Xueping Xie

University of Manitoba, Winnipeg, Manitoba, Canada

Are you Xueping Xie?

Claim your profile

Publications (11)35.82 Total impact

  • Ruozhi Zhao, Xueping Xie, Garry X Shen
    [Show abstract] [Hide abstract]
    ABSTRACT: The predominant cause of death in diabetic patients is atherosclerotic coronary artery disease (CAD). Major gross cellular changes in the vascular wall of persons with CAD include endothelial injury and foam cell formation, as well as smooth muscle cell and fibroblast proliferation. This study examined the effects of glycated low density lipoprotein (glyLDL), a biochemical marker of diabetes, on cell viability, proliferation, and the expression of multiple growth factors in mouse embryo fibroblasts (MEF). The results demonstrated that exposure to ≥150 μg/mL of glyLDL for 24 h or 100 μg/mL of glyLDL for ≥48 h either significantly reduced cell viability or increased DNA fragmentation in MEF. GlyLDL treatment (25-100 μg/mL for up to 12 h) significantly increased the abundance of proliferating cell nuclear antigen (PCNA) and achieved a peak after 4 h exposure to glyLDL. Abundances of fibroblast growth factor-basic (FGF), transforming growth factor-β (TGF), and platelet-derived growth factor-A (PDGF) in MEF reached maximal levels after 2 h exposure to 50 μg/mL of glyLDL. The maximal increase of vascular endothelial growth factor (VEGF) was detected in MEF after 4 h of exposure to 50 μg/mL of glyLDL. Inhibitors for FGF (AZD4547), VEGF, or PDGF receptors (Axitinib), but not that for TGF receptor (LY364947), significantly decreased the abundance of (PCNA) in endothelial cells. The findings suggest that early exposure to a low dosage of glyLDL transiently increases the proliferation of MEF through the upregulation of FGF, VEGF, and (or) PDGF, and prolonged exposure to high concentrations of glyLDL reduced cell viability, which possibly accelerates atherogenesis under diabetic condition.
    Canadian Journal of Physiology and Pharmacology 01/2013; 91(1):64-70. · 1.56 Impact Factor
  • Xueping Xie, Ruozhi Zhao, Garry X Shen
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased oxidative stress and apoptosis were detected in atherosclerotic lesions. Oxidized low-density lipoprotein (oLDL) may induce oxidative stress and apoptosis via multiple pathways in vascular endothelial cells (EC). Delphinidin-3-glucoside (D3G), an anthocyanidin glycan enriched in dark-skin berries, may neutralize those effects of oLDL in EC. The present study demonstrated that oLDL increased the generation of intracellular NADPH-dependent superoxide and impaired redox status in cultured porcine aortic EC (PAEC). The activities of mitochondrial respiratory chain complex I-IV and the contents of NADH dehydrogenase (ND)1, ND6 (complex I enzyme subunits), or cytochrome b (complex III enzyme subunit) were significantly reduced in PAEC treated with oLDL compared to controls. Treatment with oLDL significantly increased the abundances of NADPH oxidase (NOX)2, NOX4, and p22phox in PAEC. oLDL reduced cell viability and the protein content of B-cell lymphoma (Bcl)-2, but increased the content of caspase 3 in PAEC. Co-treatment with D3G prevented oLDL-induced increases in intracellular superoxide or in the protein content of NOX2, NOX4, p22phox, or caspase 3, inhibited the impairment of redox statues or cell viability, and prevented the attenuation of mitochondrial enzyme activities and the reductions of Bcl-2, ND1, or cytochrome b contents in PAEC. The findings suggest that oLDL induced oxidative stress and apoptosis in EC, which was associated with the activation of NOX, the impairment of mitochondrial respiration chain enzymes, and the disorder of key regulators for apoptosis. D3G neutralized the harmful effects of oLDL on oxidative stress, mitochondrial dysfunction, and apoptosis in cultured vascular EC.
