Tsuyoshi Imai

Kyoto University, Kyoto, Kyoto-fu, Japan

Are you Tsuyoshi Imai?

Claim your profile

Publications (6)35.53 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The histone deacetylase inhibitor depsipeptide [(1S,4S,7Z,10S, 16E,21R)-7-ethylidene-4,21-bis(propan-2-yl)-2-oxa-12,13-dithia-5,8,20,23-tetraazabicyclo[8.7.6]tricos-16-ene-3,6,9,19, 22-pentone] (FK228) has attracted a great deal of interest because of its antiproliferative and apoptotic properties in various malignancies. Histone deacetylase inhibitors induce the expression of the multidrug resistance transporter P-glycoprotein (P-gp), and FK228 is a known P-gp substrate. Thus, FK228 seems to induce its own mechanism of drug resistance by up-regulating P-gp. The goal of this study was to establish human FK228-resistant osteosarcoma cell lines and to investigate whether there are mechanisms of FK228 resistance in addition to P-gp up-regulation. After 72 h in culture, the 50% inhibitory concentrations (IC(50)) of FK228 were 4.8 and 991 nM in HOS and HOS/FK8 cells, respectively, and 3.6 and 1420 nM in U2OS and U2OS/FK11 cells, respectively. Increased histone H3 acetylation was observed in FK228-resistant cell lines after a 1-h treatment with 10 nM FK228. Unlike in parental cells, significant P-gp overexpression was detected in FK228-resistant cells, and 10 nM FK228 treatment activated the mitogen-activated protein kinase (MAPK) pathway but did not induce Fas ligand (FasL) up-regulation or c-FLIP down-regulation. However, treatment of FK228-resistant cells with a combination of FK228 and mitogen-activated protein kinase kinase (MEK) inhibitors induced apoptosis, up-regulated FasL, and down-regulated c-FLIP. The expression and function of P-gp were unaltered by treatment with MEK inhibitors. These results indicate that the FK228 resistance of osteosarcoma cells is related to P-gp overexpression and MAPK pathway activation by FK228. MEK or P-gp inhibitors may be useful in overcoming this resistance.
    Journal of Pharmacology and Experimental Therapeutics 01/2009; 328(3):839-48. · 3.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malignant rhabdoid tumors (MRT) exhibit a very poor prognosis because of their resistance to chemotherapeutic agents and new therapies are needed for the treatment of this cancer. Here, we show that the histone deacetylase (HDAC) inhibitor FK228 (depsipeptide) has an antitumor effect on MRT cells both in vitro and in vivo. FK228 is a unique cyclic peptide and is among the most potent inhibitors of both Class I and Class II HDACs. FK228 inhibited proliferation and induced apoptosis in all MRT cell lines tested. Preincubation with the pancaspase inhibitor zVAD-fmk did not completely rescue FK228-induced cell death, although it did inhibit apoptosis. Transmission electron microscopy (TEM) showed that FK228 could stimulate MRT cells to undergo apoptosis, necrosis or autophagy. FK228 converted unconjugated microtubule-associated protein light chain 3 (LC3-I) to conjugated light chain 3 (LC3-II) and induced localization of LC3 to autophagosomes. Apoptosis inducing factor (AIF), which plays a role in caspase-independent cell death, translocated to the nucleus in response to FK228 treatment. Moreover, small interfering RNA (siRNA) targeting of AIF prevented the morphological changes associated with autophagy and redistribution of LC3 to autophagosomes. Disrupting autophagy with chloroquine treatment enhanced FK228-induced cell death. In vivo, FK228 caused a reduction in tumor size and induced autophagy in tumor tissues. Using immunoelectron microscopy, we confirmed AIF translocation into the nucleus of FK228-induced autophagic cells in vivo. Thus, FK228 is a novel candidate for an antitumor agent for MRT cells.
    International Journal of Cancer 10/2008; 124(1):55-67. · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously reported that calcium ionophore A23187 differentially induces necrosis in CEM cells, a T-lymphoblastic leukemia cell line, and apoptosis in HL60 cells, a promyelocytic leukemia cell line. Stimulation with VP16, however, induces typical apoptosis in both cell lines. Necrosis in CEM cells, characterized by cell shrinkage and clustering, began within 5 min of treatment. Swelling of the mitochondria, lumpy chromatin condensation and intact plasma membranes were evident by electron microscopy. These A23187-mediated changes in CEM cells were suppressed by clonazepam or CGP37157, inhibitors of the mitochondrial Na(+)/Ca(2+) exchanger. The changes, however, were not affected by cyclosporin A, an inhibitor of the mitochondrial permeability transition pore. In both CEM and HL60 cells, intra-cellular calcium increased with similar amplitude within 1 min of treatment with 2 microM A23187. Intra-mitochondrial calcium increased with clonazepam pre-treatment alone in both CEM and HL60 cells. However, intra-mitochondrial calcium did not change drastically in response to A23187 in CEM or HL60 cells, either untreated or pre-treated with clonazepam. A23187 induces necrosis in CEM cells concurrent with mitochondrial dysfunction, which is independent of the mitochondrial permeability transition, but affected by intra-mitochondrial calcium, while HL60 cells lack these early changes. Differences in the responses to A23187 between these two cell lines might derive from differences in the susceptibility of the mitochondrial membrane to rapid increases in intra-cellular calcium.
