Makiya Nishikawa

Kyoto University, Kioto, Kyōto, Japan

Are you Makiya Nishikawa?

Claim your profile

Publications (230)1000.62 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: To achieve a sustained and targeted delivery of liposomes to liver parenchymal cells (PC), we modified distearoyl-L-phosphatidylcholine (DSPC)/cholesterol (Chol) (60:40) (DSPC/Chol) liposomes with a galactosylated cholesterol derivative (Gal-C4-Chol), and polysorbate (Tween) 20 or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-polyethylene glycol (PEG(x)-DSPE). After intravenous injection, DSPC/Chol/Gal-C4-Chol (60:35:5) (Gal) liposomes were rapidly eliminated from the blood circulation and mostly recovered in the liver. The blood elimination of DSPC/Chol/Gal-C4-Chol/Tween 20 (55:35:5:5) (Tween 20-Gal) liposomes was slightly reduced as compared to Gal-liposomes. In contrast, a significant reduction in the blood elimination was observed with DSPC/Chol/Gal-C4-Chol/PEG(2000)-DSPE (59:35:5:1) (PEG(2000)-Gal) liposomes. Hepatic uptake of DSPC/Chol/Gal-C4-Chol/PEG(350)-DSPE (59:35:5:1) (PEG(350)-Gal) liposomes was intermediate between PEG(2000)-Gal-liposomes and Tween 20-Gal-liposomes. The uptake of PEG(350)-Gal-liposomes by liver PC was 7.7-fold higher than that by non-parenchymal cells (NPC). These results suggest that PEG(350)-DSPE can control the delivery rate of Gal-liposomes to liver PC without losing its targeting capability.
    International Journal of Pharmaceutics 12/2003; 266(1-2):77-84. DOI:10.1016/S0378-5173(03)00383-1 · 3.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To determine the intrahepatic disposition characteristics of galactosylated liposome/plasmid DNA (pDNA) complexes in perfused rat liver. Galactosylated liposomes containing N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA), cholesterol (Chol), and cholesten-5-yloxy-N-14-[(1-imino-2-D-thiogalactosylethyl)amino]butyl] formamide (Gal-C4-Chol) were prepared. The liposome/[32P]-labeled pDNA complexes were administered to perfused liver, and the venous outflow patterns were analyzed based on a two-compartment dispersion model. The single-pass hepatic extraction of pDNA complexed with DOTMA/Chol/Gal-C4-Chol liposomes was greater than that with control DOTMA/Chol liposomes. A two-compartment dispersion model revealed that both the tissue binding and cellular internalization rate were higher for the DOTMA/Chol/Gal-C4-Chol liposome complexes compared with the control liposome complexes. The tissue binding was significantly reduced by the presence of 20 mM galactose. When their cellular localization in the perfused liver at 30 min postinjection was investigated, it was found that the parenchymal uptake of the DOTMA/Chol/Gal-C4-Chol liposome complexes was greater than that of the control liposome complexes. The parenchymal cell/ nonparenchymal cell uptake ratio was as high as unity. Galactosylation of the liposome/pDNA complexes increases the tissue binding and internalization rate via an asialoglycoprotein receptor-mediated process. Because of the large particle size of the complexes (approximately 150 nm), however, penetration across the fenestrated sinusoidal endothelium appears to be limited.
    Pharmaceutical Research 09/2003; 20(9):1452-9. DOI:10.1023/A:1025766429175 · 3.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To develop a suitable vector and an administration technique for in vivo gene transfer, the tissue distribution of plasmid DNA (pDNA) needs to be understood. In this study, a novel residualizing radiolabel for pDNA was developed. 4-[p-Azidosalicylamido]butylamine (ASBA) was coupled with diethylenetriaminepentaacetic acid (DTPA) anhydride, then the conjugate was reacted with pDNA by photoactivation, followed by labeling with [(111)In]InCl(3) to obtain (111)In-pDNA. The overall structure of pDNA was well preserved, and the retention of its transcriptional activity was 40-98%. After intravenous injection of (111)In-pDNA into mice, about 50% of the radioactivity was recovered in the liver within 3 min. The level remained stable for at least 2 h, followed by a very slow decrease to 45% at 24 h. This contrasted with the results obtained with (32)P-pDNA by nick translation, in which a rapid decrease in hepatic radioactivity was observed. The amount of radioactivity in the lung following the administration of polyethyleneimine/(111)In-pDNA complexes correlates well with the transgene expression. These results indicate that the novel residualizing radiolabel clearly demonstrates the cells that have taken up pDNA and, therefore, gives us useful information about how to design a better approach for nonviral in vivo gene delivery.