    Journal of Agricultural and Food Chemistry 02/2012; 60(7):1850-6. · 2.91 Impact Factor
  • Source
    Xueping Xie, Ruozhi Zhao, Garry X Shen
    [Show abstract] [Hide abstract]
    ABSTRACT: Elevated levels of glycated low density lipoprotein (glyLDL) are frequently detected in diabetic patients. Previous studies demonstrated that glyLDL increased the production of reactive oxygen species (ROS), activated NADPH oxidase (NOX) and suppressed mitochondrial electron transport chain (mETC) enzyme activities in vascular endothelial cells (EC). The present study examined the effects of cyanidin-3-glucoside (C3G), a type of anthocyanin abundant in dark-skinned berries, on glyLDL-induced ROS production, NOX activation and mETC enzyme activity in porcine aortic EC (PAEC). Co-treatment of C3G prevented glyLDL-induced upregulation of NOX4 and intracellular superoxide production in EC. C3G normalized glyLDL-induced inhibition on the enzyme activities of mETC Complex I and III, as well as the abundances of NADH dehydrogenase 1 in Complex I and cytochrome b in Complex III in EC. Blocking antibody for the receptor of advanced glycation end products (RAGE) prevented glyLDL-induced changes in NOX and mETC enzymes. Combination of C3G and RAGE antibody did not significantly enhance glyLDL-induced inhibition of NOX or mETC enzymes. C3G reduced glyLDL-induced RAGE expression with the presence of RAGE antibody. C3G prevented prolonged incubation with the glyLDL-induced decrease in cell viability and the imbalance between key regulators for cell viability (cleaved caspase 3 and B cell Lyphoma-2) in EC. The findings suggest that RAGE plays an important role in glyLDL-induced oxidative stress in vascular EC. C3G may prevent glyLDL-induced NOX activation, the impairment of mETC enzymes and cell viability in cultured vascular EC.
    International Journal of Molecular Sciences 01/2012; 13(12):15867-80. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The isomer-specific effects of conjugated linoleic acid (CLA) on hepatic steatosis were assessed in fa/fa Zucker rats, a model for insulin resistance and the metabolic syndrome. Eight weeks of feeding trans-10,cis-12 CLA significantly improved glucose tolerance without changing body weight or visceral adipose mass. The trans-10,cis-12 isomer was also associated with reduced liver lipid content, improved liver function and reduced inflammation; these effects were not observed in rats fed the cis-9,trans-11 CLA isomer. Reduced liver lipid content did not correlate with activation of AMP-activated protein kinase or suppressed activation of sterol-regulatory element binding protein-1, two key regulators of hepatic lipid metabolism. Interestingly, rats fed cis-9,trans-11 CLA had fewer cytoplasmic lipid droplets in hepatocytes compared to rats fed control diet, but these droplets were larger in size. Conversely, fa/fa rats fed the trans-10,cis-12 CLA isomer had greater numbers of hepatic lipid droplets that were smaller in size, resulting in overall lower total lipid within these droplets. Changes in lipid droplets were associated with lower hepatic levels of PERILIPIN-2 (formerly known as adipophilin) in rats fed trans-10,cis-12 CLA, whereas amounts of other members of the PERILIPIN family of lipid droplet proteins were unaffected by dietary CLA. However, CLA isomers differentially affected the subcellular localization of these proteins. Treatment of H4IIE rat hepatoma cells with CLA isomers neither prevented nor reversed, but rather induced cytoplasmic lipid droplet formation, suggesting that the anti-steatotic effects of trans-10,cis-12 CLA are likely indirect and potentially mediated via increased lipid utilization by peripheral tissues.
    Biochimica et Biophysica Acta 12/2010; 1801(12):1375-85. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Impairments in mitochondrial function have been proposed to play an important role in the pathogenesis of diabetes. Atherosclerotic coronary artery disease (CAD) is the leading cause of mortality in diabetic patients. Mitochondrial dysfunction and increased production of reactive oxygen species (ROS) are associated with diabetes and CAD. Elevated levels of glycated low density lipoproteins (glyLDL) and oxidized LDL (oxLDL) were detected in patients with diabetes. Our previous studies demonstrated that oxLDL and glyLDL increased the generation of ROS and altered the activities of antioxidant enzymes in vascular endothelial cells (EC). The present study examined the effects of glyLDL and oxLDL on mitochondrial respiration, membrane potential and the activities and proteins of key enzymes in mitochondrial electron transport chain (mETC) in cultured porcine aortic EC (PAEC). The results demonstrated that glyLDL or oxLDL significantly reduced oxygen consumption in Complex I, II/III and IV of mETC in PAEC compared to LDL or vehicle control using oxygraphy. Incubation with glyLDL or oxLDL significantly reduced mitochondrial membrane potential, the activities of mitochondrial ETC enzymes - NADH dehydrogenase (Complex I), succinate cytochrome c reductase (Complex II + III), ubiquinol cytochrome c reductase (Complex III), and cytochrome c oxidase (Complex IV) in PAEC compared to LDL or control. Treatment with oxLDL or glyLDL reduced the abundance of subunits of Complex I, ND1 and ND6 in PAEC. However, the effects of oxLDL on mitochondrial activity and proteins were not significantly different from glyLDL. The findings suggest that the glyLDL or oxLDL impairs mitochondrial respiration, as a result from the reduction of the abundance of several key enzymes in mitochondria of vascular EC, which potentially may lead to oxidative stress in vascular EC, and the development of diabetic vascular complications.
