Dominique Aubry

University Hospital of Lausanne, Lausanne, Vaud, Switzerland

Are you Dominique Aubry?

Claim your profile

Publications (8)38.43 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD19 is a B cell lineage specific surface receptor whose broad expression, from pro-B cells to early plasma cells, makes it an attractive target for the immunotherapy of B cell malignancies. In this study we present the generation of a novel humanized anti-CD19 monoclonal antibody (mAb), GBR 401, and investigate its therapeutic potential on human B cell malignancies. GBR 401 was partially defucosylated in order to enhance its cytotoxic function. We analyzed the in vitro depleting effects of GBR 401 against B cell lines and primary malignant B cells from patients in the presence or in absence of purified NK cells isolated from healthy donors. In vivo, the antibody dependent cellular cytotoxicity (ADCC) efficacy of GBR 401 was assessed in a B cell depletion model consisting of SCID mice injected with healthy human donor PBMC, and a malignant B cell depletion model where SCID mice are xenografted with both primary human B-CLL tumors and heterologous human NK cells. Furthermore, the anti-tumor activity of GBR 401 was also evaluated in a xenochimeric mouse model of human Burkitt lymphoma using mice xenografted intravenously with Raji cells. Pharmacological inhibition tests were used to characterize the mechanism of the cell death induced by GBR 401. GBR 401 exerts a potent in vitro and in vivo cytotoxic activity against primary samples from patients representing various B-cell malignancies. GBR 401 elicits a markedly higher level of ADCC on primary malignant B cells when compared to fucosylated similar mAb and to Rituximab, the current anti-CD20 mAb standard immunotherapeutic treatment for B cell malignancies, showing killing at 500 times lower concentrations. Of interest, GBR 401 also exhibits a potent direct killing effect in different malignant B cell lines that involves homotypic aggregation mediated by actin relocalization. These results contribute to consolidate clinical interest in developing GBR 401 for treatment of hematopoietic B cell malignancies, particularly for patients refractory to anti-CD20 mAb therapies.
    Journal of Hematology & Oncology 04/2014; 7(1):33. · 4.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: APO866, an inhibitor of NAD biosynthesis, exhibits potent antitumor properties in various malignancies. Recently, it has been shown that APO866 induces apoptosis and autophagy in human hematological cancer cells, but the role of autophagy in APO866-induced cell death remains unclear. Here, we report studies on the molecular mechanisms underlying APO866-induced cell death with emphasis on autophagy. Treatment of leukemia and lymphoma cells with APO866 induced both autophagy, as evidenced by an increase in autophagosome formation and in SQSTM1/p62 degradation, but also increased caspase activation as revealed by CASP3/caspase 3 cleavage. As an underlying mechanism, APO866-mediated autophagy was found to deplete CAT/catalase, a reactive oxygen species (ROS) scavenger, thus promoting ROS production and cell death. Inhibition of autophagy by ATG5 or ATG7 silencing prevented CAT degradation, ROS production, caspase activation, and APO866-induced cell death. Finally, supplementation with exogenous CAT also abolished APO866 cytotoxic activity. Altogether, our results indicated that autophagy is essential for APO866 cytotoxic activity on cells from hematological malignancies and also indicate an autophagy-dependent CAT degradation, a novel mechanism for APO866-mediated cell killing. Autophagy-modulating approaches could be a new way to enhance the antitumor activity of APO866 and related agents.
    Autophagy 01/2014; 10(4). · 12.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract APO866 is an inhibitor of NAD biosynthesis which exhibits potent anti-lymphoma activity. Rituximab (RTX), an anti-CD20 antibody, kills lymphoma cells by direct apoptosis and antibody- and complement dependent cell-mediated cytotoxicities and has clinical efficacy in non-Hodgkin cell lymphomas. In the present study, we evaluate whether RTX could potentiate APO866-induced human B-lymphoma cell death and shed light on death-mediated mechanisms associated with this drug combination. We found that RTX significantly increases APO866-induced death in lymphoma cells from patients and lines. Mechanisms include enhancement of autophagy-mediated cell death, activation of caspase 3, exacerbation of mitochondria depolarization but not increase of ROS production when compared with those induced by each drug alone. In vivo, combined administration of APO866 with RTX in laboratory model of human aggressive lymphoma significantly decreased tumor burden and prolonged survival over single agent treatment. Our study demonstrates that combination of RTX and APO866 optimizes B cell lymphoma apoptosis and therapeutic efficacy over both compounds administered separately.
    Leukemia & lymphoma 11/2013; · 2.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There remains a clear need for effective tumor cell purging in autologous stem cell transplantation (ASCT) where residual malignant cells within the autograft contribute to disease relapse. Here we propose the use of a novel Fas agonist with potent pro-apoptotic activity, termed MegaFasL, as an effective ex-vivo purging agent. MegaFasL selectively kills hematological cancer cells from lymphomas and leukemias and prevents tumor development at concentrations that do not reduce the functional capacity of human hematopoietic stem/progenitor cells both in in vitro and in in vivo transplantation models. These findings highlight the potential use of MegaFasL as an ex-vivo purging agent in ASCT.