    Bioconjugate Chemistry 08/2003; 14(5):955-61. DOI:10.1021/bc034032y · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To optimize a receptor-mediated and cell-selective gene transfer with polyethyleneimine (PEI)-based vector, we synthesized three galactosylated PEIs (Gal-PEI) with different molecular weights (PEI(1800), PEI(10,000), and PEI(70,000)) and investigated their potential as a targetable vector to asialoglycoprotein receptor-positive cells. All PEI derivatives formed complexes with plasmid DNA (pDNA), whereas the particle size of the complex became smaller on increasing the molecular weight of PEI. Transfection efficiency in HepG2 cells with PEI was highest with PEI(1800); efficiency was next highest with PEI(10,000), although the cellular association was similar. After galactosylation, Gal(19)-PEI(10,000)/pDNA and Gal(120)-PEI(70,000)/pDNA showed considerable agglutination with a galactose-recognizing lectin, but Gal(9)-PEI(1800) did not, suggesting that galactose units on the Gal(9)-PEI(1800)-pDNA complex are not sufficiently available for recognition. Gal(19)-PEI(10,000)-pDNA and Gal(120)-PEI(70,000)-pDNA complexes showed galactose-inhibitable transgene expression in HepG2 cells. Transfection efficiency was greatest with Gal(19)-PEI(10,000)/pDNA, a result that highlights the importance of obtaining a balance between the cytotoxicity and the transfection activity, both of which are found to be a function of the molecular weight of PEI. After intraportal injection, however, Gal(153)-PEI(70,000)/pDNA having a low N/P ratio was most effective, suggesting that additional variables, such as the size of the complex, are important for in vivo gene transfer to hepatocytes.
    Molecular Therapy 03/2003; 7(2):254-61. DOI:10.1016/S1525-0016(02)00053-9 · 6.43 Impact Factor
  • Methods in Enzymology 02/2003; 373:384-99. DOI:10.1016/S0076-6879(03)73025-0 · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied the intrahepatic disposition characteristics of galactosylated polyethylenimine (Gal-PEI)/plasmid DNA (pDNA) complexes using rat liver perfusion experiment. After intraportal administration, transfection activity in liver of Gal-PEI complexes was approximately 26-fold higher than that of native PEI complexes. To evaluate the relationship between hepatic gene expression and disposition profiles, hepatic disposition of Gal-PEI complexes were pharmacokinetically analyzed by use of perfused rat liver, which enables uptake characteristics intrinsic to the liver to be elucidated. Moment analysis revealed that both complexes exhibited very high single-pass extraction. To characterize each kinetic process in hepatic uptake of Gal-PEI complexes, their outflow profiles were analyzed based on a two-compartment dispersion model. Consequently, the tissue binding affinity of Gal-PEI complexes was 3.0-fold larger than that of native PEI complexes, suggesting the increasing of hepatic binding affinity much enhanced the hepatic gene transfection efficiency. In contrast, galactosylation of PEI did not affected internalization (and/or sequestration) rate.