    Acta biochimica Polonica 10/2010; 57(4):393-8. · 1.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Coronary artery disease (CAD) is the leading cause of mortality in diabetic patients. Mitochondrial dysfunction and increased production of reactive oxygen species (ROS) are associated with diabetes and CAD. Elevated levels of glycated LDL (glyLDL) were detected in patients with diabetes. Our previous studies demonstrated that glyLDL increased the generation of ROS and altered the activities of antioxidant enzymes in vascular endothelial cells (EC). This study examined the effects of glyLDL on oxygen consumption in mitochondria and the activities of key enzymes in the mitochondrial electron transport chain (ETC) in cultured porcine aortic EC. The results demonstrated that glyLDL treatment significantly impaired oxygen consumption in Complexes I, II/III, and IV of the mitochondrial ETC in EC compared to LDL or vehicle control detected using oxygraphy. Incubation with glyLDL significantly reduced the mitochondrial membrane potential, the NAD(+)/NADH ratio, and the activities of mitochondrial ETC enzymes (NADH-ubiquinone dehydrogenase, succinate cytochrome c reductase, ubiquinone cytochrome c reductase, and cytochrome c oxidase) in EC compared to LDL or control. The abundance of mitochondria-associated ROS and the release of ROS from EC were significantly increased after glyLDL treatment. The findings suggest that glyLDL attenuates the activities of key enzymes in the mitochondrial ETC, decreases mitochondrial oxygen consumption, reduces mitochondrial membrane potential, and increases ROS generation in EC, which potentially contribute to mitochondrial dysfunction in diabetic patients.
    Free Radical Biology & Medicine 03/2010; 48(6):781-90. · 5.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerotic cardiovascular disease is the leading cause of mortality in the Western world. Dysfunction of the mitochondrial respiratory chain and overproduction of reactive oxygen species (ROS) are associated with atherosclerosis and cardiovascular disease. Oxidation increases the atherogenecity of LDL. Oxidized LDL may be apoptotic or nonapoptotic for vascular endothelial cells (EC), depending on the intensity of oxidation. A previous study demonstrated that nonapoptotic oxidized LDL increased activity of mitochondrial complex I in human umbilical vein EC. The present study examined the impact of extensively oxidized LDL (eoLDL) on oxygen consumption and the activities of key enzymes in the mitochondrial respiratory chain of cultured porcine aortic EC. Oxygraphy detected that eoLDL significantly reduced oxygen consumption in various mitochondrial complexes. Treatment with eoLDL significantly decreased NADH-ubiquinone dehydrogenase (complex I), succinate cytochrome c reductase (complex II/III), ubiquinone cytochrome c reductase (complex III), and cytochrome c oxidase (complex IV) activities and the NAD+-to-NADH ratio in EC compared with mildly oxidized LDL, LDL, or vehicle. Butylated hydroxytoluene, a potent antioxidant, normalized eoLDL-induced reductions in complex I and III enzyme activity in EC. Mitochondria-associated intracellular ROS and release of ROS from EC were significantly increased after eoLDL treatment. These findings suggest that eoLDL impairs enzyme activity in mitochondrial respiratory chain complexes and increases ROS generation from mitochondria of arterial EC. Collectively, these effects could contribute to vascular injury and atherogenesis under conditions of hypercholesterolemia and oxidative stress.
    AJP Endocrinology and Metabolism 10/2009; 298(1):E89-98. · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plasminogen activator inhibitor-1 (PAI-1) is implicated in thrombogenesis, inflammation, and extracellular matrix remodeling. Previous studies indicated that oxidized low-density lipoprotein (LDL) stimulated the generation of PAI-1 in vascular endothelial cells (EC). The present study demonstrated that LDL oxidized by copper, iron, or 3-morpholinosydnonimine increased the expression of NADPH oxidase (NOX) 2, PAI-1, and heat shock factor-1 (HSF1) in human umbilical vein EC or coronary artery EC compared with LDL or vehicle. Diphenyleneiodonium, a NOX inhibitor, prevented the increases of the expression of HSF1 and PAI-1 in EC induced by oxidized LDLs. Small-interference RNA (siRNA) for p22(phox), an essential subunit of NOX, prevented oxidized LDL-induced expression of NOX2, HSF1, and PAI-1 in EC. HSF1 siRNA inhibited oxidized LDL-induced expression of PAI-1 and HSF1, but not NOX2, in EC. The binding of HSF1 to PAI-1 promoter and the activity of PAI-1 promoter in EC were enhanced by oxidized LDL. Butylated hydroxytulene, a potent antioxidant, inhibited oxidized LDL-induced release of hydrogen peroxide (H(2)O(2)) and the expression of NOX2, HSF1, and PAI-1 in EC. Treatment with H(2)O(2) increased the abundance of NOX2, HSF1, and PAI-1 in EC. The results of the present study indicate that oxidized LDL-induced expression of NOX may lead to the elevated release of reactive oxygen species, the activation of HSF1, and the enhancement of the transcription of PAI-1 gene in cultured vascular EC.
