F Bongianni

University of Florence, Florens, Tuscany, Italy

Are you F Bongianni?

Claim your profile

Publications (62)189.19 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The caudal nucleus tractus solitarii (NTS) is the main central station of cough related afferents and a strategic site for the modulation of the cough reflex. The similarities between the characteristics of central processing of nociceptive and cough-related inputs led us to hypothesize that galanin, a neuropeptide implicated in the control of pain, could also be involved in the regulation of the cough reflex at the level of the NTS, where galanin receptors have been found. We investigated the effects of galanin and galnon, a non-peptide agonist at galanin receptors, on cough responses to mechanical and chemical (citric acid) stimulation of the tracheobronchial tree. Drugs were microinjected (30-50 nl) into the caudal NTS of pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Galnon antitussive effects on cough responses to the mechanical stimulation of the airway mucosa via a custom-built device were also investigated. Bilateral microinjections of 1 mM galanin markedly decreased cough number, peak abdominal activity, and increased cough-related total cycle duration. Bilateral microinjections of 1 mM galnon induced mild depressant effects on cough, whereas bilateral microinjections of 10 mM galnon caused marked antitussive effects consistent with those produced by galanin. Galnon effects were confirmed by using the cough-inducing device. The results indicate that galanin receptors play a role in the inhibitory control of the cough reflex at the level of the caudal NTS and provide hints for the development of novel antitussive strategies.
    American journal of physiology. Regulatory, integrative and comparative physiology. 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The isolated brainstem of the adult lamprey spontaneously generates respiratory activity. The paratrigeminal respiratory group (pTRG), the proposed respiratory central pattern generator, has been anatomically and functionally characterized. It is sensitive to opioids, neurokinins and acetylcholine. Excitatory amino acids, but not GABA and glycine, play a crucial role in the respiratory rhythmogenesis. These results are corroborated by immunohistochemical data. While only GABA exerts an important modulatory control on the pTRG, both GABA and glycine markedly influence the respiratory frequency via neurons projecting from the vagal motoneuron region to the pTRG. Noticeably, the removal of GABAergic transmission within the pTRG causes the resumption of rhythmic activity during apnea induced by blockade of glutamatergic transmission. The same result is obtained by microinjections of substance P or nicotine into the pTRG during apnea. The results prompted us to present some considerations on the phylogenesis of respiratory pattern generation. They may also encourage comparative studies on the basic mechanisms underlying respiratory rhythmogenesis of vertebrates.
    Respiratory Physiology & Neurobiology 09/2014; · 2.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that GABA and glycine modulate respiratory activity in the in vitro brainstem preparations of the lamprey and that blockade of GABAA and glycine receptors restores the respiratory rhythm during apnea caused by blockade of ionotropic glutamate receptors. However, the neural substrates involved in these effects are unknown. To address this issue, the role of GABAA, GABAB and glycine receptors within the paratrigeminal respiratory group (pTRG), the proposed respiratory central pattern generator, and the vagal motoneuron region was investigated both during apnea induced by blockade of glutamatergic transmission and under basal conditions through microinjections of specific antagonists. The removal of GABAergic, but not glycinergic transmission within the pTRG, causes the resumption of rhythmic respiratory activity during apnea, and reveals the presence of a modulatory control of the pTRG under basal conditions. A blockade of GABAA and glycine receptors within the vagal region strongly increases the respiratory frequency through disinhibition of neurons projecting to the pTRG from the vagal region. These neurons were retrogradely labeled (Neurobiotin) from the pTRG. Intense GABA immunoreactivity is observed both within the pTRG and the vagal area, which corroborates present findings. The results confirm the pTRG as a primary site of respiratory rhythm generation, and suggest that inhibition modulates the activity of rhythm generating neurons, without any direct role in burst formation and termination mechanisms.
