A Szeles

Karolinska Institutet, Solna, Stockholm, Sweden

Are you A Szeles?

Claim your profile

Publications (33)141.26 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Epstein-Barr virus (EBV) has been implicated in the pathogenesis of human malignancies but the mechanisms of oncogenesis remain largely unknown. Genomic instability and chromosomal aberrations are hallmarks of malignant transformation. We report that EBV carriage promotes genomic instability in Burkitt's lymphoma (BL). Cytogenetic analysis of EBV- and EBV+ BL lines and their sublines derived by EBV conversion or spontaneous loss of the viral genome revealed a significant increase in dicentric chromosomes, chromosome fragments and chromatid gaps in EBV-carrying cells. Expression of EBV latency I was sufficient for this effect, whereas a stronger effect was observed in cells expressing latency III. Telomere analysis by fluorescent in situ hybridization revealed an overall increase of telomere size and prevalence of telomere fusion and double strand-break fusion in dicentric chromosomes from EBV+ cells. Phosphorylated H2AX, a reporter of DNA damage and ongoing repair, was increased in virus-carrying cells in the absence of exogenous stimuli, whereas efficient activation of DNA repair was observed in both EBV+ and EBV- cells following treatment with etoposide. These findings point to induction of telomere dysfunction and DNA damage as important mechanisms for EBV oncogenesis.
    Oncogene 09/2007; 26(35):5115-23. · 7.36 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: An approach of using RFP-transfected human foreskin fibroblasts (hFS-RFP) to support the growth of GFP expressing human embryonic stem cells (hES; HS181-GFP) is reported. The two-color system was applied to detect interactions between hFS and human embryonic stem cells (hES). After overnight culture, the hES cell colonies showed a behavior of "pushing away" the underlying feeder cells. This phenomenon occurred with both a low and high density of feeders. The density of the feeder cell layer, however, influenced the growth pattern of hES cell colonies. At a high feeder cell density, the hES colonies were more pointed and aligned with the direction of the fibroblasts, whereas less dense feeder layers allowed a more rounded and flat hES colony formation. Not surprisingly, a small fraction of mitotically inactivated feeder cells reattached after passage and remained viable in the cultures for up to four subsequent passages. The prospect of using the two-color system for detection of possible fusion events between hES cells and feeder cells was assessed by screening a large number of cell cultures for double RFP/EGFP expressing cells. The results indicate that fusion events are extremely rare (<10(-6)), or alternatively that after fusion the dual expression of both EGFP and RFP is not easily detected for other reasons. In summary, a two-color system allows analysis of colony formation and also helps to identify and follow the differentiation of cells.
    Stem Cells and Development 08/2004; 13(4):337-43. · 4.67 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Lactoferrin (LF) is one of 19 active genes in the common eliminated region 1 at 3p21.3 identified by us. LF was transfected into mouse fibrosarcoma A9. Fourteen severe combined immunodeficient (SCID) derived tumors from two PI based artificial chromosome (PAC)-transfectants containing the entire LF gene and two LF-cDNA transfectants were analyzed by real time polymerase chain reaction at the DNA and RNA level. Following SCID tumor passage, LF expression was decreased or eclipsed, in all tumors although DNA levels did not change considerably. Promoter methylation and/or rearrangement of the insertion site may be responsible for human LF downregulation in mouse fibrosarcoma derived tumors.
