Hiroshi Akazawa

The University of Tokyo, 白山, Tōkyō, Japan

Are you Hiroshi Akazawa?

Claim your profile

Publications (123)665.08 Total impact

  • Takehiro Kamo · Hiroshi Akazawa · Issei Komuro
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac hypertrophy is characterized by complex multicellular alterations, such as cardiomyocyte growth, angiogenesis, fibrosis, and inflammation. The heart consists of myocytes and nonmyocytes, such as fibroblasts, vascular cells, and blood cells, and these cells communicate with each other directly or indirectly via a variety of autocrine or paracrine mediators. Accumulating evidence has suggested that nonmyocytes actively participate in the development of cardiac hypertrophy. In this review, recent progress in our understanding of the importance of nonmyocytes as a hub for induction of cardiac hypertrophy is summarized with an emphasis of the contribution of noncontact communication mediated by diffusible factors between cardiomyocytes and nonmyocytes in the heart. © 2015 American Heart Association, Inc.
    Circulation Research 06/2015; 117(1):89-98. DOI:10.1161/CIRCRESAHA.117.305349 · 11.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although cardiac fibrosis causes heart failure, its molecular mechanisms remain elusive. In this study, we investigated the mechanisms of cardiac fibrosis and examined the effects of the anti-fibrotic drug pirfenidone (PFD) on chronic heart failure. To understand the responsible mechanisms, we generated an in vivo pressure-overloaded heart failure model via transverse aortic constriction (TAC) and examined the effects of PFD on chronic-phase cardiac fibrosis and function. In the vehicle group, contractile dysfunction and left ventricle fibrosis progressed further from 4 to 8 weeks after TAC but were prevented by PFD treatment beginning 4 weeks after TAC. We isolated cardiac fibroblasts and vascular endothelial cells from the left ventricles of adult male mice and investigated the cell type-specific effects of PFD. TGF-β induced upregulated collagen 1 expression via p38 phosphorylation and downregulated claudin 5 (Cldn5) expression in cardiac fibroblasts and endothelial cells, respectively; both processes were inhibited by PFD. Moreover, PFD inhibited changes in the collagen 1 and Cldn5 expression levels, resulting in reduced fibrosis and serum albumin leakage into the interstitial space during the chronic phase in TAC hearts. In conclusion, PFD inhibited cardiac fibrosis by suppressing both collagen expression and the increased vascular permeability induced by pressure overload. Copyright © 2015, American Journal of Physiology - Heart and Circulatory Physiology.
    AJP Heart and Circulatory Physiology 06/2015; 309(3):ajpheart.00137.2015. DOI:10.1152/ajpheart.00137.2015 · 3.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: -There are changes in the skeletal muscle of patients with chronic heart failure (CHF), such as volume reduction and fiber type shift toward fatigable type IIb fiber. FoxO signaling plays a critical role in the development of skeletal myopathy in CHF, and functional interaction between FoxO and the Wnt signal mediator β-catenin was previously demonstrated. We have recently reported that serum of CHF model mice activates Wnt signaling more potently than serum of control mice and that complement C1q mediates this activation. We therefore hypothesized that C1q-induced activation of Wnt signaling plays a critical role in skeletal myopathy via the interaction with FoxO. -Fiber type shift toward fatigable fiber was observed in the skeletal muscle of dilated cardiomyopathy (DCM) model mice, which was associated with activation of both Wnt and FoxO signaling. Wnt3a protein activated FoxO signaling and induced fiber type shift toward fatigable fiber in C2C12 cells. Wnt3a-induced fiber type shift was inhibited by suppression of FoxO1 activity, whereas Wnt3a-independent fiber type shift was observed by overexpression of constitutively active FoxO1. Serum of DCM mice activated both Wnt and FoxO signaling and induced fiber type shift toward fatigable fiber in C2C12 cells. Wnt inhibitor and C1-inhibitor attenuated FoxO activation and fiber type shift both in C2C12 cells and in the skeletal muscle of DCM mice. -C1q-induced activation of Wnt signaling contributes to fiber type shift toward fatigable fiber in CHF. Wnt signaling may be a novel therapeutic target to prevent skeletal myopathy in CHF.
