R C Marcellus

McMaster University, Hamilton, Ontario, Canada

Are you R C Marcellus?

Claim your profile

Publications (24)174.23 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Human adenovirus E1A proteins and oncogene products of several other DNA tumour viruses derive much of their oncogenic potential from interactions with cellular polypeptides. E1A proteins form complexes with p105Rb and a related p107 polypeptide, and with at least three other proteins (p60cycA, p130, and p300); all may be required for cell transformation. Using a series of E1A deletion mutants, we have carried out a quantitative analysis of the binding patterns of cellular proteins to E1A products. Binding of most of the proteins was affected at least partially by mutations within the amino terminal 25 residues, amino acids 36-69 within conserved region 1 (CR1), and residues 121-138 in conserved region 2 (CR2). However, the specific binding characteristics of each protein varied considerably. p300 was the only species for which binding was totally eliminated by deletions at the amino terminus. Removal of regions within CR1 eliminated binding of all species except p107 and p60cycA. Deletion of portions of CR2 reduced or eliminated binding of all proteins except p300. Thus, whereas cellular polypeptides generally were found to interact with the same three regions of E1A proteins, specific interactions varied considerably.
    Biochemistry and Cell Biology 01/2011; 70(10-11):1123-34. · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human adenovirus E4orf4 protein is toxic in both human tumor cells and Saccharomyces cerevisiae. Previous studies indicated that most of this toxicity is dependent on an interaction of E4orf4 protein with the B55 class of regulatory subunits of protein phosphatase 2A (PP2A) and in yeast with the B55 homolog Cdc55. We have found previously that E4orf4 inhibits PP2A activity against at least some substrates. In an attempt to understand the mechanism of this inhibition, we used a genetic approach to identify residues in the seven-bladed β-propeller proteins B55α and Cdc55 required for E4orf4 binding. In both cases, amino-terminal polypeptides composed only of blade 1 and at least part of blade 2 were found to bind E4orf4 and overexpression blocked E4orf4 toxicity in yeast. Furthermore, certain amino acid substitutions in blades 1 and 2 within full-length B55α and Cdc55 resulted in loss of E4orf4 binding. Recent mutational analysis has suggested that segments of blades 1 and 2 present on the top face of B55α form part of the "substrate-binding groove." Additionally, these segments are in close proximity to the catalytic C subunit of the PP2A holoenzyme. Thus, our results are consistent with the hypothesis that E4orf4 binding could affect the access of substrates, resulting in the failure to dephosphorylate some PP2A substrates.
    Journal of Virology 11/2010; 85(1):286-95. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GMX1777 is a prodrug of the small molecule GMX1778, currently in phase I clinical trials for the treatment of cancer. We describe findings indicating that GMX1778 is a potent and specific inhibitor of the NAD(+) biosynthesis enzyme nicotinamide phosphoribosyltransferase (NAMPT). Cancer cells have a very high rate of NAD(+) turnover, which makes NAD(+) modulation an attractive target for anticancer therapy. Selective inhibition by GMX1778 of NAMPT blocks the production of NAD(+) and results in tumor cell death. Furthermore, GMX1778 is phosphoribosylated by NAMPT, which increases its cellular retention. The cytotoxicity of GMX1778 can be bypassed with exogenous nicotinic acid (NA), which permits NAD(+) repletion via NA phosphoribosyltransferase 1 (NAPRT1). The cytotoxicity of GMX1778 in cells with NAPRT1 deficiency, however, cannot be rescued by NA. Analyses of NAPRT1 mRNA and protein levels in cell lines and primary tumor tissue indicate that high frequencies of glioblastomas, neuroblastomas, and sarcomas are deficient in NAPRT1 and not susceptible to rescue with NA. As a result, the therapeutic index of GMX1777 can be widended in the treatment animals bearing NAPRT1-deficient tumors by coadministration with NA. This provides the rationale for a novel therapeutic approach for the use of GMX1777 in the treatment of human cancers.
