Eva Moran

Università degli Studi di Genova, Genova, Liguria, Italy

Are you Eva Moran?

Claim your profile

Publications (22)73.77 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence supports the potential of proteasome inhibitors as immunosuppressants. Proteasome inhibitors interfere with antigen processing and presentation, as well as with the signaling cascades involved in immune cell function and survival. Both myeloma and healthy plasma cells appear to be highly susceptible to proteasome inhibitors due to impaired proteasomal activity in both cell types. As a consequence, these agents can be used to reduce antibody production and thus prevent antibody-induced tissue damage. Several clinical studies have explored the potential of bortezomib, a peptide boronate proteasome inhibitor, for treating immune disorders, such as antibody-mediated organ rejection and graft-versus-host disease (GVHD), with encouraging results. Here, we discuss the biological rationale for the use of proteasome inhibitors as immunosuppressive agents and review the clinical experience with bortezomib in immune-mediated diseases.
    Seminars in Hematology 07/2012; 49(3):270-6. · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review article is part of a special Current Cancer Drug Targets issue devoted to colorectal cancer and molecularly targeted treatments. In our paper we made an attempt to connect more basic aspects with preclinical, pharmacological / therapeutic and clinical aspects. Reconstruction of a Molecular Interaction Map (MIM) comprising an important part of the G0 - G1 - S cell cycle transition, was a major component of our review. Such a MIM serves also as a convenient / organized database of a large set of important molecular events. The frequency of mutated / altered signaling-proteins indicates the importance of this signaling-network region. We have considered problems at different scale levels. Our MIM works at a biochemical-interaction level. We have also touched the multi-cellular dynamics of normal and aberrant colon crypts. Until recently, dynamic simulations at a biochemical or multi-cellular scale level were considered as a sort of esoteric approach. We tried to convince the reader, also on the basis of a rapidly growing literature, mostly published in high quality journals, that suspicion towards simulations should dissipate, as the limitations and advantages of their application are better appreciated, opening the door to their permanent adoption in everyday research. What is really required is a more interdisciplinary mentality and an interdisciplinary approach. The prize is a level of understanding going beyond mere intuition.
    Current cancer drug targets 03/2012; 12(4):339-55. · 5.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: New derivatives of 1,4-dideoxy-1,4-imino-D-ribitol have been prepared and evaluated for their cytotoxicity on solid and haematological malignancies. 1,4-Dideoxy-5-O-[(9Z)-octadec-9-en-1-yl]-1,4-imino-D-ribitol (13, IC(50) ∼2 μM) and its C(18)-analogues (IC(50) <10 μM) are cytotoxic toward SKBR3 (breast cancer) cells. 13 also inhibits (IC(50) ∼8 μM) growth of JURKAT cells.
    Bioorganic & medicinal chemistry 07/2011; 19(24):7720-7. · 2.82 Impact Factor
  • European Journal of Cancer - EUR J CANCER. 01/2011; 47.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant histone deacetylase (HDAC) activity is frequent in human leukemias. However, while classical, NAD(+)-independent HDACs are an established therapeutic target, the relevance of NAD(+)-dependent HDACs (sirtuins) in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD(+)-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527) and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD(+) levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD(+)-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited.