    Circulation Heart Failure 06/2015; 8(4). DOI:10.1161/CIRCHEARTFAILURE.114.001958 · 5.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CD36 is an important transporter of long-chain fatty acids (LCFAs) in the myocardium. As we have reported previously, CD36-deficient patients demonstrate a marked reduction in myocardial uptake of (123)I-15-(p-iodophenyl)-(R, S)-methyl pentadecanoic acid (BMIPP), which is an analog of LCFAs, while myocardial (18)F-fluorodeoxy-glucose (FDG) uptake is increased. However, it has not been clarified whether energy provision is preserved in patients with CD36 deficiency. The aims of the current study were to investigate the myocardial uptake of glucose and alterations in myocardial metabolites in wild-type (WT) and CD36 knockout (KO) mice. High-resolution positron emission tomography (PET) demonstrated markedly enhanced glucose uptake in KO mouse hearts compared with those of WT mice in real-time. The myocardial protein expression of glucose transporter protein 1 (GLUT1) was significantly enhanced in KO mice compared to WT mice, whereas that of GLUT4 was not altered. While the myocardial expression of genes involved in fatty acid metabolism did not increase in KO mice, that of genes related to glucose utilization compensatorily increased in KO mice. The metabolomic analysis of cardiac tissues revealed that the myocardial concentrations of ATP and phosphocreatine were maintained, even in KO mice. The concentration of 3-hydroxybutyric acid and mRNA expression of hydroxybutyrate dehydrogenase in the heart were significantly higher in KO than in WT mice. These data suggest that high-energy phosphate might be preserved by the increased utilization of glucose and ketone bodies in CD36KO mouse hearts under conditions of deficient LCFA uptake. Copyright © 2015. Published by Elsevier Inc.
    Metabolism 06/2015; 64(9). DOI:10.1016/j.metabol.2015.05.017 · 3.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Identification of cognate ligands for G protein-coupled receptors (GPCRs) provides a starting point for understanding novel regulatory mechanisms. Although GPCR ligands have typically been evaluated through the activation of heterotrimeric G proteins, recent studies have shown that GPCRs signal not only through G proteins but also through β-arrestins. As such, monitoring β-arrestin signaling instead of G protein signaling will increase the likelihood of identifying currently unknown ligands, including β-arrestin-biased agonists. Here, we developed a cell-based assay for monitoring ligand-dependent GPCR-β-arrestin interaction via β-lactamase enzyme fragment complementation. Inter alia, β-lactamase is a superior reporter enzyme because of its cell-permeable fluorescent substrate. This substrate makes the assay non-destructive and compatible with fluorescence-activated cell sorting (FACS). In a reporter cell, complementary fragments of β-lactamase (α and ω) were fused to β-arrestin 2 and GPCR, respectively. Ligand stimulation initiated the interaction of these chimeric proteins (β-arrestin-α and GPCR-ω), and this inducible interaction was measured through reconstituted β-lactamase activity. Utilizing this system, we screened various mammalian tissue extracts for agonistic activities on human bombesin receptor subtype 3 (hBRS3). We purified peptide E as a low-affinity ligand for hBRS3, which was also found to be an agonist for the other two mammalian bombesin receptors such as gastrin-releasing peptide receptor (GRPR) and neuromedin B receptor (NMBR). Successful purification of peptide E has validated the robustness of this assay. We conclude that our newly developed system will facilitate the discovery of GPCR ligands.
