D Kolakofsky

Mie University, Tsu-shi, Mie-ken, Japan

Are you D Kolakofsky?

Claim your profile

Publications (145)884.52 Total impact

  • Juan Reguera, Stephen Cusack, Daniel Kolakofsky
    [Show abstract] [Hide abstract]
    ABSTRACT: Negative strand RNA virus (NSV) genomes are never free, but always found assembled with multiple copies of their nucleoprotein, as RNPs. A flurry of papers describing the X-ray crystal structures of several segmented NSV nucleoproteins have recently appeared. The most significant feature of these various structures is that the arms that are used to oligomerize the nucleoproteins on their genome RNAs are highly flexible, permitting these RNPs to assume virtually unlimited geometries. The structural flexibility of segmented NSV RNPs is undoubtedly important in all aspects of their biology, including genome replication and circularization, and the selection of one copy of each segment for packaging into virus particles.
    Current opinion in virology. 01/2014; 5C:7-15.
  • Juan Reguera, Stephen Cusack, Daniel Kolakofsky
    [Show abstract] [Hide abstract]
    ABSTRACT: Negative strand RNA virus (NSV) genomes are never free, but always found assembled with multiple copies of their nucleoprotein, as RNPs. A flurry of papers describing the X-ray crystal structures of several segmented NSV nucleoproteins have recently appeared. The most significant feature of these various structures is that the arms that are used to oligomerize the nucleoproteins on their genome RNAs are highly flexible, permitting these RNPs to assume virtually unlimited geometries. The structural flexibility of segmented NSV RNPs is undoubtedly important in all aspects of their biology, including genome replication and circularization, and the selection of one copy of each segment for packaging into virus particles.
    Current Opinion in Virology. 01/2014; 5:7–15.
  • Source
    Daniel Kolakofsky, Eva Kowalinski, Stephen Cusack
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of high-resolution crystal structures of RIG-I and RIG-I:dsRNA cocrystals has recently been reported. Comparison of these structures provides considerable insight into how this innate immune pattern recognition receptor is activated upon detecting and binding a certain class of viral RNAs.
    RNA 11/2012; · 5.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell entry by paramyxoviruses requires fusion between viral and cellular membranes. Paramyxovirus infection also gives rise to the formation of multinuclear, fused cells (syncytia). Both types of fusion are mediated by the viral fusion (F) protein, which requires proteolytic processing at a basic cleavage site in order to be active for fusion. In common with most paramyxoviruses, fusion mediated by Sendai virus F protein (F(SeV)) requires coexpression of the homologous attachment (hemagglutinin-neuraminidase [HN]) protein, which binds to cell surface sialic acid receptors. In contrast, respiratory syncytial virus fusion protein (F(RSV)) is capable of fusing membranes in the absence of the viral attachment (G) protein. Moreover, F(RSV) is unique among paramyxovirus fusion proteins since F(RSV) possesses two multibasic cleavage sites, which are separated by an intervening region of 27 amino acids. We have previously shown that insertion of both F(RSV) cleavage sites in F(SeV) decreases dependency on the HN attachment protein for syncytium formation in transfected cells. We now describe recombinant Sendai viruses (rSeV) that express mutant F proteins containing one or both F(RSV) cleavage sites. All cleavage-site mutant viruses displayed reduced thermostability, with double-cleavage-site mutants exhibiting a hyperfusogenic phenotype in infected cells. Furthermore, insertion of both F(RSV) cleavage sites in F(SeV) reduced dependency on the interaction of HN with sialic acid for infection, thus mimicking the unique ability of RSV to fuse and infect cells in the absence of a separate attachment protein.
    Journal of Virology 03/2011; 85(6):2771-80. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arenavirus RNA genomes are initiated by a "prime and realign" mechanism, such that the initiating GTP is found as a single unpaired (overhanging) nucleotide when the complementary genome ends anneal to form double-stranded (ds) RNA panhandle structures. dsRNAs modeled on these structures do not induce interferon (IFN), as opposed to blunt-ended (5' ppp)dsRNA. This study examines whether these viral structures can also act as decoys, by trapping RIG-I in inactive dsRNA complexes. We examined the ability of various dsRNAs to activate the RIG-I ATPase (presumably a measure of helicase translocation on dsRNA) relative to their ability to induce IFN. We found that there is no simple relationship between these two properties, as if RIG-I can translocate on short dsRNAs without inducing IFN. Moreover, we found that (5' ppp)dsRNAs with a single unpaired 5' ppp-nucleotide can in fact competitively inhibit the ability of blunt-ended (5' ppp)dsRNAs to induce IFN when co-transfected into cells and that this inhibition is strongly dependent on the presence of the 5' ppp. In contrast, (5' ppp)dsRNAs with a single unpaired 5' ppp-nucleotide does not inhibit poly(I-C)-induced IFN activation, which is independent of the presence of a 5' ppp group.