    PLoS ONE 01/2011; 6(7):e22739. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nicotinamide phosphoribosyltransferase (Nampt) inhibitor APO866 depletes intracellular nicotinamide adenine dinucleotide (NAD(+)) and shows promising anticancer activity in preclinical studies. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) binds to plasma membrane receptors DR4 and DR5 and induces apoptosis via caspase-8 and -10. Here we have explored the interaction between APO866 and TRAIL in leukemia cell lines and in primary B-cell chronic lymphocytic leukemia cells. Cells were treated with APO866, TRAIL, or their combination. Viability and mitochondrial transmembrane potential (ΔΨ(m)) were determined by cell staining with propidium iodide and tetramethylrhodamine ethyl ester, respectively, and flow cytometry. Nampt and γ-tubulin levels, as well as caspase-3 cleavage were detected by immunoblotting. DR4 and DR5 expression were assessed by immunostaining and flow cytometry. Caspases were inhibited with zVAD-FMK and zDEVD-FMK; autophagy with 3-methyladenine, LY294002, and wortmannin. Intracellular NAD(+) and adenosine triphosphate (ATP) were measured by cycling assays and high-performance liquid chromatography (HPLC), respectively. APO866 induced NAD(+) depletion, ΔΨ(m) dissipation, and ATP shortage in leukemia cells, thereby leading to autophagic cell death. TRAIL induced caspase-dependent apoptosis. TRAIL addition to APO866 synergistically increased its activity in leukemia cells by enhancing NAD(+) depletion, ΔΨ(m) dissipation, and ATP shortage. No DR5 upregulation at the cell surface in response to APO866 was observed. Remarkably, in healthy leukocytes APO866 and TRAIL were poorly active and failed to show any cooperation. Activation of the extrinsic apoptotic cascade with TRAIL selectively amplifies the sequelae of Nampt inhibition in leukemia cells, and appears as a promising strategy to enhance APO866 activity in hematological malignancies.
    Experimental hematology 11/2010; 38(11):979-88. · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pathways downstream of ErbB-family proteins are very important in BC, especially when considering treatment with onco-protein inhibitors. We studied and implemented dynamic simulations of four downstream pathways and described the fragment of the signaling network we evaluated as a Molecular Interaction Map. Our simulations, enacted using Ordinary Differential Equations, involved 242 modified species and complexes, 279 reversible reactions and 111 catalytic reactions. Mutations within a single pathway tended to be mutually exclusive; only inhibitors acting at, or downstream (not upstream), of a given mutation were active. A double alteration along two distinct pathways required the inhibition of both pathways. We started an analysis of sensitivity/robustness of our network, and we systematically introduced several individual fluctuations of total concentrations of independent molecular species. Only very few cases showed significant sensitivity. We transduced the ErbB2 over-expressing BC line, BT474, with the HRAS (V12) mutant, then treated it with ErbB-family and phosphorylated MEK (MEKPP) inhibitors, Lapatinib and U0126, respectively. Experimental and simulation results were highly concordant, showing statistical significance for both pathways and for two respective endpoints, i.e. phosphorylated active forms of ERK and Akt, p one tailed = .0072 and = .0022, respectively. Working with a complex 39 basic species signaling network region, this technology facilitates both comprehension and effective, efficient and accurate modeling and data interpretation. Dynamic network simulations we performed proved to be both practical and valuable for a posteriori comprehension of biological networks and signaling, thereby greatly facilitating handling, and thus complete exploitation, of biological data.
    Current cancer drug targets 11/2010; 10(7):737-57. · 5.13 Impact Factor
  • Leukemia research 05/2010; 34(9):e240-2. · 2.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Novel alpha-mannosidase inhibitors of the type (2R,3R,4S)-2-({[(1R)-2-hydroxy-1-arylethyl]amino}methyl)pyrrolidine-3,4-diol have been prepared and assayed for their anticancer activities. Compound 30 with the aryl group=4-trifluoromethylbiphenyl inhibits the proliferation of primary cells and cell lines of different origins, irrespective of Bcl-2 expression levels, inducing a G2/Mcell cycle arrest and by modification of genes involved in cell cycle progression and survival.
    Bioorganic & medicinal chemistry 03/2010; 18(9):3320-34. · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lapatinib, a dual HER2 and EGFR tyrosine kinase inhibitor is highly active in HER2+ breast cancer. However, its efficacy is limited by either primary or acquired resistance. Although mutations in ras genes are rarely found in breast cancer, H-ras overexpression is frequently observed. Moreover, genetic alterations that do not directly involve ras such as Brk amplification, ultimately result in increased ras signaling. Using SKBR3 cells, a HER2+ breast cancer cell line that is naturally devoid of mutations in PI3KCA, PTEN, BRAF, and ras we show that both H-ras overexpression and expression of an oncogenic ras allele (ras V12) reduce susceptibility to lapatinib in analogy to what observed with activating PI3KCA mutations and with a constitutively active form of Akt. Importantly, we found that resistance to lapatinib due to ras overexpression or to ras V12 is overcome by MEK inhibition with U0126, suggesting a key role for the MEK-Erk pathway in ras-induced resistance. Similar results were obtained in BT474 cells, another HER+ breast cancer cell line. Therefore, our data indicate that overexpressed/mutated ras may act as a biological modifier of the response to lapatinib. Combining MEK inhibitors with lapatinib may help overcome this form of resistance and increase the efficacy of lapatinib in these tumors.