    The Journal of Physiology 02/2014; · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The α 2-adrenergic receptor agonist clonidine has been shown to inhibit citric acid-induced cough responses in guinea pigs when administered by aerosol, but not orally. In contrast, oral or inhaled clonidine had no effect on capsaicin-induced cough and reflex bronchoconstriction in humans. In addition, intravenous administration of clonidine has been shown to depress fentanyl-induced cough in humans. We investigated the effects of the α 2-adrenergic receptor agonists, clonidine and tizanidine, on cough responses induced by mechanical and chemical (citric acid) stimulation of the tracheobronchial tree. Drugs were microinjected (30-50 nL) into the caudal nucleus tractus solitarii (cNTS) and the caudal ventral respiratory group (cVRG) as well as administered intravenously in pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bilateral microinjections of clonidine into the cNTS or the cVRG reduced cough responses at 0.5 mmol/L and abolished the cough reflex at 5 mmol/L. Bilateral microinjections of 0.5 mmol/L tizanidine into the cNTS completely suppressed cough responses, whereas bilateral microinjections of 5 mmol/L into the cVRG only caused mild reductions in them. Depressant effects on the cough reflex of clonidine and tizanidine were completely reverted by microinjections of 10 mmol/L yohimbine. Intravenous administration of clonidine (80-120 μg/kg) or tizanidine (150-300 μg/kg) strongly reduced or completely suppressed cough responses. These effects were reverted by intravenous administration of yohimbine (300 μg/kg). The results demonstrate that activation of α 2-adrenergic receptors in the rabbit exerts potent inhibitory effects on the central mechanism generating the cough motor pattern with a clear action at the level of the cNTS and the cVRG.
    Physiological reports. 11/2013; 1(6):e00122.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A brainstem region, the paratrigeminal respiratory group (pTRG), has been suggested to play a crucial role in the respiratory rhythm generation in lampreys. However, a detailed characterization of the pTRG region is lacking. The present study performed on isolated brainstem preparations of adult lampreys provides a more precise localization of the pTRG region with regard to both connectivity and neurochemical markers. pTRG neurons projecting to the vagal motoneuronal pool were identified in a restricted area of the rostral rhombencephalon at the level of the isthmic Müller cell I1 close to sulcus limitans of His. Unilateral microinjections of lidocaine, muscimol, or glutamate antagonists into the pTRG inhibited completely the bilateral respiratory activity. In contrast, microinjections of glutamate agonists enhanced the respiratory activity, suggesting that this region is critical for the respiratory pattern generation. The retrogradely labeled pTRG neurons are glutamatergic and surrounded by terminals with intense substance P immunoreactivity. Cholinergic neurons were seen close to, and intermingled with, pTRG neurons. In addition, α-bungarotoxin binding sites (indicating nicotinic receptors) were found throughout the pTRG area and particularly on the soma of these neurons. During apnea, induced by blockade of ionotropic glutamate receptors within the same region, microinjections of 1 μm substance P or 1 mm nicotine into the pTRG restored rhythmic respiratory activity. The results emphasize the close similarities between the pTRG and the mammalian pre-Bötzinger complex as a crucial site for respiratory rhythmogenesis. We conclude that some basic features of the excitatory neurons proposed to generate respiratory rhythms are conserved throughout evolution.
    Journal of Neuroscience 05/2013; 33(21):9104-9112. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to analyze differences in cough induction between losartan and lisinopril in both anaesthetized and awake rabbits, i.e., under conditions in which the influences of higher brain areas on the cough reflex are strongly reduced or abolished. Losartan (500 μg/kg), lisinopril (100 μg/kg) and NaCl 0.9% saline solution (vehicle) were administered by intravenous injections. Animals were randomly assigned to the different experimental treatments. The cough reflex was induced by chemical (citric acid) and/or mechanical stimulation of the tracheobronchial tree. In anaesthetized rabbits, losartan and lisinopril caused similar hypotensive effects. Lisinopril, but not losartan, increased the cough response induced by both mechanical and chemical stimulation due to increases in the cough number, i.e. the number of coughs induced by each stimulation challenge. In awake animals, only lisinopril significantly increased the cough number. The results support the notion that cough potentiation induced by losartan, and possibly other sartans, is lower than that induced by most angiotensin-converting enzyme inhibitors despite the reduction or complete absence of higher brain functions. In this connection, the comparison between present results and our previous findings on ramipril and zofenopril shows that losartan and zofenopril display similar cough-inducing potency, much lower than that of lisinopril and ramipril.