    Molecular and cellular biology 09/2009; 29(21):5872-88. · 6.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human adenovirus E4orf4 protein is toxic in human tumor cells. Its interaction with the B alpha subunit of protein phosphatase 2A (PP2A) is critical for cell killing; however, the effect of E4orf4 binding is not known. B alpha is one of several mammalian B-type regulatory subunits that form PP2A holoenzymes with A and C subunits. Here we show that E4orf4 protein interacts uniquely with B55 family subunits and that cell killing increases with the level of E4orf4 expression. Evidence suggesting that B alpha-specific PP2A activity, measured in vitro against phosphoprotein substrates, is reduced by E4orf4 binding was obtained, and two potential B55-specific PP2A substrates, 4E-BP1 and p70(S6K), were seen to be hypophosphorylated in vivo following expression of E4orf4. Furthermore, treatment of cells with low levels of the phosphatase inhibitor okadaic acid or coexpression of the PP2A inhibitor I(1)(PP2A) enhanced E4orf4-induced cell killing and G(2)/M arrest significantly. These results suggested that E4orf4 toxicity results from the inhibition of B55-specific PP2A holoenzymes, an idea that was strengthened by an observed growth arrest resulting from treatment of H1299 cells with B alpha-specific RNA interference. We believe that E4orf4 induces growth arrest resulting in cell death by reducing the global level of B55-specific PP2A activity, thus preventing the dephosphorylation of B55-specific PP2A substrates, including those involved in cell cycle progression.
    Journal of Virology 07/2009; 83(17):8340-52. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human adenovirus E4orf4 protein, when expressed alone, induces p53-independent death in a wide range of cancer cells. Earlier studies by our groups suggested that although in some cases cell death can be associated with some hallmarks of apoptosis, it is not always affected by caspase inhibitors. Thus it is unlikely that E4orf4-induced cell death occurs uniquely through apoptosis. In the present studies using H1299 human lung carcinoma cells as a model system we found that death is induced in the absence of activation of any of the caspases tested, accumulation of reactive oxygen species, or release of cytochrome c from mitochondria. E4orf4 caused a substantial change in cell morphology, including vigorous membrane blebbing, multiple nuclei in many cells and increased cell volume. Most of these characteristics are not typical of apoptosis, but they are of necrosis. FACS analysis and western blotting for cell cycle markers showed that E4orf4-expressing cells became arrested in G(2)/M and also accumulated high levels of cyclin E. The presence of significant numbers of tetraploid and polyploid cells and some cells with micronuclei suggested that E4orf4 appears to induce death in these cells through a process resulting from mitotic catastrophe.
    Oncogene 11/2008; 28(3):390-400. · 8.56 Impact Factor
  • Ejc Supplements - EJC SUPPL. 01/2008; 6(12):43-44.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Elevated expression of members of the BCL-2 pro-survival family of proteins can confer resistance to apoptosis in cancer cells. Small molecule obatoclax (GX15-070), which is predicted to occupy a hydrophobic pocket within the BH3 binding groove of BCL-2, antagonizes these members and induces apoptosis, dependent on BAX and BAK. Reconstitution in yeast confirmed that obatoclax acts on the pathway and overcomes BCL-2-, BCL-XL-, BCL-w-, and MCL-1-mediated resistance to BAX or BAK. The compound potently interfered with the direct interaction between MCL-1 and BAK in intact mitochondrial outer membrane and inhibited the association between MCL-1 and BAK in intact cells. MCL-1 has been shown to confer resistance to the BCL-2/BCL-XL/BCL-w-selective antagonist ABT-737 and to the proteasome inhibitor bortezomib. In both cases, this resistance was overcome by obatoclax. These findings support a rational clinical development opportunity for the compound in cancer indications or treatments where MCL-1 contributes to resistance to cell killing.