    AJP Endocrinology and Metabolism 05/2009; 297(1):E104-11. · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conjugated linoleic acids (CLA) have been shown to alter adiposity in some species with varying effects on insulin resistance. The objective of this 8-week study was to investigate the effects of feeding a CLA mixture (1.5%, wt/wt) on adipocyte size, insulin sensitivity, adipokine status, and adipose lipid composition in fa/fa vs lean Zucker rats. The fa/fa CLA-fed rats had smaller adipocytes and improved insulin sensitivity compared with fa/fa rats fed the control diet. Conjugated linoleic acids did not affect select markers of adipose differentiation, lipid filling, lipid uptake, or oxidation. Dietary CLA, compared with the control diet, reduced circulating leptin and elevated fasting serum adiponectin concentrations in fa/fa rats. Adipose resistin messenger RNA levels were greater in fa/fa CLA-fed rats compared with fa/fa control rats. CLA did not markedly alter adipose phospholipid fatty acid composition, and the changes in the triacylglycerol fatty acid composition reflected a lower delta-9 desaturase index of CLA-fed vs control-fed rats. In conclusion, CLA reduced adipocyte size and favorably modified adipokine status and insulin sensitivity in fa/fa Zucker rats.
    Metabolism 01/2008; 56(12):1601-11. · 3.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic preservation is an important part of diabetes management that may occur with improved peripheral insulin sensitivity and attenuated low-grade adipose tissue inflammation. The objective of the current study was to determine the response of obese, insulin-resistant fa/fa Zucker rats vs lean controls to dietary conjugated linoleic acid (CLA) supplementation with respect to pancreatic islet size, insulin resistance, and markers of inflammation and adipose glucose uptake. Six-week-old fa/fa and lean Zucker rats (n = 20 per genotype) were fed either a 1.5% CLA mixture or control diet for 8 weeks. Oral glucose tolerance testing was conducted at 7.5 weeks. Fasting serum haptoglobin, insulin, and C-peptide were assayed, and select messenger RNA (mRNA) and protein markers of inflammation and glucose metabolism were measured in adipose and liver tissues. CLA-fed fa/fa Zucker rats had smaller islet cell size, improved oral glucose tolerance and insulinemia, and attenuated serum haptoglobin levels compared with control-fed fa/fa Zucker rats, despite no differences in body weight and a slightly higher visceral adipose mass. CLA did not alter insulin sensitivity or islet size in lean Zucker rats. The CLA-fed fa/fa rats also had greater adipose glucose transporter-4 mRNA and less adipose tumor necrosis factor alpha mRNA and protein compared with control-fed fa/fa rats. In contrast, other markers of inflammation and glucose metabolism including adipose macrophage inflammatory factor, macrophage inflammatory protein-2, and liver pyruvate carboxylase and pyruvate dehydrogenase kinase 4 were not significantly changed. These results suggest that CLA supplementation preserved pancreatic function in conjunction with improved peripheral glucose use and reduced inflammation in fa/fa Zucker rats.
    Metabolism 02/2007; 56(1):142-51. · 3.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CLA has been shown to induce or suppress excess liver lipid accumulation in various animal models. Interestingly, the state of insulin resistance may be an important modulator of this effect. The objective of the current study was to determine how feeding a dietary CLA mixture would affect liver lipid accumulation in insulin-resistant/obese and lean rats in relation to liver function, lipidemia, liver TAG and phospholipid FA composition, and expression of hepatic markers of FA transport, oxidation, and synthesis. Six-week-old fa/fa and lean Zucker rats (n = 20/genotype) were fed either a 1.5% CLA mixture or a control diet for 8 wk. CLA supplementation reduced liver lipid concentration of fa/fa rats by 62% in concurrence with improved liver function (lower serum alanine aminotransferase and alkaline phosphatase) and favorable modification of the serum lipoprotein profile (reduced VLDL and LDL and elevated HDL) compared with controlfed fa/fa rats. The fa/fa genotype had two-thirds the amount of CLA (as % total FA) incorporated into liver TAG and phospholipids compared with the lean genotype. In both genotypes, CLA altered the hepatic FA profile (TAG greater than phospholipids) and these changes were explained by a desaturase enzyme index. Liver-FA-binding protein and acyl CoA oxidase, markers of FA transport and oxidation, respectively, were expressed at higher levels in CLA-fed fa/fa rats. In summary, these results illustrate a strong relationship between the state of insulin resistance and liver lipid metabolism and suggest that CLA acts to favorably modify lipid metabolism in fa/fa Zucker rats.
    Lipids 03/2006; 41(2):179-88. · 2.56 Impact Factor