    Drug Metabolism and Pharmacokinetics 02/2003; 18(4):230-7. DOI:10.2133/dmpk.18.230 · 2.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the pharmacokinetics and preventive effects of liver-targeted catalase (CAT) derivatives on hepatic injury caused by reactive oxygen species. The hepatic uptake of 111In-CAT, galactosylated (Gal-), mannosylated (Man-) and succinylated (Suc-) CAT was investigated in isolated perfused rat livers in a single-pass constant infusion mode. Then, pharmacokinetic parameters were obtained by fitting equations derived from a one-organ pharmacokinetic model to the outflow profile. Their effects in preventing hydrogen peroxide-induced injury were determined by lactate dehydrogenase (LDH) release from the perfused liver. The extraction of CAT derivatives by the liver was dose-dependent, and increased by the chemical modifications described. After being bound to the cell surface, chemically modified CAT derivatives were internalized by the liver faster than CAT. Preperfusion of a CAT derivative significantly reduced LDH release by hydrogen peroxide at least for 30 min, and Man-CAT and Suc-CAT effectively inhibited this release. Internalized CAT derivatives are also effective in degrading hydrogen peroxide and targeted delivery of CAT to liver nonparenchymal cells by mannosylation or succinylation is a useful method for the prevention of hepatic injury caused by reactive oxygen species.
    Pharmaceutical Research 01/2003; 19(12):1815-21. DOI:10.1023/A:1021485222920 · 3.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the effects of the lipid composition of galactosylated liposomes on their targeted delivery to hepatocytes. Several types of liposomes with a particle size of about 90 nm were prepared using distearoyl-L-phosphatidylcholine (DSPC), cholesterol (Chol) and cholesten-5-yloxy-N-(4-((1-imino-2-D- thiogalactosylethyl)amino)butyl)formamide (Gal-C4-Chol), and labeled with [3H]cholesterol hexadecyl ether. Their tissue disposition was investigated in mice following intravenous injection. The binding and internalization characteristics were also studied in HepG2 cells. Compared with [H]DSPC/Chol (60:40) liposomes, [3H]DSPC/Chol/Gal-C4-Chol (60:35:5) liposomes exhibit extensive hepatic uptake. Separation of the liver cells showed that galactosylated liposomes are preferentially taken up by hepatocytes, whereas those lacking Gal-C4-Chol distribute equally to hepatocytes and nonparenchymal cells (NPC). Increasing the molar ratio of DSPC to 90% resulted in enhanced NPC uptake of both liposomes, suggesting their uptake via a mechanism other than asialoglycoprotein receptors. DSPC Chol/Gal-C4-Chol (60:35:5) and DSPC/Chol/Gal-C4-Chol (90:5:5) liposomes exhibited similar binding to the surface of HepG2 cells, but the former were taken up faster by the cells. The recognition of galactosylated liposomes by the asialoglycoprotein receptors is dependent on the lipid composition. Cholesterol-rich galactosylated liposomes, exhibiting less non-specific interaction and greater receptor-mediated uptake, are better for targeting drugs to hepatocytes in vivo.
    Pharmaceutical Research 01/2003; 19(12):1808-14. DOI:10.1023/A:1021433206081 · 3.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vivo disposition characteristics of succinylated (Suc-) proteins were studied after intravenous injection in mice in relation to their molecular characteristics as negatively charged macromolecules. Recombinant superoxide dismutase (SOD; molecular mass, 32 kDa), bovine serum albumin (BSA; molecular mass, 67 kDa), and bovine IgG (molecular mass, 150 kDa) were used to produce succinylated derivatives with different degrees of modification. (111)In-labeled Suc-SODs were rapidly excreted into the urine with no significant hepatic uptake. In contrast, (111)In-Suc-BSA and Suc-IgG were significantly taken up by liver nonparenchymal cells via scavenger receptors (SRs) according to the degree of succinylation and the dose injected. Interestingly, highly succinylated BSAs exhibited significant accumulation in the kidney at higher doses when the hepatic uptake was saturated. Pharmacokinetic analysis demonstrated that the hepatic uptake of succinylated proteins depended on the molecular size and the estimated surface density of succinylated amino residues. Further analysis based on a physiological pharmacokinetic model, involving a saturable process with Michaelis-Menten kinetics, revealed that the surface density of negative charges was correlated with the affinity of larger succinylated proteins for the hepatic SRs. Thus, the present study has provided useful basic information for a therapeutic strategy and the molecular design of succinylated proteins for use as drug carriers and therapeutic agents per se for SR-mediated targeting in vivo.