    Journal of physiology and pharmacology: an official journal of the Polish Physiological Society 04/2013; 64(2):201-10. · 2.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The caudal nucleus tractus solitarii (cNTS), the predominant site of termination of cough-related afferents, has been shown to be a site of action of some centrally acting antitussive agents. A role of ERK1/2 has been suggested in acute central processing of nociceptive inputs. Because pain and cough share similar features, we investigated whether ERK1/2 activation could also be involved in the central transduction of tussive inputs. For this purpose, we undertook the present research on pentobarbital sodium-anesthetized, spontaneously breathing rabbits by using microinjections (30-50 nl) of an inhibitor of ERK1/2 activation (U0126) into the cNTS. Bilateral microinjections of 25 mM U0126 caused rapid and reversible reductions in the cough responses induced by both mechanical and chemical (citric acid) stimulation of the tracheobronchial tree. In particular, the cough number and peak abdominal activity decreased. Bilateral microinjections of 50 mM U0126 completely suppressed the cough reflex without affecting the Breuer-Hering inflation reflex, the pulmonary chemoreflex, and the sneeze reflex. These U0126-induced effects were, to a large extent, reversible. Bilateral microinjections of 50 mM U0124, the inactive analog of U0126, at the same cNTS sites had no effect. This is the first study that provides evidence that ERK1/2 activation within the cNTS is required for the mediation of cough reflex responses in the anesthetized rabbit. These results suggest a role for ERK1/2 in the observed effects via nontranscriptional mechanisms, given the short time involved. They also may provide hints for the development of novel antitussive strategies.
    AJP Regulatory Integrative and Comparative Physiology 02/2012; 302(8):R976-83. · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that the caudal ventral respiratory group (cVRG) is a possible site of action of some antitussive drugs and plays a crucial role in determining both the expiratory and inspiratory components of the cough motor pattern. In addition, it has been reported that medullary expiratory neurons of the cVRG are subject to potent GABAergic gain modulation. This study was devoted to investigate the role of cVRG GABA(A) receptors in the control of baseline respiratory activity and cough responses to mechanical and chemical (citric acid) stimulation of the tracheobronchial tree. To this purpose, bilateral microinjections (30-50 nl) of bicuculline or muscimol were performed into the cVRG of pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bicuculline (1 mM) increased peak abdominal activity and respiratory frequency due to decreases in T(E). Cough responses were potentiated mainly owing to increases in the cough number. The recovery was observed within ~2 h. On the contrary, muscimol (0.3 mM) abolished abdominal activity and decreased respiratory frequency due to increases in T(E). In addition, cough responses were progressively reduced and completely suppressed within ~20 min. Partial recovery of cough responses was achieved after ~3 h or within ~5 min following bicuculline microinjections at the same locations. The sneeze reflex induced by mechanical stimulation of the nasal mucosa persisted following bicuculline and muscimol microinjections. However, the number and intensity of expiratory thrusts were enhanced by bicuculline and suppressed by muscimol. The results provide evidence that a potent GABA(A)-mediated inhibitory modulation is exerted at the level of the cVRG not only on respiratory activity, but also on cough and sneeze reflex responses.