    Proceedings of the National Academy of Sciences 01/2008; 104(49):19512-7. · 9.81 Impact Factor
  • Source
    Proceedings of the National Academy of Sciences 01/2007; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The "BH3-only" proapoptotic BCL-2 family members are sentinels of intracellular damage. Here, we demonstrated that the BH3-only BID protein partially localizes to the nucleus in healthy cells, is important for apoptosis induced by DNA damage, and is phosphorylated following induction of double-strand breaks in DNA. We also found that BID phosphorylation is mediated by the ATM kinase and occurs in mouse BID on two ATM consensus sites. Interestingly, BID-/- cells failed to accumulate in the S phase of the cell cycle following treatment with the topoisomerase II poison etoposide; reintroducing wild-type BID restored accumulation. In contrast, introducing a nonphosphorylatable BID mutant did not restore accumulation in the S phase and resulted in an increase in cellular sensitivity to etoposide-induced apoptosis. These results implicate BID as an ATM effector and raise the possibility that proapoptotic BID may also play a prosurvival role important for S phase arrest.
    Cell 09/2005; 122(4):593-603. · 31.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stimulation of cell surface death receptors activates caspase-8, which targets a limited number of substrates including BAP31, an integral membrane protein of the endoplasmic reticulum (ER). Recently, we reported that a caspase-resistant BAP31 mutant inhibited several features of Fas-induced apoptosis, including the release of cytochrome c (cyt.c) from mitochondria (Nguyen, M., D.G. Breckenridge, A. Ducret, and G.C. Shore. 2000. Mol. Cell. Biol. 20:6731-6740), implicating ER-mitochondria crosstalk in this pathway. Here, we report that the p20 caspase cleavage fragment of BAP31 can direct pro-apoptotic signals between the ER and mitochondria. Adenoviral expression of p20 caused an early release of Ca2+ from the ER, concomitant uptake of Ca2+ into mitochondria, and mitochondrial recruitment of Drp1, a dynamin-related protein that mediates scission of the outer mitochondrial membrane, resulting in dramatic fragmentation and fission of the mitochondrial network. Inhibition of Drp1 or ER-mitochondrial Ca2+ signaling prevented p20-induced fission of mitochondria. p20 strongly sensitized mitochondria to caspase-8-induced cyt.c release, whereas prolonged expression of p20 on its own ultimately induced caspase activation and apoptosis through the mitochondrial apoptosome stress pathway. Therefore, caspase-8 cleavage of BAP31 at the ER stimulates Ca2+-dependent mitochondrial fission, enhancing the release of cyt.c in response to this initiator caspase.
    The Journal of Cell Biology 04/2003; 160(7):1115-27. · 10.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The proapoptotic activity of BID seems to solely depend upon its cleavage to truncated tBID. Here we demonstrate that expression of a caspase-8 non-cleavable (nc) BID-D59A mutant or expression of wild type (wt) BID induces apoptosis in Bid -/-, caspase-8 -/-, and wt primary MEFs. Western blot analysis indicated that no cleavage products appeared in cells expressing ncBID. ncBID was as effective as wtBID in inducing cytochrome c release, caspase activation, and apoptosis. ncBID and wtBID (nc/wtBID) were much less effective than tBID in localizing to mitochondria and in inducing cytochrome c release, but only slightly less effective in inducing apoptosis. Studies with Apaf-1- and caspase-9-deficient primary MEFs indicated that both proteins were essential for nc/wtBID and for tBID-induced apoptosis. Most importantly, expression of non-apoptotic levels of either ncBID or wtBID in Bid -/- MEFs induced a similar and significant enhancement in apoptosis in response to a variety of death signals, which was accompanied by enhanced localization of BID to mitochondria and cytochrome c release. Thus, these results implicate full-length BID as an active player in the mitochondria during apoptosis.
    Journal of Biological Chemistry 04/2003; 278(12):10707-15. · 4.65 Impact Factor
  • Source
    Jaigi P Mathai, Marc Germain, Richard C Marcellus, Gordon C Shore
    [Show abstract] [Hide abstract]
    ABSTRACT: A DNA microarray analysis identified the BH3-only BCL-2 family member, BIK/NBK, as a transcript that is upregulated during induction of apoptosis by oncogenic E1A. E1A depended on wild-type p53 to induce BIK and activate the death program. Further, p53 independently induced BIK RNA and protein, and BIK alone stimulated cell death in p53-null cells, dependent on the activation of caspases. BIK function, however, was abrogated by a disabling point mutation within the BH3 domain. Collectively, these results argue that BIK is a downstream apoptotic effector of p53 in response to a physiological p53-mediated death stimulus provided by E1A. Elevated BCL-2 functioned downstream of p53 and BIK induction to inhibit the E1A death pathway, with the ratio of anti-apoptotic BCL-2 and pro-apoptotic BIK determining cell death or survival in E1A-expressing cells. Cells expressing BCL-2 or treated with the pan caspase inhibitor, zVAD-fmk, allowed accumulation of high levels of cytotoxic BIK compared to control cells. Of note, a significant fraction of either ectopic or endogenous BIK was found associated with the endoplasmic reticulum, suggesting that this organelle, in addition to mitochondria, may be a target of BIK function.
