Lyudmila Sikora

University of Minnesota Duluth, Duluth, Minnesota, United States

Are you Lyudmila Sikora?

Claim your profile

Publications (17)89.23 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to environmental tobacco smoke (ETS) is known to contribute to and exacerbate inflammatory diseases of the lung such as chronic obstructive pulmonary disease (COPD) and asthma. The effect of ETS on angiogenesis and leukocyte recruitment, both of which promote lung inflammation, was investigated using lung tissue from mice exposed to aged and diluted sidestream cigarette smoke or fresh air for 12 weeks and transplanted into dorsal skin-fold chambers in nude mice. Lung tissue from mice exposed to cigarette smoke for 12 weeks exhibited significantly increased vascular density (angiogenesis) associated with selectin-mediated increased intravascular leukocyte rolling and adhesion compared to fresh air-exposed lung tissue by intravital microscopy. Further, neutrophils from nicotine-exposed mice displayed significantly increased rolling and adhesion compared to control neutrophils in microvessels of nicotine-exposed lungs versus control lung microvessels, suggesting that nicotine in cigarette smoke can augment leukocyte-endothelial interactions. ETS-induced angiogenesis and leukocyte trafficking may play a key role in airway recruitment of inflammatory cells in ETS-associated disorders such as COPD bronchitis or asthma.
    Experimental Lung Research 04/2009; 35(2):119-35. · 1.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Allergic inflammation involves the mobilization and trafficking of eosinophils to sites of inflammation. Galectin-3 (Gal-3) has been shown to play a critical role in eosinophil recruitment and airway allergic inflammation in vivo. The role played by Gal-3 in human eosinophil trafficking was investigated. Eosinophils from allergic donors expressed elevated levels of Gal-3 and demonstrated significantly increased rolling and firm adhesion on immobilized VCAM-1 and, more surprisingly, on Gal-3 under conditions of flow. Inhibition studies with specific mAbs as well as lactose demonstrated that: 1) eosinophil-expressed Gal-3 mediates rolling and adhesion on VCAM-1; 2) alpha(4) integrin mediates eosinophil rolling on immobilized Gal-3; and 3) eosinophil-expressed Gal-3 interacts with immobilized Gal-3 through the carbohydrate recognition domain of Gal-3 during eosinophil trafficking. These findings were further confirmed using inflamed endothelial cells. Interestingly, Gal-3 was found to bind to alpha(4) integrin by ELISA, and the two molecules exhibited colocalized expression on the cell surface of eosinophils from allergic donors. These findings suggest that Gal-3 functions as a cell surface adhesion molecule to support eosinophil rolling and adhesion under conditions of flow.
    The Journal of Immunology 01/2008; 179(11):7800-7. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To examine the role of endothelial heparan sulfate during angiogenesis, we generated mice bearing an endothelial-targeted deletion in the biosynthetic enzyme N-acetylglucosamine N-deacetylase/N-sulfotransferase 1 (Ndst1). Physiological angiogenesis during cutaneous wound repair was unaffected, as was growth and reproductive capacity of the mice. In contrast, pathological angiogenesis in experimental tumors was altered, resulting in smaller tumors and reduced microvascular density and branching. To simulate the angiogenic environment of the tumor, endothelial cells were isolated and propagated in vitro with proangiogenic growth factors. Binding of FGF-2 and VEGF(164) to cells and to purified heparan sulfate was dramatically reduced. Mutant endothelial cells also exhibited altered sprouting responses to FGF-2 and VEGF(164), reduced Erk phosphorylation, and an increase in apoptosis in branching assays. Corresponding changes in growth factor binding to tumor endothelium and apoptosis were also observed in vivo. These findings demonstrate a cell-autonomous effect of heparan sulfate on endothelial cell growth in the context of tumor angiogenesis.
    The Journal of Cell Biology 06/2007; 177(3):539-49. · 10.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The trafficking of leukocytes from the blood to sites of inflammation is the cumulative result of receptor-ligand-mediated signaling events associated with the leukocytes themselves as well as with the underlying vascular endothelium. Our data show that Galpha(i) signaling pathways in the vascular endothelium regulate a critical step required for leukocyte diapedesis. In vivo studies using knockout mice demonstrated that a signaling event in a non-lymphohematopoietic compartment of the lung prevented the recruitment of proinflammatory leukocytes. Intravital microscopy showed that blockade was at the capillary endothelial surface and ex vivo studies of leukocyte trafficking demonstrated that a Galpha(i)-signaling event in endothelial cells was required for transmigration. Collectively, these data suggest that specific Galpha(i2)-mediated signaling between endothelial cells and leukocytes is required for the extravasation of leukocytes and for tissue-specific accumulation.