    PLoS ONE 06/2015; 10(6):e0127445. DOI:10.1371/journal.pone.0127445 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: G protein-coupled receptors (GPCRs) play a critical role in many physiological systems and represent one of the largest families of signal-transducing receptors. The number of GPCRs at the cell surface regulates cellular responsiveness to their cognate ligands, and the number of GPCRs, in turn, is dynamically controlled by receptor endocytosis. Recent studies have demonstrated that GPCR endocytosis, in addition to affecting receptor desensitization and resensitization, contributes to acute G protein-mediated signaling. Thus, endocytic GPCR behavior has a significant impact on various aspects of physiology. In this study, we developed a novel GPCR internalization assay to facilitate characterization of endocytic GPCR behavior. We genetically engineered chimeric GPCRs by fusing HaloTag (a catalytically inactive derivative of a bacterial hydrolase) to the N-terminal end of the receptor (HT-GPCR). HaloTag has the ability to form a stable covalent bond with synthetic HaloTag ligands that contain fluorophores or a high-affinity handle (such as biotin) and the HaloTag reactive linker. We selectively labeled HT-GPCRs at the cell surface with a HaloTag PEG ligand, and this pulse-chase covalent labeling allowed us to directly monitor the relative number of internalized GPCRs after agonist stimulation. Because the endocytic activities of GPCR ligands are not necessarily correlated with their agonistic activities, applying this novel methodology to orphan GPCRs, or even to already characterized GPCRs, will increase the likelihood of identifying currently unknown ligands that have been missed by conventional pharmacological assays.
    PLoS ONE 05/2015; 10(5):e0129394. DOI:10.1371/journal.pone.0129394 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Congenital contractural arachnodactyly (CCA) is a rare connective tissue disorder characterized by marfanoid habitus with camptodactyly. However, cardiac features have rarely been documented in adults. We herein report a sporadic case of CCA in a 20-year-old woman who developed decompensated dilated cardiomyopathy. The patient did not have any mutations in the FBN1 or FBN2 genes, which are most commonly associated with Marfan syndrome and CCA, respectively. Although whether these two diseases are caused by a mutation(s) in the same gene or two different genes remains unknown, this case provides new clinical insight into the cardiovascular management of CCA.
    Internal Medicine 05/2015; 54(10):1237-41. DOI:10.2169/internalmedicine.54.4280 · 0.90 Impact Factor
  • Source
    Takehiro Kamo · Hiroshi Akazawa · Issei Komuro
    [Show abstract] [Hide abstract]
    ABSTRACT: Most of the pathophysiological actions of angiotensin II (Ang II) are mediated through the Ang II type 1 (AT1) receptor, a member of the seven-transmembrane G protein-coupled receptor family. Essentially, AT1 receptor signaling is beneficial for organismal survival and procreation, because it is crucial for normal organ development, and blood pressure and electrolyte homeostasis. On the other hand, AT1 receptor signaling has detrimental effects, such as promoting various aging-related diseases that include cardiovascular diseases, diabetes, chronic kidney disease, dementia, osteoporosis, and cancer. Pharmacological or genetic blockade of AT1 receptor signaling in rodents has been shown to prevent the progression of aging-related phenotypes and promote longevity. In this way, AT1 receptor signaling exerts antagonistic and pleiotropic effects according to the ages and pathophysiological conditions. Here we review the pleiotropic effects of AT1 receptor signaling in cardiovascular homeostasis and aging.
    International Heart Journal 04/2015; 56(3). DOI:10.1536/ihj.14-429 · 1.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myocarditis is a critical inflammatory disorder which causes life-threatening conditions. No specific or effective treatment has been established. DPP-4 inhibitors have salutary effects not only on type 2 diabetes but also on certain cardiovascular diseases. However, the role of a DPP-4 inhibitor on myocarditis has not been investigated. To clarify the effects of a DPP-4 inhibitor on myocarditis, we used an experimental autoimmune myocarditis (EAM) model in Balb/c mice. EAM mice were assigned to the following groups: EAM mice group treated with a DPP-4 inhibitor (linagliptin) (n = 19) and those untreated (n = 22). Pathological analysis revealed that the myocardial fibrosis area ratio in the treated group was significantly lower than in the untreated group. RT-PCR analysis demonstrated that the levels of mRNA expression of IL-2, TNF-α, IL-1β and IL-6 were significantly lower in the treated group than in the untreated group. Lymphocyte proliferation assay showed that treatment with the DPP-4 inhibit
    PLoS ONE 03/2015; 10(3-3):e0119360. DOI:10.1371/journal.pone.0119360 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypertension induces structural remodelling of arteries, which leads to arteriosclerosis and end-organ damage. Hyperplasia of vascular smooth muscle cells (VSMCs) and infiltration of immune cells are the hallmark of hypertensive arterial remodelling. However, the precise molecular mechanisms of arterial remodelling remain elusive. We have recently reported that complement C1q activates β-catenin signalling independent of Wnts. Here, we show a critical role of complement C1-induced activation of β-catenin signalling in hypertensive arterial remodelling. Activation of β-catenin and proliferation of VSMCs were observed after blood-pressure elevation, which were prevented by genetic and chemical inhibition of β-catenin signalling. Macrophage depletion and C1qa gene deletion attenuated the hypertension-induced β-catenin signalling, proliferation of VSMCs and pathological arterial remodelling. Our findings unveil the link between complement C1 and arterial remodelling and suggest that C1-induced activation of β-catenin signalling becomes a novel therapeutic target to prevent arteriosclerosis in patients with hypertension.