    Journal of Biological Chemistry 02/2011; 286(8):6108-16. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arenavirus RNA genomes are initiated by a prime and realign mechanism, such that the initiating GTP is found as a single unpaired (overhanging) nucleotide when the complementary genome ends anneal to form dsRNA panhandle structures. dsRNAs modelled on these structures do not induce interferon (IFN), as opposed to blunt-ended 5 prime pppdsRNA. This paper examines whether these viral structures can also act as decoys, by trapping RIG-I in inactive dsRNA complexes. We examined the ability of various dsRNAs to activate the RIG-I ATPase (presumably a measure of helicase translocation on dsRNA) relative to their ability to induce IFN. We found that there is no simple relationship between these two properties, as if RIG-I can translocate on short dsRNAs without inducing IFN. Moreover, we find that 5 prime pppdsRNAs with a single unpaired 5 prime ppp-nucleotide can in fact competitively inhibit the ability of blunt-ended 5 prime pppdsRNA to induce IFN when co-transfected into cells, and that this inhibition is strongly dependent on the presence of the 5 prime ppp. In contrast, 5 prime pppdsRNAs with a single unpaired 5 prime ppp-nucleotide does not inhibit poly-I/C induced IFN activation, which is independent of the presence of a 5 prime ppp group.
    Journal of Biological Chemistry 12/2010; · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The large RNA polymerase (L) protein of human parainfluenza virus type 2 (hPIV2) binds the nucleocapsid, phosphoprotein, and V protein, as well as itself, and these interactions are essential for transcription and replication of the viral RNA genome. Although all of these interactions were found to be mediated through the domains within the N terminus of L, the C terminus of the L protein was also required for minigenome reporter gene expression. We have identified a highly conserved rubulavirus domain near the C terminus of the L protein that is required for mRNA synthesis but not for genome replication. Remarkably, this region of L shares homology with a conserved region of cellular capping enzymes that binds GTP and forms a lysyl-GMP enzyme intermediate, the first step in the cellular capping reaction. We propose that this conserved region of L also binds GTP (or GDP) to carry out the second step of the unconventional nonsegmented negative-strand virus capping reaction.
    Journal of Virology 11/2010; 85(2):725-32. · 5.08 Impact Factor
  • Jean-Baptiste Marq, Daniel Kolakofsky, Dominique Garcin
    [Show abstract] [Hide abstract]
    ABSTRACT: Arenavirus and bunyavirus RNA genomes are unusual in that they are found in circular nucleocapsids, presumably due to the annealing of their complementary terminal sequences. Moreover, arenavirus genome synthesis initiates with GTP at position +2 of the template rather than at the precise 3' end (position +1). After formation of a dinucleotide, 5' pppGpC(OH) is then realigned on the template before this primer is extended. The net result of this "prime and realign" mechanism of genome initiation is that 5' pppG is found as an unpaired 5' nucleotide when the complementary genome ends anneal to form a double-stranded (dsRNA) panhandle. Using 5' pppRNA made in vitro and purified so that all dsRNA side products are absent, we have determined that both this 5' nucleotide overhang, as well as mismatches within the dsRNA (as found in some arenavirus genomes), clearly reduce the ability of these model dsRNAs to induce interferon upon transfection into cells. The presence of this unpaired 5' ppp-nucleotide is thus another way that some viruses appear to use to avoid detection by cytoplasmic pattern recognition receptors.