    Cancer Letters 04/2003; 191(2):155-64. · 4.26 Impact Factor
  • Anna Szeles
    [show abstract] [hide abstract]
    ABSTRACT: In this review, we discuss the developments of fluorescence in situ hybridization (FISH) and place them in the context of their applications in cancer research. These methods are not only very useful for the causal analysis of the development and spread of certain tumors, they are also efficient tools for tumor diagnosis. Although a review of all of the literature in this field is not possible here, many of the major contributions are summarized along with recent work from our laboratory. Our group contributes to the goal of functional identification of tumor growth antagonizing genes. FISH and molecular analyses have shown that the short arm of human chromosome 3 is frequently deleted in kidney, lung, breast, uterus, testis and ovary carcinomas. Deletion-mapping studies have outlined several separate deletion prone regions in different tumors, namely 3pter-p25, p22-p21.3, p21.1-p14 and p14-p12, which may contain putative tumor suppressor genes (TSGs). Candidate suppressor genes isolated from frequently deleted regions need to be assayed for possible tumor-antagonizing ability by functional tests. We have developed a functional test system, the microcell hybrid (MCH) based "elimination test" (Et). The Et is based on the introduction of a single human chromosome into tumor cells of human or murine origin, via microcell fusion. The MCHs were analyzed by FISH painting and PCR for the elimination or retention of specific human chromosome 3 (chr. 3) regions after one or several passages in severe combined immunedeficient (SCID) mice. We have defined a common eliminated region (CER) on chr. 3p21.3. CER is approximately 1 megabase (Mb) in size. We have covered this region with PACs (bacteriophage PI based artificial chromosome) and used FISH mapping for localization and ordering PACs and cosmids on the chromosome 3 and high-resolution free chromatin/DNA fiber FISH to orient the PAC contig, to measure the lengths of PACs, and to establish their order. Activation of cellular oncogene by chromosomal tanslocation, which brings an oncogene under the influence of a highly active chromosome region, appears to play a pivotal role in the genesis of certain hematopoetic and lymphoid tumors. We have detected specific chromosomal translocations by FISH painting in mouse plamacytoma (MPC), human Burkitt lymphoma (BL) other B-cell derived tumors. We have showed in a murine sarcoma derived line (SEWA) that FISH can be also be used for detection of amplified oncogene (c-myc) and the linked locus (pvt-1). We have also applied the FISH technique for visualization of integrated and episomal Epstein-Barr virus (EBV) genomes and EBV transcripts in EBV-carrying B-cell derived human cell lines.
    Acta Microbiologica et Immunologica Hungarica 02/2002; 49(1):69-80. · 0.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We have shown previously that phagocytosis of cells dying by apoptosis results in transfer of whole or fragments of chromosomes into the nucleus of the recipient cell. Although DNA transfer was detected in normal cells, stable propagation of the transferred DNA was only observed in cells deficient in p53. Here we show that mouse embryonic fibroblast cells lacking the p21 (Cip1/Waf1) cyclin-kinase inhibitor are able to propagate DNA engulfed by phagocytosis of apoptotic bodies. Feeding mouse embryonic fibroblast p21(-/-) cells with apoptotic bodies derived from a rat fibrosarcoma resulted in focus formation in vitro and tumor formation in vivo. In contrast, cells lacking the p19 alternative reading frame gene did not show any evidence of transformation. These data indicate that p53, via the activation of p21, blocks normal cells from replicating transferred DNA from engulfed apoptotic bodies. This may be one protection level against the propagation of potentially pathological DNA.
    Cancer Research 02/2002; 62(2):575-9. · 8.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Tumor formation involves the accumulation of a series of genetic alterations that are required for malignant growth. In most malignancies, genetic changes can be observed at the chromosomal level as losses or gains of whole or large portions of chromosomes. Here we provide evidence that tumor DNA may be horizontally transferred by the uptake of apoptotic bodies. Phagocytosis of apoptotic bodies derived from H-ras(V12)- and human c-myc-transfected rat fibroblasts resulted in loss of contact inhibition in vitro and a tumorigenic phenotype in vivo. Fluorescence in situ hybridization analysis revealed the presence of rat chromosomes or of rat and mouse fusion chromosomes in the nuclei of the recipient murine cells. The transferred DNA was propagated, provided that the transferred DNA conferred a selective advantage to the cell and that the phagocytotic host cell was p53-negative. These results suggest that lateral transfer of DNA between eukaryotic cells may result in aneuploidy and the accumulation of genetic changes that are necessary for tumor formation.