    Current cancer drug targets 03/2010; 10(2):168-75. · 5.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lapatinib, a dual HER2 and EGFR tyrosine kinase inhibitor is highly active in HER2+ breast cancer. However, its efficacy is limited by either primary or acquired resistance. Although mutations in ras genes are rarely found in breast cancer, H-ras overexpression is frequently observed. Moreover, genetic alterations that do not directly involve ras such as Brk amplification, ultimately result in increased ras signaling. Using SKBR3 cells, a HER2+ breast cancer cell line that is naturally devoid of mutations in PI3KCA, PTEN, BRAF, and ras we show that both H-ras overexpression and expression of an oncogenic ras allele (ras V12) reduce susceptibility to lapatinib in analogy to what is observed with activating PI3KCA mutations and with a constitutively active form of Akt. Importantly, we found that resistance to lapatinib due to ras overexpression or to ras V12 is overcome by MEK inhibition with U0126, suggesting a key role for the MEK-Erk pathway in ras-induced resistance. Similar results were obtained in BT474 cells, another HER+ breast cancer cell line. Therefore, our data indicate that overexpressed/mutated ras may act as a biological modifier of the response to lapatinib. Combining MEK inhibitors with lapatinib may help overcome this form of resistance and increase the efficacy of lapatinib in these tumors.
    Current Cancer Drug Targets 02/2010; 10(2):168-175. · 4.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The signaling-network immediately downstream of the ErbB-family is very important in BC and other cancers, especially considering treatment of the excess of function of dominant onco-proteins with onco-protein inhibitors. We studied and implemented dynamic simulations of four downstream pathways. The fragment of the signaling-network we evaluated was described as a Molecular Interaction Map. Our simulations involved 242 modified species and complexes, 279 reversible reactions, 110 catalytic activities. We used Ordinary Differential Equations for our simulations. We started an analysis of sensitivity / robustness of our network, and we systematically introduced fluctuations of total concentrations of independent molecular species. We adopted mostly the strategy of a random sampling of 1000 cases for each instance of increasing numbers of perturbations. Only a small minority of cases showed an important sensitivity, the number of sensitive cases increased moderately for increasing numbers of perturbations. In most cases the effect of introducing virtual mutations and virtual onco-protein inhibitors was more important than the effect of randomly introduced perturbations, this suggests an acceptable robustness of our network. The importance of our work is primarily related to the fact that the complexity of the 39 basic species signaling-network region we analyzed is of difficult intuitive understanding for a ”naked” human mind. Dynamic network simulations appear to be an useful support for an ”a posteriori” mental comprehension by a cancer researcher of the behavior of a network of this degree of complexity. The present report suggests the feasibility of a computational approach even in the presence of a multiple number of uncertainties about parameter values.