    Nature Communications 02/2015; 6:6241. DOI:10.1038/ncomms7241 · 11.47 Impact Factor
  • Journal of Cardiac Failure 10/2014; 20(10):S183. DOI:10.1016/j.cardfail.2014.07.288 · 3.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Increasing evidence suggests a critical role for mitochondrial aldehyde dehydrogenase 2 (ALDH2) in protection against cardiac injuries; however, the downstream cytosolic actions of this enzyme are largely undefined. Methods and Results Proteomic analysis identified a significant downregulation of mitochondrial ALDH2 in the heart of a rat heart failure model after myocardial infarction. The mechanistic insights underlying ALDH2 action were elucidated using murine models overexpressing ALDH2 or its mutant or with the ablation of the ALDH2 gene (ALDH2 knockout) and neonatal cardiomyocytes undergoing altered expression and activity of ALDH2. Left ventricle dilation and dysfunction and cardiomyocyte death after myocardial infarction were exacerbated in ALDH2‐knockout or ALDH2 mutant‐overexpressing mice but were significantly attenuated in ALDH2‐overexpressing mice. Using an anoxia model of cardiomyocytes with deficiency in ALDH2 activities, we observed prominent cardiomyocyte apoptosis and increased accumulation of the reactive aldehyde 4‐hydroxy‐2‐nonenal (4‐HNE). We subsequently examined the impacts of mitochondrial ALDH2 and 4‐HNE on the relevant cytosolic protective pathways. Our data documented 4‐HNE‐stimulated p53 upregulation via the phosphorylation of JNK, accompanying increased cardiomyocyte apoptosis that was attenuated by inhibition of p53. Importantly, elevation of 4‐HNE also triggered a reduction of the cytosolic HSP70, further corroborating cytosolic action of the 4‐HNE instigated by downregulation of mitochondrial ALDH2. Conclusions Downregulation of ALDH2 in the mitochondria induced an elevation of 4‐HNE, leading to cardiomyocyte apoptosis by subsequent inhibition of HSP70, phosphorylation of JNK, and activation of p53. This chain of molecular events took place in both the mitochondria and the cytosol, contributing to the mechanism underlying heart failure.
    Journal of the American Heart Association 09/2014; 3(5). DOI:10.1161/JAHA.113.000779 · 4.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Engineering of three-dimensional (3D) cardiac tissues using decellularized extracellular matrix could be a new technique to create an "organ-like" structure of the heart. To engineer artificial hearts functionally comparable to native hearts, however, much remain to be solved including stable excitation-propagation. To elucidate the points, we examined conduction properties of engineered tissues. We repopulated the decellularized hearts with neonatal rat cardiac cells and then, we observed excitation-propagation of spontaneous beatings using high resolution cameras. We also conducted immunofluorescence staining to examine morphological aspects. Live tissue imaging revealed that GFP-labeled-isolated cardiac cells were migrated into interstitial spaces through extravasation from coronary arteries. Engineered hearts repopulated with Ca(2+)-indicating protein (GCaMP2)-expressing cardiac cells were subjected to optical imaging experiments. Although the engineered hearts generally showed well-organized stable excitation-propagation, the hearts also demonstrated arrhythmogenic propensity such as disorganized propagation. Immunofluorescence study revealed randomly-mixed alignment of cardiomyocytes, endothelial cells and smooth muscle cells. The recellularized hearts also showed disarray of cardiomyocytes and markedly decreased expression of connexin43. In conclusion, we successfully demonstrated that the recellularized hearts showed dynamic excitation-propagation as a "whole organ". Our strategy could provide prerequisite information to construct a 3D-engineered heart, functionally comparable to the native heart.
