-sensitive A2780 human ovarian cancer cell lines. Treatment of both cells with cisplatin but not transplatin isomer activates JNK and ERK. Activation of JNK by cisplatin occurred at 30 min, reached a plateau at 3 h, and declined thereafter, whereas activation of ERK by cisplatin showed a biphasic pattern, indicating the different time frame. Activation of JNK by cisplatin was maximal at 1000 microM, whereas activation of ERK was maximal at 100 microM and was less at higher concentrations, indicating the different dose dependence. Cisplatin-induced JNK activation was neither extracellular and intracellular Ca(2+)- nor protein kinase C-dependent, whereas cisplatin-induced ERK activation was extracellular and intracellular Ca(2+)- dependent and protein kinase C-dependent. A mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor, PD98059, had no effect on the cisplatin-induced JNK activity, suggesting an absence of cross-talk between the ERK and JNK cascades. We further examined the effect of each cascade on the viability following cisplatin treatment. Either exogenous expression of dominant negative c-Jun or the treatment by PD98059 induced sensitivity to cisplatin in both cells. Our findings suggest that cisplatin-induced DNA damage differentially activates JNK and ERK cascades and that inhibition of either of these cascades sensitizes ovarian cancer cells to cisplatin.
    Journal of Biological Chemistry 11/1999; 274(44):31648-54. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The regulation of mitogen-activated protein (MAP) kinase by endothelin-1 (ET-1) in cultured rat puerperal uterine myometrial cells was investigated. ET-1 caused the rapid stimulation of MAP kinase activity. ET-1-induced MAP kinase activation is neither extracellular Ca2+- nor intracellular Ca2+-dependent. ET-1 stimulation also led to an increase in phosphorylation of son-of-sevenless (SOS), and transfection of dominant negative SOS attenuated the ET-1-induced MAP kinase activity. Phorbol-12-myristate 13-acetate (PMA) also induced the MAP kinase activity, but pretreatment of the cultured cells with PMA, to down-regulate protein kinase C (PKC), did not abolish the activation of MAP kinase by ET-1. In addition, down-regulation of PKC had no effect on ET-1-induced SOS phosphorylation. Pertussis toxin, which inactivates Gi/Go proteins, blocked the ET-1-induced MAP kinase activation but not the PMA-induced MAP kinase activation. The results suggested that MAP kinase is acutely activated by ET-1 through a pertussis toxin-sensitive G protein and SOS, not through the PMA-sensitive PKC. In addition, although reverse-transcriptase PCR assays detected messenger RNA for both ET- 1 receptor subtypes in cultured rat puerperal uterine myometrial cells, ET-1-induced MAP kinase activity and uterine contraction were blocked by treatment with BQ485, an antagonist selective for an ET type A receptor (but not by BQ788, an ET type B receptor antagonist). Ritodrine, which is known to relax uterine muscle contraction, attenuated ET-1-induced MAP kinase activity. We further examined the role of MAP kinase pathway in uterine contraction using an inhibitor of MEK activity, PD098059. This inhibitor completely inhibited the ET-1-induced MAP kinase activation and partially, but significantly, inhibited the ET-1-induced uterine contraction. These results indicate that ET-1-induced MAP kinase signaling cascade may play an important role in the ET-1-induced uterine contraction.