    European Journal of Pharmacology 07/2005; 516(3):187-96. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the gene coding for hepatocyte nuclear factor-1beta (HNF-1beta) have been known to cause a form of maturity-onset diabetes of the young (MODY5), which is usually characterized by dominantly inherited adolescence-onset diabetes mellitus associated with renal cysts. This report, however, describes recurrence of a novel missense mutation in the HNF-1beta gene, S148W (C443G), in two sibs, one with neonatal diabetes mellitus and the other with neonatal polycystic, dysplastic kidneys leading to early renal failure. The former patient had only a few small renal cysts with normal renal functions, and the latter had only a transient episode of hyperglycemia, which resolved spontaneously. Interestingly, both parents were clinically unaffected, and PCR restriction fragment length polymorphism analysis showed that the mother was a low-level mosaic of normal and mutant HNF-1beta, which suggested that the recurrence was caused by germline mosaicism. This is the first report of permanent neonatal diabetes mellitus caused by a mutation of the HNF-1beta gene as well as the first report of germline mosaicism of this gene. In addition, the two cases described here show that additional factors, genetic or environmental, can have a significant influence on the phenotypic expression of HNF-1beta mutations.
    Journal of Clinical Endocrinology &amp Metabolism 07/2004; 89(6):2905-8. · 6.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Caspase-independent programmed cell death can exhibit either an apoptosis-like or a necrosis-like morphology. The ABL kinase inhibitor, imatinib mesylate, has been reported to induce apoptosis of BCR-ABL-positive cells in a caspase-dependent fashion. We investigated whether caspases alone were the mediators of imatinib mesylate-induced cell death. In contrast to previous reports, we found that a broad caspase inhibitor, zVAD-fmk, failed to prevent the death of imatinib mesylate-treated BCR-ABL-positive human leukemic cells. Moreover, zVAD-fmk-preincubated, imatinib mesylate-treated cells exhibited a necrosis-like morphology characterized by cellular pyknosis, cytoplasmic vacuolization, and the absence of nuclear signs of apoptosis. These cells manifested a loss of the mitochondrial transmembrane potential, indicating the mitochondrial involvement in this caspase-independent necrosis. We excluded the participation of several mitochondrial factors possibly involved in caspase-independent cell death such as apoptosis-inducing factor, endonuclease G, and reactive oxygen species. However, we observed the mitochondrial release of the serine protease Omi/HtrA2 into the cytosol of the cells treated with imatinib mesylate or zVAD-fmk plus imatinib mesylate. Furthermore, serine protease inhibitors prevented the caspase-independent necrosis. Taken together, our results suggest that imatinib mesylate induces a caspase-independent, necrosis-like programmed cell death mediated by the serine protease activity of Omi/HtrA2.
    Blood 04/2004; 103(6):2299-307. · 9.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the antitumor effects of FR901228, a HDAC inhibitor, on human osteosarcoma cells, in vitro and in vivo to explore its possible utility in the treatment of pediatric bone cancers. FR901228 caused marked growth inhibition with a 50% inhibitory concentration of 1.2-7.3 nM and induction of apoptosis in all eight osteosarcoma cell lines tested. These effects of FR901228 were also observed in vivo xenograft models on BALB/c nude mice, and treatment with 5.6 mg/kg/day resulting in a >70% reduction in the mean final tumor volume compared with the mean initial tumor volume. TUNEL assays demonstrated extensive apoptosis in tumor sections of mice treated with FR901228. Induction of apoptosis was preceded by increased expression of Fas ligand (FasL) mRNA, resulting in expression of membrane-bound FasL, which was followed by sequential activation of caspase-8 and -3. The level of apoptosis induction was reduced using a neutralizing anti-FasL antibody and overexpression of either the dominant-negative FADD or the viral FLICE inhibitory protein. Furthermore, treatment with a suboptimal dose of FR901228 greatly sensitized osteosarcoma cells to agonistic anti-Fas antibody-mediated apoptosis. These findings suggest that FR901228 is a highly promising antitumor agent against osteosarcoma, inducing apoptosis by the activation of the Fas/FasL system.
    Oncogene 12/2003; 22(58):9231-42. · 7.36 Impact Factor