    Biomaterials 06/2014; 35(27). DOI:10.1016/j.biomaterials.2014.05.080 · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enzymatic proteolysis by calpains, Ca2+-dependent intracellular cysteine proteases, has been implicated in pathological processes such as cellular degeneration or death. Here, we investigated the role of calpain activation in the hearts subjected to myocardial infarction. We produced myocardial infarction in Cast−/− mice deficient for calpastatin, the specific endogenous inhibitory protein for calpains, and Cast+/+ mice. The activity of cardiac calpains in Cast+/+ mice was not elevated within 1 day but showed a gradual elevation after 7 days following myocardial infarction, which was further pronounced in Cast−/− mice. Although the prevalence of cardiomyocyte death was indistinguishable between Cast−/− and Cast+/+ mice, Cast−/− mice exhibited profound contractile dysfunction and chamber dilatation and showed a significant reduction in survival rate after myocardial infarction as compared with Cast+/+ mice. Notably, immunofluorescence revealed that at 28 days after myocardial infarction, calpains were activated in cardiomyocytes exclusively at the border zone and that Cast−/− mice showed higher intensity and a broader extent of calpain activation at the border zone than Cast+/+ mice. In the border zone of Cast−/− mice, pronounced activation of calpains was associated with a decrease in N-cadherin expression and up-regulation of molecular markers for cardiac hypertrophy and fibrosis. In cultured rat neonatal cardiomyocytes, calpain activation by treatment with ionomycin induced cleavage of N-cadherin and decreased expression levels of β-catenin and connexin 43, which was attenuated by calpain inhibitor. These results thus demonstrate that activation of calpains disassembles cell-cell adhesion at intercalated discs by degrading N-cadherin and thereby promotes left ventricular remodeling after myocardial infarction.
    Journal of Biological Chemistry 06/2014; 289(28). DOI:10.1074/jbc.M114.567206 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Periodontitis is known to be a risk factor for abdominal aortic aneurysm (AAA). However, the influence of periodontitis on AAA in Japanese patients has not yet been elucidated. The aim of this clinical investigation was to assess the relationship between periodontal bacterial burden in AAA patients.We studied 12 AAA patients and 24 age- and sex-matched non-AAA cardiovascular patients. We examined periodontitis and the presence of the periodontal pathogens Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Prevotella intermedia in oral samples using polymerase chain reaction assays.We found that the AAA patients had deeper pocket depth compared to the non-AAA patients (3.53 ± 0.38 mm versus 2.67 ± 0.17 mm, P < 0.05). However, the populations of periodontal bacteria were comparable between the two groups. Periodontitis may have a greater effect on aneurysm progression compared to other cardiovascular diseases.
    International Heart Journal 05/2014; 55(3). DOI:10.1536/ihj.13-301 · 1.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although periodontitis is a risk factor for cardiovascular disease (CVD), the influence of periodontitis on Marfan syndrome (MFS) with CVD is unclear. The aim of this study was to assess the relationship between periodontal bacterial burden and MSF with CVD. The subjects were patients with MFS with CVD (n = 47); age and gender matched non-MFS CVD patients (n = 48) were employed as controls. Full-mouth clinical measurements, including number of teeth, probing of pocket depth (PD), bleeding on probing (BOP) and community periodontal index (CPI) were recorded. We also evaluated the existence of three periodontal pathogens, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Prevotella intermedia using polymerase chain reaction assays. Serum antibody titers against the pathogens were also measured. We revealed that MFS with CVD patients had periodontitis more frequently than the age and gender matched non-MFS CVD control subjects. MFS with CVD patients had significantly severer periodontitis, fewer remaining teeth and deeper PD compared to the non-MFS CVD controls. Furthermore, the serum antibody titer level against Prevotella intermedia was significantly lower in MFS plus CVD patients compared to the non-MFS CVD patients. Periodontitis may influence the pathophysiology of cardiovascular complications in MFS patients. A specific periodontal pathogen might be a crucial therapeutic target to prevent CVD development.