    Frontiers in Physiology 01/2012; 3:403.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acetylcholine (ACh) is well known to be involved in the control of breathing. However, no information is available on the role of ACh receptors (AChRs) within the lamprey respiratory network. The present study was performed on in vitro brainstem preparations of adult lampreys to investigate whether ACh affects respiratory activity possibly through an action on the paratrigeminal respiratory group (pTRG) that has been identified as an essential component of the respiratory network. Respiratory activity was monitored as vagal motor output. Bath application of 100 μM physostigmine or 1 μM nicotine increased respiratory frequency, while bath application of 100 μM D-tubocurarine or 0.25 μM α-bungarotoxin reduced respiratory frequency and increased the duration of vagal bursts. Since these effects were mimicked by microinjections of the same drugs into the pTRG, ACh proved to influence respiratory activity by acting on α7 nicotinic AChRs located within the pTRG. During apnea caused by partial blockade of ionotropic glutamate receptors at the level of the pTRG, bath application of bicuculline and strychnine restored the respiratory rhythm, although at reduced frequency. Similar results were obtained by the concurrent removal of both fast synaptic excitatory and inhibitory transmission. Blockade of pTRG α7 nicotinic AChRs suppressed this respiratory activity, thus indicating that pTRG neurons expressing these receptors contribute to respiratory rhythm generation. Together, these findings identify a novel cholinergic modulatory and possibly subsidiary rhythmogenic mechanism within the respiratory network of the adult lamprey and encourage further studies on the respiratory role of cholinergic receptors in different animal species.
    Journal of Neuroscience 09/2011; 31(37):13323-32. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The respiratory responses to bilateral microinjections (30-50 nl) of 5mM somatostatin (SOM) or 10mM cyclosomatostatin (c-SOM, a SOM antagonist) into the Bötzinger complex (BötC), the pre-Bötzinger complex (preBötC) and the rostral inspiratory portion of the ventral respiratory group (iVRG) were investigated in urethane-chloralose anesthetized, vagotomized, paralysed and artificially ventilated rabbits. SOM microinjections into the BötC decreased respiratory frequency and the rate of rise of phrenic nerve activity without obvious changes in its peak amplitude. SOM microinjected into the preBötC caused increases in respiratory frequency and decreases in peak phrenic activity associated with increases in its rate of rise. No changes in respiration were induced by SOM microinjections into the iVRG. Microinjections of c-SOM into the preBötC caused decreases in respiratory frequency as well as in peak amplitude and rate of rise of phrenic nerve activity. The results show that endogenously released SOM within the preBötC contributes to shape the pattern of baseline respiratory activity and that SOM receptors within the BötC and the preBötC have a role in the modulation of respiration in the rabbit.
    Neuroscience Letters 07/2011; 498(1):26-30. · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cough is the most common symptom reported by patients in a primary care setting and is one of the most frequent secondary effects recorded during treatment with angiotensin-converting enzyme (ACE) inhibitors. The aim of the current study was to analyze potential differences in cough induction between 2 structurally different ACE inhibitors, namely zofenopril, which has a sulphydryl moiety, and ramipril, which has a carboxyl moiety. The cough reflex was induced by chemical (citric acid) and/or mechanical stimulation of the tracheobronchial tree in awake and anesthetized rabbits. Intravenous injection of the active compounds of the 2 ACE inhibitors, zofenoprilat (288 nmol/kg) and ramiprilat (129 nmol/kg), caused similar hypotensive effects in anesthetized rabbits. None of the studied cough-related variables changed in response to ACE inhibitor administration, with the exception of the number of coughs. Ramiprilat, but not zofenoprilat, increased the cough response induced by both mechanical and chemical stimulation (1 mol/L citric acid aerosol) of the tracheobronchial tree. In awake animals, zofenoprilat- or vehicle-treated rabbits did not show any significant changes in the number of coughs induced by 1 mol/L citric acid aerosol compared to their respective basal values (from 15.2 ± 2.3 to 13.1 ± 1.3 and from 16.1 ± 4.9 to 15.8 ± 4.3, respectively). Conversely, ramiprilat resulted in a significant increase in the number of coughs (from 21.1 ± 2.6 to 34.9 ± 3.5; P < .01). These findings confirm that there are differences in the cough potentiation effect induced by different ACE inhibitors. The low rate of cough seen with zofenoprilat may be related to its ability to induce a lower accumulation of bradykinin and prostaglandins at the lung level.