    Proceedings of the National Academy of Sciences 06/2001; 98(11):6407-11. · 9.74 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: By passaging microcell hybrids (MCHs) containing human chromosome 3 (chr3) on A9 mouse fibrosarcoma background through severe combined immunodeficient (SCID) mice (elimination test), we have previously defined a 1-Mb-long common eliminated region 1 (CER1) at 3p21.3, a second eliminated region (ER2) at 3p21.1-p14 and a common retained region (CRR) at 3q26-qter. In the present work, chr3 was transferred by microcell fusion into the human nonpapillary renal cell carcinoma line KH39 that contained uniparentally disomic chr3. Four MCHs were generated. Compared with KH39, they developed fewer and smaller tumors, which grew after longer latency periods in SCID mice. The tumors were analyzed in comparison with corresponding MCHs by chr3 arm-specific painting, 19 fluorescent in situ hybridization (FISH) probes, and 27 polymorphic markers. Three MCHs that maintained the intact exogenous chr3 in vitro lost one 3p copy in all 11 tumors. Seven of 11 tumors lost the exogenous 3p, whereas four tumors contained mixed cell populations that lacked either the exogenous or one endogenous KH39 derived 3p. In one MCH the exogenous chr3 showed deletions within CER1 and ER2 already in vitro. It remained essentially unchanged in 8/9 derived tumors. The third, exogenous copy of the 3q26-q27 region (part of CRR) was retained in 16/20 tumors. It can be concluded that the human/human MCH-based elimination test identifies similar eliminated and retained regions on chr3 as the human/murine MCH-based test.
    Proceedings of the National Academy of Sciences 02/2001; 98(3):1136-41. · 9.74 Impact Factor
  • A Szeles
    [show abstract] [hide abstract]
    ABSTRACT: Fluorescence in situ hybridization (FISH) is the method of choice for visualization of viral nucleotide sequences in the infected cells. FISH methodology has been previously used for localization of Epstein-Barr virus (EBV) DNA sequences within interphase nuclei or on chromosomes (1–4). The FISH technique has also been applied to visualization of specific viral RNAs within the nuclei of cells latently infected with EBV (5,6). In situ two-color detection of EBV-specific nuclear RNA allows the study of different viral expression programs at the cellular level (7).
    Methods in molecular biology (Clifton, N.J.) 02/2001; 174:67-76.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We have previously shown that inoculation of human chromosome 3 (chr3)/A9 mouse fibrosarcoma microcell hybrids (MCHs) into severe combined immunodeficient (SCID) mice was followed by the regular elimination of some 3p regions whereas a 3q region was retained even after prolonged mouse passage. Using this approach, referred to as the elimination test (Et), we have defined a common eliminated region (CER) of approximately 7 cM at 3p21.3 that was absent in all of the 27 tumors generated from five MCHs. Later, CER was reduced to a 1-Mb region, designated as CER1. Another eliminated region (ER2) at 3p21.1-p14.2 was absent in 21 of the 27 tumors. ER2 borders at but does not include the fragile histidine triad (FHIT) gene, considered as a putative tumor suppressor gene. In the present work, two new and two previously studied MCHs, and 13 derived SCID mouse tumors were analyzed by fluorescence in situ hybridization (FISH) chromosome painting and by PCR, using 72 chr3p-specific and 11 chr3q-specific markers. Nine tumors generated from three MCHs that carried cytogenetically normal chr3, remained PCR-positive for all of the chr3 markers tested. Designated as "PCR+" tumors, they were examined by reverse transcription (RT)-PCR, together with four of six previously studied tumors derived from MCH910.7, which carried a del(3)(pter-p21.1), for the expression of 14 human genes: 5 genes within CER1 (LIMD1, CCR1, CCR2, CCR3, CCR5), 5 genes located within regions that were homozygously deleted in a variety of carcinomas (ITGA4L, LUCA1, PTPRG, FHIT, DUTT1), and 4 other genes in chr3p (VHL, MLH1, TGM4, UBE1L). We found that VHL, MLH1, ITGA4L, LIMD1, UBE1L, LUCA1, PTPRG, and DUTT1 were expressed in the MCH lines in vitro and also in the derived SCID tumors. No transcripts that originated from the four CCR genes or from TGM4 could be detected in any of the MCH lines. Alone among the 14 genes examined, FHIT showed a tumor growth-associated change. It was expressed in vitro in five of seven MCH lines. Nine of 13 derived tumors had no FHIT transcript. The remaining 4 expressed a truncated mRNA and a reduced amount of the full-length mRNA. We have previously found that FHIT was deleted at the DNA level in 17 of 21 tumors derived from four MCHs. The remaining 4 of 21 had no FHIT transcript. Our compiled data show that FHIT was either physically or functionally impaired in all 34 of the 34 analyzed tumors. Variants with deleted or down-regulated FHIT have a selective growth advantage.