    Oncogene 05/2002; 21(16):2534-44. · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have indicated that the E4orf4 protein of human adenovirus type 2 (Ad2) induces p53-independent apoptosis. We believe that this process may play a role in cell death and viral spread at the final stages of productive infection. E4orf4 may also be of therapeutic value in treating some diseases, including cancer, through its ability to induce apoptosis when expressed individually. The only previously identified biochemical function of E4orf4 is its ability to associate with the Balpha subunit of protein phosphatase 2A (PP2A). We have used a genetic approach to determine the role of such interactions in E4orf4-induced cell death. E4orf4 deletion mutants were of only limited value, as all were highly defective. We found that E4orf4 proteins from most if not all adenovirus serotypes induced cell death, and thus point mutations were introduced that converted the majority of highly conserved residues to alanines. Such mutants were used to correlate Balpha-subunit binding, association with PP2A activity, and cell killing following the transfection of appropriate cDNAs into p53-null H1299 or C33A cells. The results indicated that binding of the Balpha subunit is essential for induction of cell death, as every mutant that failed to bind efficiently was totally defective for cell killing. This class of mutations (class I) largely involved residues between amino acids 51 and 89. Almost all E4orf4 mutant proteins that associated with PP2A killed cancer cells at high levels; however, several mutants that associated with significant levels of PP2A were defective for killing (class II). Thus, binding of E4orf4 to PP2A is essential for induction of p53-independent apoptosis, but E4orf4 may possess one or more additional functions required for cell killing.
    Journal of Virology 10/2000; 74(17):7869-77. · 5.08 Impact Factor
  • A Lai, R C Marcellus, H B Corbeil, P E Branton
    [Show abstract] [Hide abstract]
    ABSTRACT: Growth arrest and cell cycle progression are regulated by the retinoblastoma tumour suppressor pRB and related proteins p130 and p107 that bind to and inhibit the E2F family of transcription factors. Although the precise mechanism of this inhibition remains to be established, previous studies indicated the presence of transcriptional repression activity in the 'pocket' of RB family members. We show here that RBP1, a known pRB pocket-binding protein, possesses transcriptional repression activity and associates with p130-E2F and pRB-E2F complexes specifically during growth arrest. Overexpression of RBP1 both inhibited E2F-dependent gene expression and suppressed cell growth. Thus repression of E2F-dependent transcription by RBP1 via RB family members may play a central role in inducing growth arrest.
    Oncogene 04/1999; 18(12):2091-100. · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 34-kDa early-region 4 open reading frame 6 (E4orf6) product of human adenovirus type 5 forms complexes with both the cellular tumor suppressor p53 and the viral E1B 55-kDa protein (E1B-55kDa). E4orf6 can inhibit p53 transactivation activity, as can E1B-55kDa, and in combination these viral proteins cause the rapid turnover of p53. In addition, E4orf6-55kDa complexes play a critical role at later times in the regulation of viral mRNA transport and shutoff of host cell protein synthesis. In the present study, we have further characterized some of the biological properties of E4orf6. Analysis of extracts from infected cells by Western blotting indicated that E4orf6, like E1A and E1B products, is present at high levels until very late times, suggesting that it is available to act throughout the infectious cycle. This pattern is similar to that of E4orf4 but differs markedly from that of another E4 product, E4orf6/7, which is present only transiently. Synthesis of E4orf6 is maximal at early stages but ceases completely with the onset of shutoff of host protein synthesis; however, it was found that unlike E4orf6/7, E4orf6 is very stable, thus allowing high levels to be maintained even at late times. E4orf6 was shown to be phosphorylated at low levels. Coimmunoprecipitation studies in cells lacking p53 indicated that E4orf6 interacts with a number of other proteins. Five of these were shown to be viral or virally induced proteins ranging in size from 102 to 27 kDa, including E1B-55kDa. One such species, of 72 kDa, was shown not to represent the E2 DNA-binding protein and thus remains to be identified. Another appeared to be the L4 100-kDa nonstructural adenovirus late product, but it appeared to be present nonspecifically and not as part of an E4orf6 complex. Apart from p53, three additional cellular proteins, of 84, 19, and 14 kDa were detected by using an adenovirus vector that expresses only E4orf6. The 19-kDa species and a 16-kDa cellular protein were also shown to interact with E4orf6/7. It is possible that complex formation with these viral and cellular proteins plays a role in one or more of the biological activities associated with E4orf6 and E4orf6/7.