    Journal of Cardiovascular Pharmacology and Therapeutics 10/2010; 15(4):384-92. · 3.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that the caudal nucleus tractus solitarii is a site of action of some antitussive drugs and that the caudal ventral respiratory group (cVRG) region has a crucial role in determining both the expiratory and inspiratory components of the cough motor pattern. These findings led us to suggest that the cVRG region, and possibly other neural substrates involved in cough regulation, may be sites of action of antitussive drugs. To address this issue, we investigated changes in baseline respiratory activity and cough responses to tracheobronchial mechanical stimulation following microinjections (30-50 nl) of some antitussive drugs into the cVRG of pentobarbital-anesthetized, spontaneously breathing rabbits. [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) and baclofen at the lower concentrations (0.5 mM and 0.1 mM, respectively) decreased cough number, peak abdominal activity, and peak tracheal pressure and increased cough-related total cycle duration (Tt). At the higher concentrations (5 mM and 1 mM, respectively), both drugs abolished the cough reflex. DAMGO and baclofen also affected baseline respiratory activity. Both drugs reduced peak abdominal activity, while only DAMGO increased Tt, owing to increases in expiratory time. The neurokinin-1 (NK(1)) receptor antagonist CP-99,994 (10 mM) decreased cough number, peak abdominal activity, and peak tracheal pressure, without affecting baseline respiration. The NK(2) receptor antagonist MEN 10376 (5 mM) had no effect. The results indicate that the cVRG is a site of action of some antitussive agents and support the hypothesis that several neural substrates involved in cough regulation may share this characteristic.
    Journal of Applied Physiology 10/2010; 109(4):1002-10. · 3.48 Impact Factor
  • D Mutolo, F Bongianni, E Cinelli, T Pantaleo
    [Show abstract] [Hide abstract]
    ABSTRACT: We have suggested that in the lamprey, a medullary region called the paratrigeminal respiratory group (pTRG), is essential for respiratory rhythm generation and could correspond to the pre-Bötzinger complex (pre-BötC), the hypothesized kernel of the inspiratory rhythm-generating network in mammals. The present study was performed on in vitro brainstem preparations of adult lampreys to investigate whether some functional characteristics of the respiratory network are retained throughout evolution and to get further insights into the recent debated hypotheses on respiratory rhythmogenesis in mammals, such as for instance the "group-pacemaker" hypothesis. Thus, we tried to ascertain the presence and role of neurokinins (NKs) and burst-generating ion currents, such as the persistent Na(+) current (I(NaP)) and the Ca(2+)-activated non-specific cation current (I(CAN)), described in the pre-Bötzinger complex. Respiratory activity was monitored as vagal motor output. Substance P (SP) as well as NK1, NK2 and NK3 receptor agonists (400-800 nM) applied to the bath induced marked increases in respiratory frequency. Microinjections (0.5-1 nl) of SP as well as the other NK receptor agonists (1 microM) into the pTRG increased the frequency and amplitude of vagal bursts. Riluzole (RIL) and flufenamic acid (FFA) were used to block I(NaP) and I(CAN), respectively. Bath application of either RIL or FFA (20-50 microM) depressed, but did not suppress respiratory activity. Coapplication of RIL and FFA at 50 microM abolished the respiratory rhythm that, however, was restarted by SP microinjected into the pTRG. The results show that NKs may have a modulatory role in the lamprey respiratory network through an action on the pTRG and that I(NaP) and I(CAN) may contribute to vagal burst generation. We suggest that the "group-pacemaker" hypothesis is tenable for the lamprey respiratory rhythm generation since respiratory activity is abolished by blocking both I(NaP) and I(CAN), but is restored by enhancing network excitability.