    Proceedings of the National Academy of Sciences 04/2007; 104(11):4371-6. · 9.81 Impact Factor
  • Journal of Allergy and Clinical Immunology - J ALLERG CLIN IMMUNOL. 01/2007; 119(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effect of sustained exposure to nicotine, a major constituent of cigarette smoke, on hematopoiesis in the bone marrow (BM) and spleen was evaluated in a murine model. BALB/c mice were exposed to nicotine subcutaneously using 21-day slow-release pellets. Exposure to nicotine had no effect on the proliferation of long-term BM cultures or on their ability to form colonies. However, there was a significant decrease in the generation of lineage-specific progenitor cells, specifically eosinophil (colony-forming unit [CFU]-Eos) progenitors, in the BM of nicotine-exposed mice compared with control mice. Surprisingly, sustained exposure of mice to nicotine was found to induce significant hematopoiesis in the spleen. There was a significant increase in total colony formation as well as eosinophil-, granulocyte-macrophage-, and B-lymphocyte-specific progenitors (CFU-Eos, CFU-GM, and CFU-B, respectively) in nicotine-exposed mice but not in control mice. Sustained exposure to nicotine was associated with significant inhibition of rolling and migration of enriched hematopoietic stem/progenitor cells (HSPCs) across BM endothelial cells (BMECs) in vitro as well as decreased expression of beta2 integrin on the surface of these cells. Although sustained exposure to nicotine has only a modest effect on BM hematopoiesis, our studies indicate that it significantly induces extramedullary hematopoiesis in the spleen. Decreased interaction of nicotine-exposed HSPCs with BMECs (i.e., rolling and migration) may result in altered BM homing of these cells, leading to their seeding and proliferation at extramedullary sites such as the spleen.
    Stem Cells 12/2006; 24(11):2373-81. · 7.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Matrix metalloproteinase 9 (MMP-9) is a crucial proteinase, utilized by both eosinophils and neutrophils, that mediates transmigration through extracellular basement membranes. We have found that neutralization of MMP-9 by a monoclonal antibody or a chemical inhibitor blocked C5a dependent chemotaxis of these granulocytes in vitro. The levels of MMP-9 secreted by the action of C5a from eosinophils were about 50-fold lower than those from neutrophils, consistent with results from confocal microscopy, where the density of MMP-9 containing granules was fewer within eosinophils than in neutrophils. Zymography indicated gelatin degrading activity of the molecular size of pro MMP-9 in supernatants from eosinophils and neutrophils stimulated by C5a, with no evidence of proteolytic activation. Instead MMP-9 activation appeared oxidative, since inhibition of NADPH oxidase and nitric oxide synthase by DPI or L-NIL abrogated C5a-mediated chemotaxis through basement membranes. In keeping with this mode of activation, C5a, known as an agent of superoxide generation, was also found to induce secretion of nitric oxide from human eosinophils and rat granulocytes and monocytes. In conclusion C5a is an important mediator that brings about secretion and oxidative activation of MMP-9, a requisite protease for transmigration, from both eosinophils and neutrophils.
    International Immunopharmacology 08/2006; 6(7):1109-18. · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Elevated levels of serotonin (5-hydroxytryptamine, 5-HT) are observed in the serum of asthmatics. Herein, we demonstrate that 5-HT functions independently as an eosinophil chemoattractant that acts additively with eotaxin. 5-HT2A receptor antagonists (including MDL-100907 and cyproheptadine (CYP)) were found to inhibit 5-HT-induced, but not eotaxin-induced migration. Intravital microscopy studies revealed that eosinophils roll in response to 5-HT in venules under conditions of physiological shear stress, which could be blocked by pretreating eosinophils with CYP. OVA-induced pulmonary eosinophilia in wild-type mice was significantly inhibited using CYP alone and maximally in combination with a CCR3 receptor antagonist. Interestingly, OVA-induced pulmonary eosinophilia in eotaxin-knockout (Eot-/-) mice was inhibited by treatment with the 5-HT2A but not CCR3 receptor antagonist. These results suggest that 5-HT is a potent eosinophil-active chemoattractant that can function additively with eotaxin and a dual CCR3/5-HT2A receptor antagonist may be more effective in blocking allergen-induced eosinophil recruitment.