    Journal of Biological Chemistry 06/2010; 285(24):18208-16. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vaccinia virus, a large DNA virus that replicates in the cytoplasm, expresses its E3L protein to inhibit the cellular innate immune response and apoptosis. E3L is a bifunctional protein that contains an N-terminal DNA binding domain (BD) and a C-terminal double-stranded RNA (dsRNA)-BD (residues 100-190), both of which contribute to viral pathogenesis by blocking the activation of cellular genes that respond to the viral infection. We report that expression of the dsRNA-BD alone inhibits not only the dsRNA-induced activation of interferon beta (IFNbeta) but also that of 5'-triphosphate single-stranded RNA and DNA-induced IFNbeta activation even though E3L(100-190) does not bind the latter two pathogen-associated molecular patterns. This inhibition occurs in both human HeLa and A549 cells, where RIG-I appears to be required for dsDNA-induced IFNbeta activation. Unexpectedly, the two residues most important for dsRNA binding are also critical for this domain's ability to inhibit all three nucleic acid-induced cellular responses.
    Journal of Biological Chemistry 08/2009; 284(38):25471-8. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human parainfluenza virus type 2 (hPIV2) V protein plays important roles in inhibiting the host interferon response and promoting virus growth, but its role in hPIV2 replication and transcription is not clear. A green fluorescent protein (GFP)-expressing a negative-sense minigenomic construct of hPIV2 has been established by standard technology, with helper plasmids expressing the nucleocapsid protein (NP), phosphoprotein (P), and large RNA polymerase (L) protein, to examine the role of V protein. We found that the simultaneous expression of wild-type V protein in the minigenome system inhibited GFP expression, at least in part, by inhibiting minigenome replication. In contrast, expression of C terminally truncated or mutant hPIV2 V proteins had no effect. Moreover, the V protein of simian virus 41, the rubulavirus most closely related virus to hPIV2, also inhibited GFP expression, whereas that of PIV5, a more distantly related rubulavirus, did not. Using these other rubulavirus V proteins, as well as various mutant hPIV2 V proteins, we found that the ability of V protein to inhibit GFP expression correlated with its ability to bind to L protein via its C-terminal V protein-specific region, but there was no correlation with NP binding. A possible role for this inhibition of genome replication in promoting viral fitness is discussed.
    Journal of Virology 08/2008; 82(13):6130-8. · 5.08 Impact Factor
  • Source
    Joseph Curran, Daniel Kolakofsky
    Virology 03/2008; 371(2):227-30. · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Except for viruses that initiate RNA synthesis with a protein primer (e.g., picornaviruses), most RNA viruses initiate RNA synthesis with an NTP, and at least some of their viral (ppp)RNAs remain unblocked during the infection. Consistent with this, most viruses require RIG-I to mount an innate immune response, whereas picornaviruses require mda-5. We have examined a SeV infection whose ability to induce interferon depends on the generation of capped dsRNA (without free 5' tri-phosphate ends), and found that this infection as well requires RIG-I and not mda-5. We also provide evidence that RIG-I interacts with poly-I/C in vivo, and that heteropolymeric dsRNA and poly-I/C interact directly with RIG-I in vitro, but in different ways; i.e., poly-I/C has the unique ability to stimulate the helicase ATPase of RIG-I variants which lack the C-terminal regulatory domain.
    PLoS ONE 02/2008; 3(12):e3965. · 3.53 Impact Factor
  • PLoS ONE 01/2008; 3(12). · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As infection with wild-type (wt) Sendai virus (SeV) normally activates beta interferon (IFN-beta) very poorly, two unnatural SeV infections were used to study virus-induced IFN-beta activation in mouse embryonic fibroblasts: (i) SeV-DI-H4, which is composed mostly of small, copyback defective interfering (DI) genomes and whose infection overproduces short 5'-triphosphorylated trailer RNAs (pppRNAs) and underproduces viral V and C proteins, and (ii) SeV-GFP(+/-), a coinfection that produces wt amounts of viral gene products but that also produces both green fluorescent protein (GFP) mRNA and its complement, which can form double-stranded RNA (dsRNA) with capped 5' ends. We found that (i) virus-induced signaling to IFN-beta depended predominantly on RIG-I (as opposed to mda-5) for both SeV infections, i.e., that RIG-I senses both pppRNAs and dsRNA without 5'-triphosphorylated ends, and (ii) it is the viral C protein (as opposed to V) that is primarily responsible for countering RIG-I-dependent signaling to IFN-beta. Nondefective SeV that cannot specifically express C proteins not only cannot prevent the effects of transfected poly(I-C) or (ppp)RNAs on IFN-beta activation but also synergistically enhances these effects. SeV-V(minus) infection, in contrast, behaves mostly like wt SeV and counteracts the effects of transfected poly(I-C) or (ppp)RNAs.