    Blood Cancer Journal 12/2011; 1(12):e47. · 1.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: New derivatives of 1,4-dideoxy-1,4-imino-D-ribitol have been prepared and evaluated for their cytotoxicity on solid and haematological malignancies. 1,4-Dideoxy-5-O-[(9Z)-octadec-9-en-1-yl]-1,4-imino-D-ribitol (13, IC(50) ∼2 μM) and its C(18)-analogues (IC(50) <10 μM) are cytotoxic toward SKBR3 (breast cancer) cells. 13 also inhibits (IC(50) ∼8 μM) growth of JURKAT cells.
    Bioorganic & medicinal chemistry 07/2011; 19(24):7720-7. · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: APO866 inhibits nicotinamide phosphoribosyltransferase (NMPRTase), a key enzyme involved in nicotinamide adenine dinucleotide (NAD) biosynthesis from the natural precursor nicotinamide. Intracellular NAD is essential for cell survival, and NAD depletion resulting from APO866 treatment elicits tumor cell death. Here, we determine the in vitro and in vivo sensitivities of hematologic cancer cells to APO866 using a panel of cell lines (n = 45) and primary cells (n = 32). Most cancer cells (acute myeloid leukemia [AML], acute lymphoblastic leukemia [ALL], mantle cell lymphoma [MCL], chronic lymphocytic leukemia [CLL], and T-cell lymphoma), but not normal hematopoietic progenitor cells, were sensitive to low concentrations of APO866 as measured in cytotoxicity and clonogenic assays. Treatment with APO866 decreased intracellular NAD and adenosine triphosphate (ATP) at 24 hours and 48 to72 hours, respectively. The NAD depletion led to cell death. At 96 hours, APO866-mediated cell death occurred in a caspase-independent mode, and was associated with mitochondrial dysfunction and autophagy. Further, in vivo administration of APO866 as a single agent prevented and abrogated tumor growth in animal models of human AML, lymphoblastic lymphoma, and leukemia without significant toxicity to the animals. The results support the potential of APO866 for treating hematologic malignancies.
    Blood 03/2009; 113(14):3276-86. · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We developed and tested a potent hexameric Fas agonist, termed MegaFasL, for its cytotoxic effects on a panel of human haematopoietic malignant cells and healthy human haematopoietic progenitor cells (CD34+CD38low). Results demonstrated that MegaFasL induced apoptosis in cell lines and primary cells representing multiple myeloma (MM), acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL) and Burkitt's lymphoma. Cells from a chronic myeloid leukaemia (CML) line and from patients with chronic lymphocytic leukaemia (CLL) were resistant. Furthermore, CD34+CD38low progenitor cells were also resistant to MegaFasL. The data indicate that MegaFasL could be a highly efficient therapeutic agent ex vivo or potentially in vivo.
    Leukemia Research 05/2006; 30(4):415-26. · 2.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Models consisting of human immune cells in suspension transferred to severe combined immune deficient (SCID) mice have been invaluable for studying immune response, autoimmunity, and lymphomagenesis. The dissemination of human cells within the mouse body hampers immune functionality with time and favorites the development of human graft vs. mouse host (GvH) disease. To circumvent these limitations we surgically implanted tonsil pieces subcutaneously in SCID animals (hu-ton-SCID mice). Recall humoral responses was elicited and animals did not suffer from signs of GvH disease. A detailed cell subset and cell activation analysis of implants has not yet been reported. Implants from 86 hu-ton-SCID mice were evaluated by immunohistochemistry and flow cytometry analyses to assess human lymphoid cell subpopulation surviving with time after implantation, and to evaluate status of human cell activation. B cells persist over 3 months in implants. The proportion of class and type-specific Ig+ cells varied between implants, but as a whole IgG+ cells were more abundant than IgA+, and IgM+ cells, and kappa+ cells predominated over lambda+ cells. The mean proportions of these cells resemble those in the original tonsil. Fine analysis of CD19+ B cells demonstrated no expansion of activated (CD5+, CD23+, CD69+) B cells in implants compared with tonsils, and a decrease of CD19+CD77+ B cells corresponding to a centroblastic phenotype, which is consistent with the disappearance of follicular structure in implants. Double positive CD20+CD27+ memory B cells were detected in implants by immunohistochemistry. T cell CD4+CD8-/CD4-CD8+ ratios were about 4 in implants, that is similar to those in tonsils, and there was no expansion of CD3+CD4+CD8+ and of CD3+CD4-CD8- T-cell subpopulations. T cells activation markers (CD25, CD69) were similarly expressed in implants and tonsils, and implants contained cells with a memory T cell phenotype (CD45RO). Finally cells within implants depicted a low rate of proliferation when assessed by Ki-67 expression levels. Compared with original tonsils, tonsil implants in hu-ton-SCID mice lose the germinal center architecture, which is correlated with the decrease of CD77+ B cells, but conserve T and B cell subpopulation diversity, notably memory cells. In addition, implant T and B cells are not differently activated when compared with those in original tonsils and do not proliferate extensively. These observations indicate indirectly absence of GvH reaction at the cellular level in this model. Collectively, the detailed implant cellular characterization in the hu-ton-SCID model provides a strong rationale for the use of this model in the study of human recall antibody response.
    Xenotransplantation 02/2005; 12(1):38-48. · 2.57 Impact Factor