    Computational Intelligence Methods for Bioinformatics and Biostatistics - 7th International Meeting, CIBB 2010, Palermo, Italy, September 16-18, 2010, Revised Selected Papers; 01/2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The efficacy of anti-HER2 therapeutics, such as lapatinib and trastuzumab, is limited by primary and acquired resistance. Cellular adaptations that allow breast cancer cell to survive prolonged HER2 inhibition include de-repression of the transcription factor FOXO3A with consequent estrogen receptor activation, and/or increased HER3 signaling. Here, we used low-density arrays, quantitative PCR, and western blotting to determine how HER2 signaling inhibition with lapatinib or PI3K inhibitors affects the expression of genes involved in breast cancer metastatic spread and overall prognosis. Retroviral transgenesis was used to express constitutively active forms of Akt in the HER2(+) breast cancer cell line SKBR3, and Grb7 in MCF7 cells. Specific gene silencing was obtained by siRNAs transfection. A murine BT474 xenograft cancer model was used to assess the effect of lapatinib on gene expression in vivo. We found that lapatinib induces upregulation of Grb7, an adaptor protein involved in receptor tyrosine kinase signaling and promoting cell survival and cell migration. Grb7 upregulation induced by lapatinib was found to occur in cancer cells in vitro and in vivo. We demonstrate that Grb7 upregulation is recreated by PI3K inhibitors while being prevented by constitutively active Akt. Thus, Grb7 is repressed by PI3K signaling and lapatinib-mediated Akt inhibition is responsible for Grb7 de-repression. Finally, we show that Grb7 removal by RNA-interference reduces breast cancer cell viability and increases the activity of lapatinib. In conclusion, Grb7 upregulation is a potentially adverse consequence of HER2 signaling inhibition. Preventing Grb7 accumulation and/or its interaction with receptor tyrosine kinases may increase the benefit of HER2-targeting drugs.
    PLoS ONE 01/2010; 5(2):e9024. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monoclonal antibodies have been the most successful therapeutics ever brought to cancer treatment by immune technologies. The use of monoclonal antibodies in B-cell Non-Hodgkin's lymphomas (NHL) represents the greatest example of these advances, as the introduction of the anti-CD20 antibody rituximab has had a dramatic impact on how we treat this group of diseases today. Despite this success, several questions about how to optimize the use of monoclonal antibodies in NHL remain open. The best administration schedules, as well as the optimal duration of rituximab treatment, have yet to be determined. A deeper knowledge of the mechanisms underlying resistance to rituximab is also necessary in order to improve the activity of this and of similar therapeutics. Finally, new antibodies and biological agents are entering the scene and their advantages over rituximab will have to be assessed. We will discuss these issues and present an overview of the most significant clinical studies with monoclonal antibodies for NHL treatment carried out to date.
    Clinical and Developmental Immunology 01/2010; 2010:428253. · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Molecular monitoring of the BCR-ABL1 transcript in chronic myelogenous leukemia (CML) using quantitative real-time PCR (RQ-PCR) can be performed using either bone marrow (BM) or peripheral blood (PB). However, a recent report by Stock et al. [International Journal of Oncology 28 (2006) 1099] questioned the reliability of PB samples for BCR-ABL1 detection as performed by RQ-PCR. We report a study on 114 CML patients who received allogeneic stem cell transplantation (ASCT), and who were monitored by RQ-PCR using paired samples of BM and PB: the total number of determinations was 428, with a median follow-up after transplant of 8 years. BCR-ABL1 transcript was undetectable or <0.1%, in 106 (49.57%) and 62 (29%) paired determinations, respectively. BCR-ABL1 was >0.1% in 36 (16.8%) paired determinations and was discordant in 10 (4.7%). Agreement between PB and BM results was quantified by the kappa test (k = 0.85; 95% CI 0.76-0.94). This study shows that BCR-ABL1 RQ-PCR monitoring of CML patients after ASCT with PB is concordant with BM in 95.3% of cases, and thus may be used to monitor the disease. This may be relevant when discussing both quality of life issues and the need for post-transplant monitoring with the patient.
    International journal of laboratory hematology 11/2009; 32(4):387-91. · 1.30 Impact Factor
  • Source
    Blood 07/2009; 113(23):6035-7; author reply 6037-8. · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The current treatment of chronic myelogenous leukemia (CML) is one of the most successful examples of molecularly targeted therapy in cancer. The identification of the fusion oncogene BCR-ABL allowed the discovery of small molecule inhibitors of its tyrosine kinase activity which, in turn, have literally revolutionized the treatment of this disease. However, large part of a successful clinical management of CML relies on appropriate diagnosis, molecular monitoring and identification of mutations potentially leading to drug resistance. These issues are discussed here together with an overview on how patients treated with tyrosine kinase inhibitors should be monitored.