    Cancer Research 01/2001; 60(24):7119-25. · 8.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We have developed an elimination test to identify chromosomal regions that contain tumor inhibitory genes. Monochromosomal human/mouse microcell hybrids are generated and passaged through SCID mice. Derived tumors are then analyzed for deletions on the transgenomic chromosome. Using this strategy, we have previously identified a 1.6-cM common eliminated region 1 (CER1) on human 3p21.3. We now report that CER1 contains 14 markers that are deleted in 19 SCID-derived tumors. A 1-Mb PAC contig that spans CER1 was assembled. Five chemokine receptor genes (CCR1, CCR3, CCR2, CCR5, and CCR6) were localized in CER1 in a 225-kb cluster. The lactotransferrin gene (LTF, or lactoferrin, LF), which reportedly has tumor inhibitory activity, also maps to CER1. Our results create a basis for characterization and further functional testing of genes within CER1.
    Genomics 12/1999; · 3.01 Impact Factor
  • Source
    A Szeles, K I Falk, S Imreh, G Klein
    [show abstract] [hide abstract]
    ABSTRACT: Epstein-Barr virus (EBV) transforms human B lymphocytes into immortalized lymphoblastoid cell lines (LCLs). They regularly express six virally encoded nuclear proteins (EBNA1 to EBNA6) and three membrane proteins (LMP1, LMP2A, and LMP2B). In contrast, EBV-carrying Burkitt lymphoma (BL) cells in vivo and derived type I cell lines that maintain the BL phenotype express only EBNA1. During prolonged in vitro culturing, most EBV-carrying BL lines drift toward a more immunoblastic (type II or III) phenotype. Their viral antigen expression is upregulated in parallel. We have used fluorescent in situ hybridization to visualize viral transcripts in type I and III BL lines and LCLs. In type I cells, EBNA1 is encoded by a monocistronic message that originates from the Qp promoter. In type III cells, the EBNA1 transcript is spliced from a giant polycistronic message that originates from one of several alternative Wp or Cp promoters and encodes all six EBNAs. We have obtained a "track" signal with a BamHI W DNA probe that could hybridize with the polycistronic but not with the monocistronic message in two type III BL lines (Namalwa-Cl8 and MUTU III) and three LCLs (LCL IB4-D, LCL-970402, and IARC-171). A BamHI K probe that can hybridize to both the monocistronic and the polycistronic message visualized the same pattern in the type III BLs and the LCLs as the BamHI W probe. A positive signal was obtained with the BamHI K but not the BamHI W probe in the type I BL lines MUTU I and Rael. The RNA track method can thus distinguish between cells that use a type III and those that use a type I program. The former cells hybridize with both the W and the K probes, but the latter cells hybridize with only the K probe. Our findings may open the way for studies of the important but still unanswered question of whether cells with type I latency arise from immunoblasts with a full type III program or are generated by a separate pathway during primary infection.
    Journal of Virology 07/1999; 73(6):5064-9. · 5.08 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: In this study we have raised the question of whether DNA can be transferred from one cell to another by phagocytosis of apoptotic bodies. We have used integrated copies of the Epstein-Barr virus (EBV) as a marker to follow the fate and expression pattern of apoptotic DNA in the phagocytotic host. Apoptosis was induced in EBV-carrying cell lines by irradiation before cultivation with either human fibroblasts, macrophages, or bovine aortic endothelial cells. Analysis of the expression pattern of EBV-encoded genes was performed by immunofluorescent staining as well as in situ hybridization. Cocultivation of apoptotic bodies from lymphoid cell lines containing integrated but not episomal copies of EBV resulted in expression of the EBV-encoded genes EBER and EBNA1 in the recipient cells at a high frequency. Fluorescence in situ hybridization analysis showed uptake of human chromatin as well as integrated EBV-DNA into the nuclei of bovine aortic endothelial cells. These data show that DNA may be rescued and reused from apoptotic bodies by somatic cells. In addition, our findings suggest that apoptotic bodies derived from EBV-carrying B lymphocytes may serve as the source of viral transfer to cells that lack receptors for the EBV virus in vivo.