    Journal of Virology 03/1999; 73(2):1245-53. · 5.08 Impact Factor
  • Source
    A Roulston, R C Marcellus, P E Branton
    [Show abstract] [Hide abstract]
    ABSTRACT: Successful viral replication requires not only the efficient production and spread of progeny, but also evasion of host defense mechanisms that limit replication by killing infected cells. In addition to inducing immune and inflammatory responses, infection by most viruses triggers apoptosis or programmed cell death of the infected cell. This cell response often results as a compulsory or unavoidable by-product of the action of critical viral replicative functions. In addition, some viruses seem to use apoptosis as a mechanism of cell killing and virus spread. In both cases, successful replication relies on the ability of certain viral products to block or delay apoptosis until sufficient progeny have been produced. Such proteins target a variety of strategic points in the apoptotic pathway. In this review we summarize the great amount of recent information on viruses and apoptosis and offer insights into how this knowledge may be used for future research and novel therapies.
    Annual Review of Microbiology 02/1999; 53:577-628. · 12.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies by our group showed that infection of human and rodent cells by human adenovirus type 5 (Ad5) results in the induction of p53-independent apoptosis and cell death that are dependent upon transactivation of early region 4 (E4). To identify which E4 products are involved, studies were conducted with p53-deficient human SAOS-2 cells infected with various Ad5 E4 mutants. An E4orf6-deficient mutant was defective in cell killing, whereas another that expressed only E4orf6 and E4orf4 killed like wild-type virus, suggesting that E4orf6 may be responsible for cytotoxicity; however, a mutant expressing only E4orf4 induced high levels of cell death, indicating that this E4 product may also be able to induce cytotoxicity. To define the E4 cell death-inducing functions more precisely, cDNAs encoding individual E4 products were introduced into cells by DNA transfection in the absence of other Ad5 proteins. In cotransfections with a cDNA encoding firefly luciferase, enzymatic activity was high in all cases except with E4orf4, where luciferase levels were less than 20% of those in controls. In addition, drug selection of several cell types following transfection with retroviral vector DNA encoding individual E4 products as well as puromycin resistance yielded a large number of cell colonies except when E4orf4 was expressed. These data demonstrated that E4orf4 is the only E4 product capable of independent cell killing. Cell death induced by E4orf4 was due to apoptosis, as evidenced by 4',6-diamidino-2-phenylindole (DAPI) staining of cell nuclei in E4orf4-expressing cells. Thus, although E4orf6 may play some role, these results suggested that E4orf4 may be the major E4 product responsible for induction of p53-independent apoptosis.