    Journal of Virology 12/2007; 81(22):12227-37. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mini-genomes expressing two reporter genes and a variable gene junction were used to study Sendai virus RNA polymerase (RdRp) scanning for the mRNA start signal of the downstream gene (gs2). We found that RdRp could scan the template efficiently as long as the initiating uridylate of gs2 (3' UCCCnnUUUC) was preceded by the conserved intergenic region (3' GAA) and the last 3 uridylates of the upstream gene end signal (ge1; 3' AUUCUUUUU). The end of the leader sequence (3' CUAAAA, which precedes gs1) could also be used for gene2 expression, but this sequence was considerably less efficient. Increasing the distance between ge1 and gs2 (up to 200 nt) led to the progressive loss of gene2 expression, in which half of gene2 expression was lost for each 70 nucleotides of intervening sequence. Beyond 200 nt, gene2 expression was lost more slowly. Our results suggest that there may be two populations of RdRp that scan at gene junctions, which can be distinguished by the efficiency with which they can scan the genome template for gs.
    Virology 07/2007; 362(2):411-20. · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several cellular proteins are synthesized in the cytosol on free ribosomes and then associate with membranes due to the presence of short peptide sequences. These membrane-targeting sequences contain sites to which lipid chains are attached, which help direct the protein to a particular membrane domain and anchor it firmly in the bilayer. The intracellular concentration of these proteins in particular cellular compartments, where their interacting partners are also concentrated, is essential to their function. This paper reports that the apparently unmodified N-terminal sequence of the Sendai virus C protein (MPSFLKKILKLRGRR . . .; letters in italics represent hydrophobic residues; underlined letters represent basic residues, which has a strong propensity to form an amphipathic alpha-helix in a hydrophobic environment) also function as a membrane targeting signal and membrane anchor. Moreover, the intracellular localization of the C protein at the plasma membrane is essential for inducing the interferon-independent phosphorylation of Stat1 as part of the viral program to prevent the cellular antiviral response.
    Journal of Virology 05/2007; 81(7):3187-97. · 5.08 Impact Factor
  • Source
    Laura Strahle, Dominique Garcin, Daniel Kolakofsky
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability of some Sendai virus stocks to strongly activate IFNbeta has long been known to be associated with defective-interfering (DI) genomes. We have compared SeV stocks containing various copyback and internal deletion DI genomes (and those containing only nondefective (ND) genomes) for their ability to activate reporter genes driven by the IFNbeta promoter. We found that this property was primarily due to the presence of copyback DI genomes and correlated with their ability to self-anneal and form dsRNA. The level of IFNbeta activation was found to be proportional to that of DI genome replication and to the ratio of DI to ND genomes during infection. Over-expression of the viral V and C proteins was as effective in blocking the copyback DI-induced activation of the IFNbeta promoter as it was in reducing poly-I/C-induced activation, providing evidence that these DI infections activate IFNbeta via dsRNA. Infection with an SeV stock that is highly contaminated with copyback DI genomes is thus a very particular way of potently activating IFNbeta, presumably by providing plentiful dsRNA under conditions of reduced expression of viral products which block the host antiviral response.
    Virology 08/2006; 351(1):101-11. · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The order Mononegavirales includes three virus families that replicate in the cytoplasm: the Paramyxoviridae, composed of two subfamilies, the Paramyxovirinae and Pneumovirinae, the Rhabdoviridae and the Filoviridae. These viruses, also called non-segmented negative-strand RNA viruses (NNV), contain five to ten tandemly linked genes, which are separated by conserved junctional sequences that act as mRNA start and poly(A)/stop sites. For the NNV, downstream mRNA synthesis depends on termination of the upstream mRNA, and all NNV RNA-dependent RNA polymerases reiteratively copy ("stutter" on) a short run of template uridylates during transcription to polyadenylate and terminate their mRNAs. The RNA-dependent RNA polymerase of a subset of the NNV, all members of the Paramyxovirinae, also stutter in a very controlled fashion to edit their phosphoprotein gene mRNA, and Ebola virus, a filovirus, carries out a related process on its glycoprotein mRNA. Remarkably, all viruses that edit their phosphoprotein mRNA are also governed by the "rule of six", i.e. their genomes must be of polyhexameric length (6n+0) to replicate efficiently. Why these two seemingly unrelated processes are so tightly linked in the Paramyxovirinae has been an enigma. This paper will review what is presently known about these two processes that are unique to viruses of this subfamily, and will discuss whether this enigmatic linkage could be due to the phenomenon of RNA virus error catastrophe.