    Journal of Pharmacology and Experimental Therapeutics 06/2002; 301(2):467-77. DOI:10.1124/jpet.301.2.467 · 3.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a previous study, we showed that targeted delivery of bovine liver catalase to hepatocytes by direct galactosylation augmented the inhibitory effect of the enzyme on experimental hepatic metastasis of colon carcinoma cells (unpublished data). Here, we examined the ability of catalase to inhibit tumor metastasis to the lung by controlling its biodistribution. Four types of catalase derivative, Gal-CAT, Man-CAT, Suc-CAT and PEG-CAT, were synthesized. Experimental pulmonary metastasis was induced in mice by i.v. injection of 1 x 10(5) colon 26 tumor cells. An i.v. injection of catalase (35,000 units/kg) partially, but significantly, decreased the number of colonies in the lung 2 weeks after tumor injection, from 93 +/- 29 (saline injection) to 63 +/- 23 (p < 0.01). Suc-CAT, Man-CAT and Gal-CAT showed effects similar to those of catalase on the number of colonies. However, PEG-CAT greatly inhibited pulmonary metastasis to 22 +/- 11 (p < 0.001). Furthermore, s.c. injection of catalase also greatly inhibited metastasis (11 +/- 6, p < 0.001). Neither inactivated catalase nor BSA showed any effects on the number of metastatic colonies, indicating that the enzymatic activity of catalase to detoxify H(2)O(2) is the critical factor inhibiting metastasis. (111)In-PEG-CAT showed a sustained concentration in plasma, whereas s.c.-injected (111)In-catalase was slowly absorbed from the injection site. These results suggest that retention of catalase activity in the circulation is a promising approach to inhibit pulmonary metastasis.
    International Journal of Cancer 05/2002; 99(3):474-9. DOI:10.1002/ijc.10387 · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of serum mannan binding proteins (MBP) in the transfection of plasmid DNA/Man-liposome complex via mannose receptor-mediated endocytosis was studied in vitro using cultured mouse peritoneal macrophages. Plasmid DNA encoding luciferase gene was complexed with cationic mannosylated liposomes (Man-liposomes), composed of cholesten-5-yloxy-N-(4-((1-imino-2-D-thiomannosylethyl)amino)alkyl)formamide (Man-C4-Chol) and dioleoyl phosphatidylethanolamine (DOPE). The transfection efficiency, as well as the binding and uptake of the plasmid DNA/Man-liposome complex, was investigated with or without serum MBP. The in vitro transfection efficiency of the complex was significantly reduced on increasing the amount of serum MBP. In addition, the cellular association of the complex was also reduced. These results indicate that serum MBP specifically binds to the mannose moieties on the complex and suppresses its cellular uptake, resulting in inhibition of the gene transfection in macrophages. Such an interaction is an obstacle to mannose receptor-mediated in vivo gene transfer to mannose receptor-positive cells using mannosylated gene carriers.
    Biochimica et Biophysica Acta 05/2002; 1570(3):203-9. DOI:10.1016/S0304-4165(02)00199-X · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mannosylated liposomes were prepared by incorporating cholesten-5-yloxy-N-(4-((1-imino-2-beta-D-thiomannosylethyl)amino)butyl)formamide (Man-C4-Chol) into small unilamellar liposomes consisting of cholesterol and distearoyl phosphatidylcholine (DSPC). The biodistribution of liposomes labeled with [3H]cholesteryl hexadecyl ether was examined in mice. The rate and extent of the hepatic uptake of those [3H]liposomes increased proportionally on increasing the mixing ratio of Man-C4-Chol. Their hepatic uptake was reduced by increasing the administered dose due to the limited number of mannose receptors. The liver uptake of [3H]Man-liposomes was preferentially mediated by liver non-parenchymal cells (NPC) and significantly inhibited by co-injection with an excess of Man-BSA, indicating the involvement of a mannose receptor-mediated mechanism in the hepatic uptake of Man-liposomes. Muramyl dipeptide (MDP), an immunomodulator, was also incorporated into the liposomes and its inhibitory effect in an experimental liver metastasis model was examined. In contrast to free MDP treatment, which showed little effect on the inhibition of metastasis, liposomal MDP significantly reduced the number of metastatic colonies in the liver. Active targeting of MDP to liver NPC by Man-liposomes resulted in more effective inhibition than delivery of MDP by liposomes without mannose. Treatment with MDP/Man-liposomes further increased the survival of the tumor-bearing mice. These results suggest that Man-liposomes are effective carriers for targeted delivery of bioactive compounds to liver NPC.