    Journal of Virology 10/1998; 72(9):7144-53. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the absence of E1B, the 289-amino acid product of human adenovirus type 5 13S E1A induces p53-independent apoptosis by a mechanism that requires viral E4 gene products (Marcellus, R.C., J.C. Teodoro, T. Wu, D.E. Brough, G. Ketner, G.C. Shore, and P.E. Branton. 1996. J. Virol. 70:6207-6215) and involves a mechanism that includes activation of caspases (Boulakia, C.A., G. Chen, F.W. Ng, J. G. Teodoro, P.E. Branton, D.W. Nicholson, G.G. Poirier, and G.C. Shore. 1996. Oncogene. 12:529-535). Here, we show that one of the E4 products, E4orf4, is highly toxic upon expression in rodent cells regardless of the p53 status, and that this cytotoxicity is significantly overcome by coexpression with either Bcl-2 or Bcl-XL. Conditional expression of E4orf4 induces a cell death process that is characterized by apoptotic hallmark features, such as externalization of phosphatidylserine, loss of mitochondrial membrane potential, cytoplasmic vacuolation, condensation of chromatin, and internucleosomal DNA degradation. However, the wide-spectrum inhibitor of caspases, tetrapeptide zVAD-fmk, does not affect any of these apoptogenic manifestations, and does not alter the kinetics of E4orf4-induced cell death. Moreover, E4orf4 expression does not result in activation of the downstream effector caspase common to most apoptosis-inducing events, caspase-3 (CPP32). We conclude, therefore, that in the absence of E1A, E4orf4 is sufficient by itself to trigger a p53-independent apoptosis pathway that may operate independently of the known zVAD-inhibitable caspases, and that may involve an as yet uncharacterized mechanism.
    The Journal of Cell Biology 03/1998; 140(3):637-45. · 10.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A critical role of the 289-residue (289R) E1A protein of human adenovirus type 5 during productive infection is to transactivate expression of all early viral transcription. Sequences within and proximal to conserved region 3 (CR3) promote expression of these viral genes through interactions with a variety of transcription factors requiring the zinc binding motif in CR3 and in some cases a region at the carboxy-terminal end of CR3, including residues 183 to 188. It is known that 3',5' cyclic AMP (cAMP) reduces the level of phosphorylation of the 289R E1A protein through the activation of protein phosphatase 2A by the E4orf4 protein. This study was designed to identify the E1A phosphorylation sites affected by E4orf4 expression and to determine their importance in regulation of E1A activity. We report here that two previously unidentified sites at Ser-185 and Ser-188 are the targets for decreased phosphorylation in response to cAMP. At least one of these sites, presumably Ser-185, is phosphorylated in vitro by purified mitogen-activated protein kinase (MAPK), and both are hyperphosphorylated in cells which express a constitutively active form of MAPK kinase. Analysis of E1A-mediated transactivation activity indicated that elevated phosphorylation at these sites increased expression of the E4 promoter but not that of E3. We have recently shown that one or more E4 products induce cell death due to p53-independent apoptosis, and thus it seems likely that one role of the E4orf4 protein is to limit production of toxic E4 products by limiting expression of the E4 promoter.
    Journal of Virology 06/1997; 71(5):3545-53. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The adenovirus type 5 243R E1A protein induces p53-dependent apoptosis in the absence of the 19- and 55-kDa E1B polypeptides. This effect appears to result from an accumulation of p53 protein and is unrelated to expression of E1B products. We now report that in the presence of the E1B 55-kDa polypeptide, the 289R E1A protein does not induce such p53 accumulation and, in fact, is able to block that induced by E1A 243R. This inhibition also requires the 289R-dependent transactivation of E4orf6 expression. E4orf6 is known to form complexes with the E1B 55-kDa protein and to function both in the transport and stabilization of viral mRNA and in shutoff of host cell protein synthesis. We demonstrated that the block in p53 accumulation is not due to the generalized shutoff of host cell metabolism. Rather, it appears to result from a mechanism targeted specifically to p53, most likely involving a decrease in the stability of p53 protein. The E1B 55-kDa protein is known to interact with both E4orf6 and p53, and as demonstrated recently by others, we showed that E4orf6 also binds directly to p53. Thus, multiple interactions between all three proteins may regulate p53 stability, resulting in the maintenance of low levels of p53 following virus infection.
    Journal of Virology 06/1997; 71(5):3788-98. · 5.08 Impact Factor

Publication Stats

2k Citations
174.23 Total Impact Points

Institutions

  • 1993–2011
    • McMaster University
      • Department of Biology
      Hamilton, Ontario, Canada
  • 1996–2008
    • McGill University
      • Department of Biochemistry
      Montréal, Quebec, Canada