    Neuroscience 09/2010; 169(3):1136-49. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The respiratory role of GABA(A), GABA(B) and glycine receptors within the Bötzinger complex (BötC) and the pre-Bötzinger complex (preBötC) was investigated in alpha-chloralose-urethane anesthetized, vagotomized, paralysed and artificially ventilated rabbits by using bilateral microinjections (30-50 nl) of GABA and glycine receptor agonists and antagonists. GABA(A) receptor blockade by bicuculline (5mM) or gabazine (2mM) within the BötC induced strong depression of respiratory activity up to apnea. The latter was reversed by hypercapnia. Glycine receptor blockade by strychnine (5mM) within the BötC decreased the frequency and amplitude of phrenic bursts. Bicuculline microinjections into the preBötC caused decreases in respiratory frequency and the appearance of two alternating different levels of peak phrenic activity. Strychnine microinjections into the preBötC increased respiratory frequency and decreased peak phrenic amplitude. GABA(A), but not glycine receptor antagonism within the preBötC restored respiratory rhythmicity during apnea due to bicuculline or gabazine applied to the BötC. GABA(B) receptor blockade by CGP-35348 (50mM) within the BötC and the preBötC did not affect baseline respiratory activity, though microinjections of the GABA(B) receptor agonist baclofen (1mM) into the same regions altered respiratory activity. The results show that only GABA(A) and glycine receptors within the BötC and the preBötC mediate a potent control on both the intensity and frequency of inspiratory activity during eupneic breathing. This study is the first to provide evidence that these inhibitory receptors have a respiratory function within the BötC.
    Brain research 07/2010; 1344:134-47. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the role of ionotropic glutamate receptors located within the caudal portions of the nucleus tractus solitarii (cNTS) and the caudal ventral respiratory group (cVRG) in the mediation of coughing evoked by citric acid inhalation in spontaneously breathing rabbits under pentobarbitone anaesthesia. Bilateral microinjections (30-50nl) of 10mM CNQX and 10mM D-AP5 were performed to block non-NMDA and NMDA receptors, respectively. An attempt was also made to investigate the effects of ionotropic glutamate receptor blockade within the cVRG on sneezing induced by mechanical stimulation of the nasal mucosa. Blockade of non-NMDA receptors within the cNTS abolished coughing and associated tachypneic responses, while blockade of NMDA receptors only reduced cough responses. Blockade of non-NMDA receptors within the cVRG always abolished spontaneous rhythmic abdominal activity as well as coughing and associated tachypneic responses; blockade of NMDA receptors only reduced spontaneous rhythmic abdominal activity and coughing. As to sneezing, blockade of non-NMDA receptors within the cVRG suppressed the expiratory thrusts without affecting the inspiratory preparatory bursts, while blockade of NMDA receptors only strongly attenuated the expiratory thrusts. This study is the first to provide evidence that ionotropic glutamate receptors, and especially non-NMDA receptors, are involved in the mediation of coughing induced by citric acid inhalation and to suggest that citric acid-activated cough-related afferents terminate within the cNTS. Present data also corroborate the notion that the cVRG is involved in the generation of the whole cough motor pattern, but seems to represent merely an expiratory output system for sneezing.