    The Journal of Immunology 10/2004; 173(6):3599-603. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Efforts to treat tumors have routinely depended on disruption of cell proliferation by a variety of methods, many involving stimulation of apoptosis. We have previously shown that a truncated form of 24-kd basic fibroblast growth factor consisting of the amino terminal 86 amino acids inhibits migration of tumor and endothelial cells in vitro. In the present study, this peptide was tested for its ability to suppress angiogenesis and tumor growth using the murine dorsal skin-fold chamber model in vivo. Treatment of MCF-7 breast carcinoma tumor spheroids with this peptide resulted in cessation of the angiogenic response and a significant reduction in tumor size. Blood vessels that did form were poorly developed. In addition to inhibiting angiogenesis, the peptide also inhibited migration of Lewis lung carcinoma cells away from the tumor core before onset of angiogenesis indicating that the peptide-mediated inhibition of migration affects both angiogenesis and tumor growth independently. Despite inhibition of tumor cell migration, the peptide had no effect on neutrophil or eosinophil chemotaxis. This study demonstrates that the truncated form of 24-kd basic fibroblast growth factor is effective in suppressing tumor development in vivo through inhibition of angiogenesis as well as inhibition of tumor cell migration without compromising other homeostatic events.
    American Journal Of Pathology 05/2004; 164(4):1183-90. · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pulmonary and activation-regulated chemokine (PARC/CCL18) belongs to the family of CC chemokines and shares 61% sequence identity with monocyte inflammatory protein (MIP)-1alpha. Produced by dendritic cells and macrophages primarily in the lung, PARC is known to be chemotactic for T cells. Because PARC's biological function is largely unknown, we screened various leukocyte populations for PARC expression and for response to PARC, with the idea that the cellular source may link PARC to disease states in which it may be involved. Here we report that eosinophils obtained from individuals with mild eosinophilia express PARC as assessed by RT-PCR on eosinophil RNA. The eosinophil preparations were free of monocytes, a known source of PARC, and no RT-PCR product was obtained from neutrophils. Furthermore, PARC protein was detected by ELISA in the supernatants of eosinophils from seven of nine donors and in higher concentration in the supernatants of monocytes on day 1 of culture. Purified recombinant PARC activated human monocytes/macrophages kept in culture for 3-4 days but not freshly isolated monocytes. The threshold dose for Ca(2+) mobilization as determined fluorometrically in indo 1-AM-labeled monocytes was 5 nM; maximal response was reached with approximately 50 nM PARC. PARC was chemotactic for these cultured monocytes and caused actin polymerization determined by FITC-phalloidin binding and fluorescence-activated cell sorting analysis. In contrast, PARC activated neither neutrophils nor eosinophils. Eosinophil production of PARC, its chemotactic effect on monocytes and lymphocytes, and PARC's previously described localization to the lung suggest that this chemokine might play a role in pulmonary leukocyte trafficking.
    AJP Lung Cellular and Molecular Physiology 04/2004; 286(3):L494-501. · 3.52 Impact Factor
  • Lyudmila Sikora, Savita P Rao, P Sriramarao
    [Show abstract] [Hide abstract]
    ABSTRACT: The interaction of circulating leukocytes with lung microvessels is a critical event in the recruitment of effector cells into the interstitial tissue during episodes of inflammation, including smoking-induced chronic airway disease. In the present study, murine lung tissue transplanted into a dorsal skinfold window chamber in nude mice was used as a model system to study nicotine-induced leukocyte trafficking in vivo. The revascularized lung microvessels were determined to be of pulmonary origin based on their ability to constrict in response to hypoxia. We demonstrated that nicotine significantly enhanced rolling and adhesion of leukocytes within lung microvessels comprising arterioles and postcapillary venules in a dose-dependent manner, but failed to induce leukocyte emigration. Nicotine-induced rolling and adhesion was significantly higher in venules than in arterioles. Treatment of mice with monoclonal antibodies (MAbs) against L-, E-, or P-selectin after exposure of lung allografts to nicotine resulted in variable but significant inhibition of nicotine-induced rolling, whereas nicotine-induced subsequent adhesion was inhibited by MAbs against L- and P-selectin but not E-selectin. Exposure of lung allografts to nicotine along with PD-98059, a mitogen-activated protein kinase (MAPK)-specific inhibitor, resulted in significant inhibition of nicotine-induced rolling and adhesion. In vitro, exposure of murine lung endothelial cells to nicotine resulted in increased phosphorylation of mitogen-activated/extracellular signal-regulated protein kinase 1/2, which could be blocked by PD-98059. Overall, these results suggest that nicotine-induced inflammation in the airways could potentially be due to MAPK-mediated, selectin-dependent leukocyte-endothelial cell interactions in the lung microcirculation.