    Endocrinology 03/1999; 140(2):722-31. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The GT1-1 GnRH neuronal cell lines exhibit highly differentiated properties of GnRH neurons. We have used GT1-1 cells to study the roles of norepinephrine (NE), membrane depolarization, calcium influx, and phorbol esters in the regulation of mitogen-activated protein (MAP) kinase. NE, which is known to stimulate the release of GnRH, induced MAP kinase activity, the tyrosine phosphorylation of MAP kinase, and MAP kinase kinase activity. Forskolin led to activation of MAP kinase comparable with that induced by NE, and a selective inhibitor of cAMP-dependent protein kinase, H8, attenuated the NE-induced activation of MAP kinase. On the other hand, elimination of extracellular calcium by EGTA completely blocked NE-induced tyrosine phosphorylation of MAP kinase, and a selective inhibitor of calcium/calmodulin-dependent protein kinase, KN-62, attenuated the NE-induced activation of MAP kinase. Furthermore, depolarization of GT1-1 cells with 75 mM KCl, 10 microM BayK 8644, or 1 microM calcium ionophore (A23187) induced rapid tyrosine phosphorylation of MAP kinase. The omission of calcium from the extracellular medium completely abolished these effects of tyrosine phosphorylation of MAP kinase. Phorbol 12-myristate 13-acetate (PMA) also induced MAP kinase activity, but pretreatment of the cultured cells with PMA to down-regulate protein kinase C did not abolish the activation of MAP kinase by NE. In addition, although phosphorylation of Raf-1 kinase was stimulated by PMA, this phosphorylation was not induced by either NE or A23187. These results demonstrate that NE activates MAP kinase directly in GT1-1 cells, and that the effect of NE is mediated by increase in the cAMP level and by calcium influx, but not by PMA-sensitive protein kinase C or Raf-1 kinase.
    Endocrinology 01/1998; 138(12):5275-81. · 4.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of prolactin (PRL) on proliferation of cultured human uterine leiomyoma-derived smooth muscle cells (SMC) and its mechanism of action were investigated. PRL stimulated DNA synthesis and the expression of PRL receptor was identified by ribonuclease protection assay. Moreover, the regulation of mitogen-activated protein (MAP) kinase by PRL in leiomyoma-derived SMC was investigated. PRL stimulated MAP kinase activity, as detected by 32P incorporation into MAP-2, in a dose-dependent manner. PRL also rapidly stimulated MAP kinase phosphorylation as detected by in vivo phosphorylation using 32P labeling and phosphotyrosine immunoblotting. These results suggest that PRL stimulates the proliferation of human leiomyoma cells via the MAP kinase cascade.
    Biochemical and Biophysical Research Communications 10/1997; 238(2):473-7. · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, prostaglandin (PG) F2alpha was found to activate mitogen-activated protein (MAP) kinase and MAP kinase kinase (MEK) in cultured rat puerperal uterine myometrial cells. PGF2alpha stimulation also led to an increase in phosphorylation of raf-1, son of sevenless (SOS), and Shc. Furthermore, we examined the mechanism by which PGF2alpha induced MAP kinase phosphorylation. Both pertussis toxin (10 ng/ml), which inactivates Gi/Go proteins, and expression of a peptide derived from the carboxyl terminus of the beta-adrenergic receptor kinase 1 (betaARK1), which specifically blocks signaling mediated by the betagamma subunits of G proteins, blocked the PGF2alpha-induced activation of MAP kinase. Ritodrine (1 microM), which is known to relax uterine muscle contraction, attenuated PGF2alpha-induced tyrosine phosphorylation of MAP kinase. Moreover, to examine the role of MAP kinase pathway in uterine contraction, an inhibitor of MEK activity, PD098059, was used. Although MEK inhibitor had no effect on PGF2alpha-induced calcium mobilization, this inhibitor partially inhibited PGF2alpha-induced uterine contraction. These results provide evidence that PGF2alpha stimulates the MAP kinase signaling pathway in cultured rat puerperal uterine myometrial cells through Gbetagamma protein, suggesting that this new pathway may play an important role in the biological action of PGF2alpha on these cells.
    Endocrinology 09/1997; 138(8):3103-11. · 4.72 Impact Factor

Publication Stats

737 Citations
90.12 Total Impact Points

Institutions

  • 2000–2004
    • Osaka University
      • Division of Obstetrics and Gynecology
      Ōsaka-shi, Osaka-fu, Japan
  • 1998–2004
    • Osaka City University
      • Department of Obstetrics and Gynecology
      Ōsaka, Ōsaka, Japan