    Journal of B.U.ON.: official journal of the Balkan Union of Oncology 01/2009; 14(4):565-73. · 0.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nicotinamide phosphoribosyltransferase (Nampt) inhibitors such as FK866 are potent inhibitors of NAD(+) synthesis that show promise for the treatment of different forms of cancer. Based on Nampt upregulation in activated T lymphocytes and on preliminary reports of lymphopenia in FK866 treated patients, we have investigated FK866 for its capacity to interfere with T lymphocyte function and survival. Intracellular pyridine nucleotides, ATP, mitochondrial function, viability, proliferation, activation markers and cytokine secretion were assessed in resting and in activated human T lymphocytes. In addition, we used experimental autoimmune encephalomyelitis (EAE) as a model of T-cell mediated autoimmune disease to assess FK866 efficacy in vivo. We show that activated, but not resting, T lymphocytes undergo massive NAD(+) depletion upon FK866-mediated Nampt inhibition. As a consequence, impaired proliferation, reduced IFN-gamma and TNF-alpha production, and finally autophagic cell demise result. We demonstrate that upregulation of the NAD(+)-degrading enzyme poly-(ADP-ribose)-polymerase (PARP) by activated T cells enhances their susceptibility to NAD(+) depletion. In addition, we relate defective IFN-gamma and TNF-alpha production in response to FK866 to impaired Sirt6 activity. Finally, we show that FK866 strikingly reduces the neurological damage and the clinical manifestations of EAE. In conclusion, Nampt inhibitors (and possibly Sirt6 inhibitors) could be used to modulate T cell-mediated immune responses and thereby be beneficial in immune-mediated disorders.
    PLoS ONE 01/2009; 4(11):e7897. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells are professional antigen-presenting cells with a key role in both immunity induction and tolerance maintenance. Dendritic cells are highly specialized in antigen capture, processing and presentation, and express co-stimulation signals which activate T lymphocytes and NK cells. Dendritic cells generated in culture and loaded with an antigen efficiently induce antigen-specific immunity after injection. More recently, methods have been developed that target antigens to dendritic cells in vivo, bypassing the need for ex vivo cell manipulations. Numerous ongoing studies aim to evaluate the effectiveness of dendritic cell vaccines in preventing tumor relapses and extending patients' survival. Further implementation of this form of immunotherapy is expected following the identification of the mechanisms controlling dendritic cell immunogenicity, and from a better understanding of the cell dynamics whereby immune responses are orchestrated. Here, we discuss these new insights together with an overview of the dendritic cell-based clinical studies carried out to date.
    Advanced Drug Delivery Reviews 02/2008; 60(2):173-83. · 12.89 Impact Factor
  • Eva Moran, Alessio Nencioni
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteasomal degradation is the main mechanism accounting for intracellular protein degradation. Not only is the proteasome involved in physiological protein turnover, it is also called into play by processes such as signal transduction, cell cycle, and apoptosis. Despite the ubiquitous distribution of the proteasome and its putative essential function, proteasome inhibitors have been developed that can be safely administered with acceptable side effects. Importantly, these compounds have been found to possess antitumor activity and are presently incorporated into the treatment of multiple myeloma and mantle cell lymphoma. In 2003, bortezomib (velcade) was the first compound in this category to have received FDA approval. The mechanisms for the antitumor activity of bortezomib and related drugs remain elusive. NF- kappaB inhibition by proteasome inhibitors may play a role in some instances. Recently, terminally differentiated plasma cells have been shown to downregulate proteasome expression and overall proteasome activity, which may account for the exquisite susceptibility of multiple myeloma cells to proteasome inhibition. New proteasome inhibitors with improved pharmacological properties are being developed and will soon enter clinical experimentation. Finally, studies addressing the usefulness of these compounds in other types of malignancies are ongoing and may soon expand the number of applications of these new therapeutic agents.
    Journal of B.U.ON.: official journal of the Balkan Union of Oncology 10/2007; 12 Suppl 1:S95-9. · 0.76 Impact Factor