    Journal of Controlled Release 05/2002; 80(1-3):283-94. DOI:10.1016/S0168-3659(02)00006-8 · 7.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effect of the electrical charge on the intestinal absorption of a protein was studied in normal adult rats. Chicken egg lysozyme (Lyz), a basic protein with a molecular weight of 14,300, was selected and several techniques for chemical modification were applied. Then the intestinal absorption of Lyz derivatives was evaluated by measuring the radioactivity in plasma and tissues, after the administration of an (111)In-labeled derivative to an in situ closed loop of the jejunum. After the administration of (111)In-Lyz, the level of radioactivity in plasma was comparable with the lytic activity of Lyz, supporting the fact that the radioactivity represents intact Lyz. (111)In-cationized Lyz showed a 2-3 times higher level of radioactivity in plasma, whereas the radioactivity of (111)In-anionized Lyz was much lower. The absorption rate of (111)In-Lyz derivatives calculated by a deconvolution method was correlated for the strength of their positive net charge. A similar relationship was observed using superoxide dismutase. These findings indicate that the intestinal absorption of a protein is, at least partially, determined by its electrical charge.
    AJP Gastrointestinal and Liver Physiology 05/2002; 282(4):G711-9. DOI:10.1152/ajpgi.00358.2001 · 3.74 Impact Factor
  • Makiya Nishikawa, Mitsuru Hashida
    [Show abstract] [Hide abstract]
    ABSTRACT: Development of an efficient method of gene introduction to target cells is the key issue in treating genetic and acquired diseases by in vivo gene therapy. Although various nonviral approaches have been developed, any method needs to be optimized in terms of the target disease and transgene product. The most important information required is (i) target cell-specificity of gene transfer, (ii) efficiency, (iii) duration of transgene expression, and (iv) the number of transfected cells following in vivo application of a vector. These characteristics are determined by the properties of the vector used, as well as the route of its administration, biodistribution, interaction with biological components and the nature of the target cells. Cell-specific gene transfer can be achieved by controlling the tissue disposition of plasmid DNA (pDNA), although the interaction of the pDNA complex with biological components might limit the specificity. Various approaches have been reported to increase the efficiency of transgene expression, from cationic lipids/polymers to physical stimuli, but some of those are ineffective under in vivo conditions. The duration of transgene expression is a complex function involving variables including the cell type, transfection method, and plasmid construct. Immune response often reduces the level and duration of transgene expression. In addition, the number of transfected cells is important, especially in cases in which the therapeutic protein localizes within the target cells. Successful clinical application of nonviral gene delivery methods rely on the development of such methods optimized for a particular target disease.
    Biological & Pharmaceutical Bulletin 04/2002; 25(3):275-83. DOI:10.1248/bpb.25.275 · 1.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The influence of physicochemical properties on the in vivo pharmacokinetics of gene delivery vectors after systemic administration is reviewed based on our studies. We have been studying the development of DNA delivery systems, such as plasmid DNA complexed with cationic polymers (polyplexes) and cationic liposomes (lipoplexes). Even if target-recognizable ligand is incorporated into the system, the overall physicochemical properties, notably size and charge, are predominant factors influencing in vivo disposition characteristics of the vector. Based on this consideration, liver cell-specific carrier systems via receptor-mediated endocytosis were successfully developed by optimizing physicochemical characteristics. In conclusion, rational design of gene delivery vectors requires an understanding of their pharmacokinetics in relation to the physicochemical properties. Optimization of the physicochemical properties is important for successful in vivo gene delivery by non-viral vectors.