    AJP Lung Cellular and Molecular Physiology 10/2003; 285(3):L654-63. · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cascade of leukocyte interactions under conditions of blood flow is well established in the systemic microcirculation, but not in lung microcirculation. We have developed a murine model to study lung microcirculation by transplanting lung tissue into dorsal skin-fold window chambers in nude mice and examining the ability of leukocytes to traffic within revascularized lung microvessels by intravital microscopy. The revascularized lung allograft demonstrated a network of arterioles, capillaries, and postcapillary venules with continuous blood flow. Stimulation of the lung allograft with TNF-alpha induced leukocyte rolling and adhesion in both arterioles and venules. Treatment with function-blocking anti-selectin mAb revealed that P- and L-selectin are the predominant rolling receptors in the lung microvessels, with E-selectin strengthening P-selectin-dependent interactions. Intravital microscopic studies also demonstrated that during their transit in capillaries, some leukocytes undergo shape change and continue to roll as elongated cells in postcapillary venules. Furthermore, the revascularized microvessels demonstrated the ability to undergo vasoconstriction in response to superfusion with endothelin-1. Overall, these studies demonstrate that the revascularized lung allograft is responsive to various external stimuli such as cytokines and vaso-active mediators and serves as a model to evaluate the interaction of leukocytes with the vascular endothelium in the lung microcirculation under acute as well as chronic experimental conditions.
    American Journal Of Pathology 07/2003; 162(6):2019-28. · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The importance of Thomsen-Friedenreich antigen (T antigen)-galectin-3 interactions in adhesion of human breast carcinoma cells to the endothelium under conditions of flow was studied. Highly metastatic cells (MDA-MB-435) expressing high levels of both galectin-3 and T antigen demonstrated significantly increased adhesion to monolayers of endothelial cells compared with their non-metastatic counterpart (MDA-MB-468) in vitro. Within minutes of adhesion, the highly metastatic cells acquire the ability of enhanced homotypic adhesion, leading to the formation of multicellular aggregates at sites of attachment to endothelial cells in vitro. Treatment of cells with lactulosyl-l-leucine, a synthetic T antigen antagonist that targets galectin-3 by mimicking T antigen, caused a 60-80% inhibition of both homo- and heterotypic adhesion of MDA-MB-435 cells. Confocal microscopy and fluorescence-activated cell sorter analysis revealed redistribution of endothelial galectin-3 to the site of heterotypic intercellular contacts, whereas galectin-3 in MDA-MB-435 cells accumulated at sites of homotypic interaction. MDA-MB-435 cells also exhibited increased adhesion and intravascular retention within the microvessels of transplanted lung allografts in nude mice. T antigen and galectin-3-mediated interactions of metastatic cancer cells with endothelium under conditions of flow are characterized by a unique adhesion mechanism that qualitatively distinguishes their homo- and heterotypic adhesive behavior from other cell types such as leukocytes.
    Journal of Biological Chemistry 03/2003; 278(6):4127-34. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The differentiation of eosinophils from hematopoietic precursors and their subsequent maturation, chemotaxis, and activation is primarily regulated by interleukin-5 (IL-5). To examine the effect of chronic IL-5 exposure on hematopoiesis, IL-5 transgenic (IL-5trg) mice and wild-type BALB/c (WT) mice were examined. In comparison to WT mice, a significant alteration in bone marrow hematopoiesis was observed in IL-5trg mice. Although the total number of myeloid progenitors in the bone marrow of IL-5trg mice was not significantly altered, the number of long-term culture-initiating cells (LTC-ICs) was 1.5-fold lower than that observed in WT mice. Furthermore, IL-5trg mice failed to demonstrate hematopoietic activity in long-term bone marrow cultures, which correlated with a significant decrease in the number of bone marrow mesenchymal/stromal progenitor (MSP) cells in these mice. In comparison to WT mice, a 10-fold decrease was observed in the number of fibroblast colony-forming units (CFU-Fs) in IL-5trg bone marrow. Hematopoietic activity of IL-5trg bone marrow cells was rescued by cultivation on preestablished layers of bone marrow-derived stromal cells. However, in contrast to bone marrow, increased hematopoietic activity was observed in the spleen and peripheral blood of IL-5trg mice. Likewise, the numbers of LTC-ICs and granulocyte-macrophage, macrophage, eosinophil, B-lymphocyte progenitors in the peripheral blood and spleen of IL-5trg mice were approximately 20-fold higher than in WT mice. A significant increase in CFU-F numbers was also observed in the spleens of IL-5trg mice compared with WT mice. Overall, our results suggest that constitutive overexpression of IL-5 can potentially induce colonization of spleen with MSP cells, which provides the necessary microenvironment for establishment of hematopoiesis in extramedullary sites.