    Brain research bulletin 07/2009; 80(1-2):22-9. · 2.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the changes induced by pulmonary C-fibre receptor activation in the cough reflex evoked by mechanical stimulation of the tracheobronchial tree in pentobarbitone anesthetized, spontaneously breathing rabbits. Phrenic nerve and abdominal muscle activities were monitored along with tracheal and arterial blood pressures. The activation of pulmonary C-fibre receptors by means of right atrial injection of phenylbiguanide (PBG) caused the pulmonary chemoreflex characterized by tachypnea, bradycardia and hypotension. During the pulmonary chemoreflex, the time components (total cycle duration, inspiratory and expiratory times) of the cough motor pattern significantly decreased, whereas no consistent changes in peak phrenic and abdominal activity, peak tracheal pressure and number of coughs evoked by each stimulation trial were observed. At variance with previous findings in cats and dogs, the results show that tracheobronchial cough is not significantly reduced in the rabbit during PBG-induced chemoreflex. This study is the first to provide evidence supporting the hypothesis that the time components of the cough motor pattern are, to some extent, dependent upon the timing characteristics of the ongoing respiratory activity and suggests a novel mechanism leading to cough depression.
    Neuroscience Letters 01/2009; 448(2):200-3. · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that ionotropic glutamate receptors in the caudal portion of the nucleus tractus solitarii (NTS), especially in the commissural NTS, play a prominent role in the mediation of tracheobronchial cough and that substance P potentiates this reflex. This NTS region could be a site of action of some centrally acting antitussive agents and a component of a drug-sensitive gating mechanism of cough. To address these issues, we investigated changes in baseline respiratory activity and cough responses to tracheobronchial mechanical stimulation following microinjections (30-50 nl) of centrally acting antitussive drugs into the caudal NTS of pentobarbitone-anesthetized, spontaneously breathing rabbits. [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) and baclofen decreased baseline respiratory frequency because of increases in the inspiratory time only at the higher concentration employed (5 mM and 1 mM, respectively). DAMGO (0.5 mM) and baclofen (0.1 mM) significantly decreased cough number, peak abdominal activity, peak tracheal pressure, and increased cough-related total cycle duration. At the higher concentrations, these agents suppressed the cough reflex. The effects of these two drugs were counteracted by specific antagonists (10 mM naloxone and 25 mM CGP-35348, respectively). The neurokinin-1 (NK1) receptor antagonist CP-99,994 (10 mM) abolished cough responses, whereas the NK2 receptor antagonist MEN 10376 (5 mM) had no effect. The results indicate that the caudal NTS is a site of action of some centrally acting drugs and a likely component of a neural system involved in cough regulation. A crucial role of substance P release in the mediation of reflex cough is also suggested.
    AJP Regulatory Integrative and Comparative Physiology 08/2008; 295(1):R243-51. · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The respiratory role of neurokinin (NK) receptors was investigated in alpha-chloralose-urethane-anaesthetized, vagotomized, paralysed and artificially ventilated rabbits by using bilateral microinjections (30-50 nL) of NK receptor agonists and antagonists. Microinjections were performed in a region located just caudal to the rostral expiratory neurons. This region displayed features similar to those of the pre-Bötzinger complex (pre-BötC) of adult cats and rats, and proved to produce excitatory respiratory effects in response to microinjections of D,L-homocysteic acid. We used as agonists (0.1, 0.5 and 5 mM) substance P (SP), the NK1 receptor agonists [Sar(9), Met(O2)(11)]-SP and GR 73632, the NK2 receptor agonist NKA, the NK3 receptor agonist senktide, and as antagonists (5 mM) the NK1 receptor antagonist CP-99,994 and the NK2 receptor antagonist MEN 10376. SP always increased respiratory frequency, but NK1 receptor agonists did not change respiratory variables. NKA and senktide at 5 mm increased respiratory frequency. CP-99,994 caused increases in respiratory frequency and did not antagonize the effects of SP. MEN 10376 prevented the respiratory responses induced by NKA and reduced those provoked by SP. SP or the NK1 receptor agonists (5 mM) injected (1 microL) into the IV ventricle caused marked excitatory effects on respiration. The results suggest that NK2 and NK3, but not NK1, receptors are involved in the excitatory modulation of inspiratory activity within the investigated region and are consistent with the notion that the pre-BötC neurons are important components of the inspiratory rhythm-generating mechanisms.