    Journal of Drug Targeting 04/2002; 10(2):99-104. DOI:10.1080/10611860290016694 · 2.72 Impact Factor
  • Praneet Opanasopit, Makiya Nishikawa, Mitsuru Hashida
    [Show abstract] [Hide abstract]
    ABSTRACT: Targeted drug delivery systems have been used extensively to improve the pharmacological and therapeutic activities of a wide variety of drugs and genes. In this article, we summarize the factors determining the tissue disposition of delivery systems: the physicochemical and biological characteristics of the delivery system and the anatomic and physiological characteristics of the tissues. There are several modes of drug and gene targeting, ranging from passive to active targeting, and each of these can be achieved by optimizing the design of the delivery system to suit a specific aim. After entering the systemic circulation, either by an intravascular injection or through absorption from an administration site, however, a delivery system encounters a variety of blood components, including blood cells and a range of serum proteins. These components are by no means inert as far as interaction with the delivery system is concerned, and they can sometimes markedly effect its tissue disposition. The interaction with blood components is known to occur with particulate delivery systems, such as liposomes, or with cationic charge-mediated delivery systems for genes. In addition to these rather nonspecific ones, interactions via the targeting ligand of the delivery system can occur. We recently found that mannosylated carriers interact with serum mannan binding protein, greatly altering their tissue disposition in a number of ways that depend on the properties of the carriers involved.
    Critical Reviews in Therapeutic Drug Carrier Systems 02/2002; 19(3):191-233. DOI:10.1615/CritRevTherDrugCarrierSyst.v19.i3.10 · 3.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel polymeric prodrug of prostaglandin E1 (PGE1) was synthesized using lactosylated poly(l-glutamic hydrazide) (Lac-NH-PLGA) as a targetable carrier to hepatocytes. Poly(l-glutamic hydrazide) (PLGA-HZ) was prepared by reacting poly(γ-benzyl-l-glutamate) with hydrazine monohydrate, followed by coupling with lactose via a hydrazone linkage. Then the lactosylated PLGA-HZ was reduced by sodium cyanoborohydride (NaBH3CN) in order to make the linkage irreversible (Lac-NH-PLGA). Finally, PGE1 was bound to hydrazide moieties remaining in Lac-NH-PLGA without any condensing agent under weakly acidic conditions (pH 5) where PGE1 would be chemically most stable at room temperature (PGE1 conjugate). The PGE1 conjugate prepared was sufficiently water-soluble in spite of the hydrophobic nature of its backbone (-NH-CH-CO-) and PGE1 itself. After intravenous injection in mice, the [111In]PGE1 conjugate rapidly accumulated in the liver, whereas [111In]PLGA-HZ did not, suggesting the involvement of a galactose-specific mechanism in the uptake of the [111In]PGE1 conjugate. Fractionation of liver cells revealed that the [111In]PGE1 conjugate was preferentially taken up by liver parenchymal cells. The pharmacological activity was examined in mice with fulminant hepatitis induced by intraperitoneal injection of carbon tetrachloride. Intravenous injection of the PGE1 conjugate at a dose of 1 mg (0.065 mg PGE1)/kg effectively inhibited the increase in plasma glutamic pyruvic transaminase (GPT) activity compared with that of free PGE1 at a dose of 0.065 or 0.65 mg/kg. These results suggest that the PGE1 conjugate is an excellent prodrug for the treatment of fulminant hepatitis.
    Biochemical Pharmacology 01/2002; 62(11-62):1531-1536. DOI:10.1016/S0006-2952(01)00799-7 · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cationic liposomes and polymers have been accepted as effective non-viral vectors for gene delivery with low immunogenicity unlike viral vectors. However, the lack of organ or cell specificity sometimes hampers their application and the development of a cell-specific targeting technology for them attracts great interest in gene therapy. In this review, the potential of cell-specific delivery of genes with glycosylated liposomes or polymers is discussed. Galactosylated liposomes and poly(amino acids) are selectively taken up by the asialoglycoprotein receptor-positive liver parenchymal cells in vitro and in vivo after intravenous injection. DNA–galactosylated cationic liposome complexes show higher DNA uptake and gene expression in the liver parencymal cells in vitro than DNA complexes with bare cationic liposomes. In the in vitro gene transfer experiment, galactosylated liposome complexes are more efficient than DNA–galactosylated poly(amino acids) complexes but they have some difficulties in their biodistribution control. On the other hand, introduction of mannose residues to carriers resulted in specific delivery of genes to non-parenchymal liver cells. These results suggest advantages of these glycosylated carriers in cell-specific targeted delivery of genes.