    Blood 07/1999; 93(11):3956-63. · 9.06 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A 60-Mb murine chromosome consisting of murine pericentric satellite DNA and two bands of integrated marker and reporter genes has been generated de novo in a rodent/human hybrid cell line (mM2C1). This prototype mammalian artificial chromosome platform carries a normal centromere, and the expression of its beta-galactosidase reporter gene has remained stable under selection for over 25 months. The novel chromosome was transferred by a modified microcell fusion method to mouse [L-M(TK-)], bovine (P46) and human (EJ30) cell lines. In all cases, the chromosome remained structurally and functionally intact under selection for periods exceeding 3 months from the time of transfer into the new host. In addition, the chromosome was retained in three first-generation tumours when L-M(TK-) cells containing the chromosome were xenografted in severe combined immunodeficiency mice. These data support that a murine satellite DNA-based artificial chromosome can be used as a functional mammalian artificial chromosome and can be maintained in vivo and in cells of heterologous species in vitro.
    Chromosome Research 02/1999; 7(1):3-7. · 2.85 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We have previously found that human chromosome 3 was fragmented in the course of in vivo tumor growth of monochromosomal human/mouse (A9 fibrosarcoma parent) microcell hybrids in SCID mice. Marker analysis of tumor cell lines has identified a regularly eliminated 7 cM segment on 3p21.3 referred to as the common eliminated region (CER). The same region is frequently affected by LOH in a variety of human carcinomas. The present study is a comparative chromosome painting, reverse painting, and PCR marker analysis of microcell hybrids (MCHs) that originally contained an intact chromosome 3 from two alternative donors, during and after four passages in SCID mice. We found regular elimination of 3p in parallel with preferential retention of 3q. In addition to CER on 3p, we can now define a common retained region (CRR) on 3q. It includes eight markers between D3S1282 (3q25-q26) and D3S1265 (3q27-qter) and spans approximately 43 cM. These observations are concordant with the frequent loss of corresponding 3p regions and the frequent retention, with occasional amplification, of 3q in several types of human tumors. Genes Chromosomes Cancer 20:224–233, 1997. © 1997 Wiley-Liss, Inc.
    Genes Chromosomes and Cancer 12/1998; 20(3):224 - 233. · 3.55 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: A body cavity lymphoma-derived cell line (BC1), known to carry both Epstein-Barr virus (EBV) and human herpes virus type 8 (HHV-8; or Kaposi's sarcoma-associated herpesvirus, KSHV), was analysed for the expression of EBV-encoded, growth transformation-associated antigens and cellular phenotype by immunofluorescence staining, Western blotting, RT-PCR and flow cytometry. A similar phenotypic analysis was also performed on another body cavity lymphoma line, BCBL1, that is singly infected with HHV-8. Phenotypically, the two lines were closely similar. Although both lines are known to carry rearranged immunoglobulin genes, they were mostly negative for B-cell surface markers. Both expressed the HHV-8-encoded nuclear antigen (LNA1). Similarly to Epstein-Barr nuclear antigen type 1 (EBNA1), LNA1 was associated with the chromatin in interphase nuclei and the mitotic chromosomes in metaphase. It accumulated in a few well-circumscribed nuclear bodies that did not co-localize with EBNA1. BC1 cells expressed EBNA1, LMP2A and EBV-encoded small RNAs but not EBNA2-6, LMP1 and LMP2B. They were thus similar to type I Burkitt's lymphoma cells and latently infected peripheral B-cells. Analysis of the splicing pattern of the EBNA1-encoding message by RT-PCR showed that BC1 cells used the QUK but not the YUK splice, indicating that the mRNA was initiated from Qp and not from Cp or Wp.
    Journal of General Virology 07/1998; 79 ( Pt 6):1445-52. · 3.13 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We have previously identified an approximately 7 cM long common eliminated region (CER), involving the 3p21.3 markers AP20R, D3S966, D3S3559, D3S1029, WI-7947, D3S2354, AFMb362wb9, and D3S32, in human chromosome 3/A9 mouse fibrosarcoma microcell hybrid (MCH) derived SCID mouse tumors. We now report the results of our more detailed analysis on 24 SCID mouse tumors derived from two MCH lines that originally carried intact human chromosomes 3. They were analyzed by fluorescence in situ hybridization (FISH) painting and PCR, using 24 markers covering the region between D3S1611 and D3S13235 at 3p22-p21.2. D3S32 and D3S2354 were regularly eliminated during in vivo tumor growth, whereas the other 22 markers, D3S1611, ACAA, D3S1260, WI-692, AP20R, D3S3521, D3S966, D3S1029, D3S643, WI-2420, MSTI. GNAI2, D3S1235, D3S1298, GLBI, WI-4193, D3S3658, D3S3559, D3S3678, WI-6400, WI-7947, and WI-10865, were regularly retained. We have defined a common eliminated region of approximately 1.6 cM (designated as CER1) inside the 7 cM CER described earlier. CER1 is flanked distally by D3S1029 and proximally by D3S643.