    PLoS ONE 04/2014; 9(4):e95521. DOI:10.1371/journal.pone.0095521 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although there is a link between periodontitis and cardiovascular disease (CVD), the influence of periodontitis on CVD is unclear. The aim of this study was to assess the relationship between periodontal bacterial burden and CVD. We studied 142 patients with tachyarrhythmia (TA) and 25 patients with abdominal aortic aneurysm (AAA). We examined periodontitis and the presence of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Prevotella intermedia in the patients' saliva and subgingival plaque using PCR. We also measured serum antibody titers against the pathogens using ELISA. We found that the patients with AAA had fewer remaining teeth (14.6 ± 2.0 vs. 20.9 ± 0.7, P < 0.05) and deeper pocket depth (3.01 ± 0.26 vs. 2.52 ± 0.05 mm, P < 0.05) compared to the TA patients. The existence of each periodontal bacterium in their saliva or subgingival plaque and serum antibody titers was comparable between the two groups. Periodontitis may have a larger affect on aneurysm progression compared to arrhythmia.
    Heart and Vessels 04/2014; 30(4). DOI:10.1007/s00380-014-0507-6 · 2.07 Impact Factor
  • Hiroshi Akazawa · Issei Komuro
    Cardiovascular Research 03/2014; 102(1). DOI:10.1093/cvr/cvu051 · 5.94 Impact Factor
  • Toru Oka · Hiroshi Akazawa · Atsuhiko T Naito · Issei Komuro
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac hypertrophy is an adaptive response to physiological and pathological overload. In response to the overload, individual cardiac myocytes become mechanically stretched and activate intracellular hypertrophic signaling pathways to re-use embryonic transcription factors and to increase the synthesis of various proteins, such as structural and contractile proteins. These hypertrophic responses increase oxygen demand and promote myocardial angiogenesis to dissolve the hypoxic situation and to maintain cardiac contractile function; thus, these responses suggest crosstalk between cardiac myocytes and microvasculature. However, sustained pathological overload induces maladaptation and cardiac remodeling, resulting in heart failure. In recent years, specific understanding has increased with regard to the molecular processes and cell-cell interactions that coordinate myocardial growth and angiogenesis. In this review, we summarize recent advances in understanding the regulatory mechanisms of coordinated myocardial growth and angiogenesis in the pathophysiology of cardiac hypertrophy and heart failure.
    Circulation Research 01/2014; 114(3):565-571. DOI:10.1161/CIRCRESAHA.114.300507 · 11.02 Impact Factor

Publication Stats

4k Citations
665.08 Total Impact Points


  • 1997–2015
    • The University of Tokyo
      • Division of Internal Medicine
      白山, Tōkyō, Japan
  • 2011–2013
    • Osaka City University
      • Department of Cardiovascular Medicine
      Ōsaka, Ōsaka, Japan
  • 2010–2013
    • Osaka University
      • Division of Cardiovascular Medicine
      Suika, Ōsaka, Japan
    • Nagoya University
      Nagoya, Aichi, Japan
  • 2004–2009
    • Chiba University
      • Graduate School of Medicine
      Tiba, Chiba, Japan
  • 2007
    • Seirei Yokohama Hospital
      Yokohama, Kanagawa, Japan
  • 2006
    • Hyogo Prefectural Amagasaki Hospital
      Amagasaki, Hyōgo, Japan
  • 2005
    • Gunma Children's Medical Center
      Shibukawa, Gunma Prefecture, Japan
  • 2002
    • Shinshu University
      Shonai, Nagano, Japan
  • 2000–2002
    • Japanese Foundation for Cancer Research
      Edo, Tōkyō, Japan