    Journal of General Virology 08/2005; 86(Pt 7):1869-77. · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Some paramyxovirus V proteins induce STAT protein degradation, and the amino acids essential for this process in the human parainfluenza virus type 2 (hPIV2) V protein have been studied. Various recombinant hPIV2s and cell lines constitutively expressing various mutant V proteins were generated. We found that V proteins with replacement of Cys residues of the Cys cluster were still able to bind STATs but were unable to induce their degradation. The hPIV2 V protein binds STATs via a W-(X)3-W-(X)9-W Trp motif located just upstream of the Cys cluster. Replacements of two or more Trp residues in this motif resulted in a failure to form a V/STAT2 complex. We have also identified two Phe residues of the hPIV2 V protein that are essential for STAT degradation, namely, Phe207, lying within the Cys cluster, and Phe143, in the P/V common region of the protein. Interestingly, infection of BHK cells with hPIV2 led to the specific degradation of STAT1 and not STAT2. Other evidence for the cell species specificity of hPIV2-induced STAT degradation is presented. Finally, a V-minus hPIV2, which can express only the P protein from its P gene, was generated and partially characterized. In contrast to V-minus viruses of other paramyxovirus genera, this V-minus rubulavirus was highly debilitated, and its growth even in Vero cells was very limited. The structural rubulavirus V proteins, as expected, are thus clearly important in promoting virus growth, independent of their anti-interferon (IFN) activity. Interestingly, many of the residues that are essential for anti-IFN activity, e.g., the Cys of this cluster and Phe207 within this cluster, as well as the Trp of this motif, are also essential for promoting virus growth.
    Journal of Virology 08/2005; 79(13):8591-601. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Sendai virus C protein acts to dismantle the interferon-induced cellular antiviral state in an MG132-sensitive manner, in part by inducing STAT1 instability. This activity of C maps to the first 23 amino acids (C(1-23)) of the 204-amino-acid (aa)-long protein (C(1-204)). C(1-23) was found to act as an independent viral element that induces STAT1 instability, since this peptide fused to green fluorescent protein (C(1-23)/GFP) is at least as active as C(1-204) in this respect. This peptide also induces the degradation of C(1-23)/GFP and other proteins to which it is fused. Most of C(1-204), and particularly its amino-terminal half, is predicted to be structurally disordered. C(1-23) as a peptide was found to be disordered by circular dichroism, and the first 11 aa have a strong potential to form an amphipathic alpha-helix in low concentrations of trifluoroethanol, which is thought to mimic protein-protein interaction. The critical degradation-determining sequence of C(1-23) was mapped by mutation to eight residues near its N terminus: (4)FLKKILKL(11). All the large hydrophobic residues of (4)FLKKILKL(11), plus its ability to form an amphipathic alpha-helix, were found to be critical for STAT1 degradation. In contrast, C(1-23)/GFP self-degradation did not require (8)ILKL(11), nor the ability to form an alpha-helix throughout this region. Remarkably, C(1-23)/GFP also stimulated C(1-204) degradation, and this degradation in trans required the same peptide determinants as for STAT1. Our results suggest that C(1-204) coordinates its dual activities of regulating viral RNA synthesis and counteracting the host innate antiviral response by sensing both its own intracellular concentration and that of STAT1.
    Journal of Virology 09/2004; 78(16):8799-811. · 5.08 Impact Factor

Publication Stats

6k Citations
884.52 Total Impact Points

Institutions

  • 2008–2010
    • Mie University
      • Department of Microbiology
      Tsu-shi, Mie-ken, Japan
  • 1975–2005
    • University of Geneva
      • • Department of Microbiology and Molecular Medicine (MIMOL)
      • • Faculty of Medicine
      Genève, GE, Switzerland
  • 2003
    • Policlinique Médicale Universitaire Lausanne
      Lausanne, Vaud, Switzerland
  • 2002
    • Medical Research Council (UK)
      Londinium, England, United Kingdom
  • 1998–2001
    • Osaka Prefectural Institute of Public Health
      Ōsaka, Ōsaka, Japan
  • 1995
    • University of Ottawa
      • Faculty of Medicine
      Ottawa, Ontario, Canada
  • 1993
    • Max Planck Institute of Biochemistry
      München, Bavaria, Germany