    Advanced Drug Delivery Reviews 12/2001; DOI:10.1016/S0169-409X(01)00209-5 · 12.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous study demonstrated that the combination of mannosylated superoxide dismutase (Man-SOD) and succinylated catalase (Suc-CAT), both of which are designed to be targeted to liver nonparenchymal cells, is a promising approach to prevent the initial phase of hepatic ischemia/reperfusion injury induced by occlusion of the portal vein for 30 min followed by a 1-h reperfusion in mice. In this study, the preventive effects of these agents were examined on late-phase injury mediated by infiltrating neutrophils, a more severe condition than the initial one. Administration of Suc-CAT alone or with Man-SOD to mice undergoing hepatic ischemia/reperfusion significantly suppressed the expression of intercellular adhesion molecule-1 along the hepatic sinusoid and prevented neutrophil infiltration in the liver. Man-SOD and Suc-CAT also prevented the increase in plasma glutamic pyruvic transaminase and glutamic oxaloacetic transaminase activities after reperfusion lasting 3 and 6 h. Histological evaluation of liver tissues confirmed the efficacy of this treatment, suggesting that these SOD and catalase derivatives have the ability to suppress neutrophil-induced hepatic injury. These results demonstrate that targeted delivery of antioxidant enzymes to liver nonparenchymal cells is a promising approach to reducing the reactive oxygen species produced by Kupffer cells and neutrophils infiltrating into the tissue. Since Suc-CAT is partially taken up by hepatocytes via a catalase-specific uptake mechanism, such a fraction could also be involved in its preventive effect against the injury.
    Journal of Pharmacology and Experimental Therapeutics 10/2001; 298(3):894-9. · 3.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vivo recognition of mannosylated proteins by hepatic mannose receptors and serum mannan-binding protein (MBP) was investigated in mice. After intravenous administration, all three different (111)In-mannosylated proteins were taken up mainly by liver, and uptake was saturated with increasing doses. (111)In-Man-superoxide dismutases and (111)In-Man(12)- and (111)In-Man(16)-BSA had simple dose-dependent pharmacokinetic profiles, whereas other derivatives ((111)In-Man(25)-, -Man(35)-, and -Man(46)-BSA and (111)In-Man-IgGs) showed slow hepatic uptake at <1 mg/kg. Purified MBP experiments in vitro indicated that these derivatives bind to MBP in serum after injection, which interferes with their hepatic uptake. To quantitatively evaluate these recognition properties in vivo, a pharmacokinetic model-based analysis was performed for (111)In-Man-BSAs, estimating some parameters, including the Michaelis-Menten constant of the hepatic uptake and the dissociation constant of MBP, which correlate to the affinity of Man-BSAs for mannose receptors and MBP, respectively. The dissociation constant of Man-BSA and MBP decreased dramatically with increasing density of mannose, but the Michaelis-Menten constant of hepatic uptake of Man-BSA was not so sensitive to the change in density. This suggests that the in vivo recognition of MBP has a stronger cluster effect than that of mannose receptors. Differences obtained here are due to the unique arrangement of carbohydrate recognition domains on each mannose-specific lectin available for mannosylated ligand recognition.
    AJP Gastrointestinal and Liver Physiology 06/2001; 280(5):G879-89. · 3.74 Impact Factor

Publication Stats

5k Citations
1,000.62 Total Impact Points

Institutions

  • 1992–2015
    • Kyoto University
      • • Division of Pharmaceutical Sciences
      • • Institute for Innovative NanoBio Drug Discovery and Development
      Kioto, Kyōto, Japan
  • 2007
    • Kyoto Pharmaceutical University
      • Laboratory of Analytical and Bioinorganic Chemistry
      Kioto, Kyōto, Japan
  • 2005
    • Georgia State University
      • Department of Chemistry
      Atlanta, Georgia, United States
  • 1994
    • Setsunan University
      • Faculty of Pharmaceutical Sciences
      Ōsaka, Ōsaka, Japan