    Genes Chromosomes and Cancer 01/1998; 20(4):329-36. · 3.55 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We have previously found that human chromosome 3 was fragmented in the course of in vivo tumor growth of monochromosomal human/mouse (A9 fibrosarcoma parent) microcell hybrids in SCID mice. Marker analysis of tumor cell lines has identified a regularly eliminated 7 cM segment on 3p21.3 referred to as the common eliminated region (CER). The same region is frequently affected by LOH in a variety of human carcinomas. The present study is a comparative chromosome painting, reverse painting, and PCR marker analysis of microcell hybrids (MCHs) that originally contained an intact chromosome 3 from two alternative donors, during and after four passages in SCID mice. We found regular elimination of 3p in parallel with preferential retention of 3q. In addition to CER on 3p, we can now define a common retained region (CRR) on 3q. It includes eight markers between D3S1282 (3q25-q26) and D3S1265 (3q27-qter) and spans approximately 43 cM. These observations are concordant with the frequent loss of corresponding 3p regions and the frequent retention, with occasional amplification, of 3q in several types of human tumors.
    Genes Chromosomes and Cancer 12/1997; 20(3):224-33. · 3.55 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We have previously shown that four markers spanning the 3p24-p21.3 region, THRB, AP20R, D3S1029, and D3S32, were regularly eliminated from three human chromosome 3 (chr3)/mouse microcell hybrids (MCHs) during tumor growth in SCID mice. In an attempt to narrow down the eliminated region, we have studied 22 new SCID mouse tumors derived from 5 MCH lines carrying human chr3. They were analyzed by fluorescence in situ hybridization (FISH), Southern blotting, and polymerase chain reaction (PCR). MCHs that carried human chr1, chr8, chr13, and chr17 were examined as controls. We could identify a common eliminated region (CER) at 3p21.3, bordered distally by D3S1260 and proximally by D3S643/D3F15S2. Eight of 53 chr3-specific PCR markers, AP20R, D3S966, D3S3559, D3S1029, WI-7947, D3S2354, AFMb362wb9, and D3S32. were localized within the CER. This finding is consistent with the notion that a tumor suppressor gene may be located in this area, as suggested by frequent loss of heterozygosity (LOH) within this region observed in several types of solid tumors.
    Genes Chromosomes and Cancer 04/1997; 18(3):200-11. · 3.55 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: In studies concerning the interaction of B-CLL cells and Epstein-Barr virus (EBV), we encountered one patient whose cells had several unusual properties. In addition to the B-cell markers, the CLL cells expressed the exclusive T-cell markers CD3 and CD8 and carried a translocation t(18,22)(q21;q11), involving the bcl-2 and Ig lambda loci. The patient represents the 4th reported CLL case with this translocation. The CLL cells could be infected and immortalized by the indigenous and by the prototype B958 virus in vitro. The T-cell markers were not detectable on the established lines. In all experiments the immortalized lines originated from the CLL cells. Their preferential emergence over virus-infected normal B cells may be coupled to the high expression of the bcl-2 gene due to the translocation. In spite of the sensitivity of CLL cells to EBV infection in vitro, no EBNA-positive cells were detected in the ex vivo population. In vitro, we could generate cytotoxic function in T-lymphocyte cultures which acted on autologous EBV-infected CLL cells. Therefore we assume that if such cells emerged in vivo they were eliminated by the T-cell response.
    International Journal of Cancer 02/1997; 70(1):1-8. · 6.20 Impact Factor
  • Cytogenetics and cell genetics 02/1997; 79(3-4):228-30.

Publication Stats

770 Citations
250 Downloads
2k Views
141.26 Total Impact Points

Institutions

  • 1994–2002
    • Karolinska Institutet
      • • Institutionen för mikrobiologi, tumör- och cellbiologi
      • • Institutionen för cell- och molekulärbiologi
      Solna, Stockholm, Sweden
  • 1996
    • Hungarian Academy of Sciences
      • Institute of Genetics
      Budapest, Budapest fovaros, Hungary