    European Journal of Neuroscience 07/2008; 27(12):3233-43. · 3.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of opioid receptors in modulating respiratory activity was investigated in in vitro brainstem preparations of adult lampreys by bath application of agonists and antagonists. The vagal motor output was used to monitor respiratory activity. Neuronal recordings were also performed to characterize the rostrolateral trigeminal region that has been suggested to be critical for respiratory rhythmogenesis. Microinjections of the micro-opioid receptor agonist [d-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO) were also made into this region and at different locations within the brainstem. Bath application of DAMGO (0.5-2 microM) caused marked decreases in respiratory frequency up to complete apnea. Bath application of the delta-opioid receptor agonist [d-Pen(2,5)]-enkephalin (DPDPE) at 10-40 microM induced less pronounced depressant respiratory effects, while no changes in respiratory activity were induced by the kappa-opioid receptor agonist trans-(1S,2S)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl] benzeneacetamide (U50488) at 10-40 microM. Bath application of the opioid receptor antagonists naloxone and naltrindole did not affect baseline respiratory activity, but prevented agonist-induced effects. DAMGO microinjections (1 mM; 0.5-1 nl) at sites rostrolateral to the trigeminal motor nucleus, where respiration-related neuronal activity was recorded, abolished the respiratory rhythm. The results show that opioids may have an important role in the lamprey respiratory network and that micro-opioid receptor activation is the most effective in causing respiratory depression. They also indicate that endogenous opioids are not required for the generation of baseline respiratory activity. Apneic responses induced by DAMGO microinjections support the hypothesis that a specific opioid-sensitive region rostrolateral to the trigeminal motor nucleus, that we have termed the paratrigeminal respiratory group (pTRG), likely has a pivotal role in respiratory rhythmogenesis. Since the lamprey diverged from the main vertebrate line around 450 million years ago, our results also imply that the inhibitory role of opioids on respiration is present at an early stage of vertebrate evolution.
    Neuroscience 01/2008; 150(3):720-9. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We hypothesized that cough evoked by mechanical stimulation of the tracheobronchial tree in the rabbit is primarily mediated by glutamatergic neurotransmission at the level of the caudal portions of the medial subnucleus of the nucleus tractus solitarii (NTS) and the lateral commissural NTS where cough-related afferents terminate, and that this reflex is potentiated by local release of substance P. To test our hypothesis, we performed bilateral microinjections (30-50 nl) of ionotropic glutamate receptor antagonists or substance P into these locations in pentobarbitone anaesthetized, spontaneously breathing rabbits. Blockade of NMDA and non-NMDA receptors by 50mM kynurenic acid abolished the cough reflex without affecting the Breuer-Hering inflation reflex or the pulmonary chemoreflex. Blockade of non-NMDA receptors using 10mM CNQX or 5mM NBQX caused identical effects. Blockade of NMDA receptors by 10mM D-AP5 strongly reduced, but did not abolish cough responses. Microinjections of 1mM substance P increased peak and rate of rise of abdominal muscle activity as well as cough number. These results are the first to provide evidence that ionotropic glutamate receptors, especially non-NMDA receptors, located within specific regions of NTS are primarily involved in the mediation of cough evoked by mechanical stimulation of the tracheobronchial tree in the rabbit. Present findings on substance P cough-enhancing effects extend previous observations and are relevant to the tachykinin-mediated central sensitization of the cough reflex. They also may provide hints for further studies on centrally acting antitussive drugs.
    Brain Research Bulletin 10/2007; 74(4):284-93. · 2.94 Impact Factor

Publication Stats

612 Citations
189.19 Total Impact Points

Institutions

  • 1986–2014
    • University of Florence
      • • Dipartimento di Medicina Sperimentale e Clinica
      • • Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino
      Florens, Tuscany, Italy
  • 1990–1993
    • Karolinska Institutet
      • Institutionen för neurovetenskap
      Solna, Stockholm, Sweden