    Blood 03/2003; 101(3):863-8. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In leukocytes, C3a and C5a cause chemotaxis in a G(i)-dependent, pertussis toxin (PT)-sensitive fashion. Because we found that HUVECs and immortalized human dermal microvascular endothelial cells express small numbers of C3aRs and C5aRs, we asked what the function of these receptors was on these cells. Activation of the C3aR caused transient formation of actin stress fibers, which was not PT-sensitive, but depended on rho activation implying coupling to G(alpha12) or G(alpha13). Activation of the C5aR caused a delayed and sustained cytoskeletal response, which was blocked by PT, and resulted in cell retraction, increased paracellular permeability, and facilitated eosinophil transmigration. C5a, but not C3a, was chemotactic for human immortalized dermal microvascular endothelial cells. The response to C5a was blocked by inhibitors of phosphatidylinositol-3-kinase, src kinase, and of the epidermal growth factor (EGF) receptor (EGFR) as well as by neutralizing Abs against the EGFR and heparin-binding EGF-like factor. Furthermore, immune precipitations showed that the EGFR was phosphorylated following stimulation with C5a. The C5aR in endothelial cells thus uses a signaling cascade-transactivation of the EGFR-that does not exist in leukocytes, while the C3aR couples to a different G protein, presumably G(alpha12/13).
    The Journal of Immunology 09/2002; 169(4):2102-10. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study demonstrates that in vivo exposure to cigarette smoke (CS) and in vitro treatment of long-term bone marrow cultures (LTBMCs) with nicotine, a major constituent of CS, result in inhibition of hematopoiesis. Nicotine treatment significantly delayed the onset of hematopoietic foci and reduced their size. Furthermore, the number of long-term culture-initiating cells (LTC-ICs) within an adherent layer of LTBMCs was significantly reduced in cultures treated with nicotine. Although the production of nonadherent mature cells and their progenitors in nicotine-treated LTBMCs was inhibited, this treatment failed to influence the proliferation of committed hematopoietic progenitors when added into methylcellulose cultures. Bone marrow stromal cells are an integral component of the hematopoietic microenvironment and play a critical role in the regulation of hematopoietic stem cell proliferation and self-renewal. Exposure to nicotine decreased CD44 surface expression on primary bone marrow-derived fibroblastlike stromal cells and MS-5 stromal cell line, but not on hematopoietic cells. In addition, mainstream CS altered the trafficking of hematopoietic stem/progenitor cells (HSPC) in vivo. Exposure of mice to CS resulted in the inhibition of HSPC homing into bone marrow. Nicotine and cotinine treatment resulted in reduction of CD44 surface expression on lung microvascular endothelial cell line (LEISVO) and bone marrow-derived (STR-12) endothelial cell line. Nicotine treatment increased E-selectin expression on LEISVO cells, but not on STR-12 cells. These findings demonstrate that nicotine can modulate hematopoiesis by affecting the functions of the hematopoiesis-supportive stromal microenvironment, resulting in the inhibition of bone marrow seeding by LTC-ICs and interfering with stem cell homing by targeting microvascular endothelial cells.
    Blood 08/2001; 98(2):303-12. · 9.78 Impact Factor
  • Source

Publication Stats

463 Citations
89.23 Total Impact Points

Institutions

  • 2009
    • University of Minnesota Duluth
      Duluth, Minnesota, United States
  • 2003
    • University of California, San Diego
      • Department of Medicine
      San Diego, California, United States
  • 2001
    • La Jolla Bioengineering Institute
      La Jolla, California, United States