Christy A Barlow

University of Wisconsin, Madison, Madison, MS, United States

Are you Christy A Barlow?

Claim your profile

Publications (10)93.34 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: BIK protein is an initiator of mitochondrial apoptosis, and BIK expression is induced by proapoptotic signals, including DNA damage. Here, we demonstrate that 3' end processing and expression of BIK mRNA are controlled by the nuclear PI4,5P(2)-regulated poly(A) polymerase Star-PAP downstream of DNA damage. Nuclear PKCδ is a key mediator of apoptosis, and DNA damage stimulates PKCδ association with the Star-PAP complex where PKCδ is required for Star-PAP-dependent BIK expression. PKCδ binds the PI4,5P(2)-generating enzyme PIPKIα, which is essential for PKCδ interaction with the Star-PAP complex, and PKCδ activity is directly stimulated by PI4,5P(2). Features in the BIK 3' UTR uniquely define Star-PAP specificity and may block canonical PAP activity toward BIK mRNA. This reveals a nuclear phosphoinositide signaling nexus where PIPKIα, PI4,5P(2), and PKCδ regulate Star-PAP control of BIK expression and induction of apoptosis. This pathway is distinct from the Star-PAP-mediated oxidative stress pathway indicating signal-specific regulation of mRNA 3' end processing.
    Molecular cell 01/2012; 45(1):25-37. · 14.61 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Star-PAP is a non-canonical, nuclear poly(A) polymerase (PAP) that is regulated by the lipid signaling molecule phosphatidylinositol 4,5 bisphosphate (PI4,5P(2)), and is required for the expression of a select set of mRNAs. It was previously reported that a PI4,5P(2) sensitive CKI isoform, CKIα associates with and phosphorylates Star-PAP in its catalytic domain. Here, we show that the oxidative stress-induced by tBHQ treatment stimulates the CKI mediated phosphorylation of Star-PAP, which is critical for both its polyadenylation activity and stimulation by PI4,5P(2). CKI activity was required for the expression and efficient 3'-end processing of its target mRNAs in vivo as well as the polyadenylation activity of Star-PAP in vitro. Specific CKI activity inhibitors (IC261 and CKI7) block in vivo Star-PAP activity, but the knockdown of CKIα did not equivalently inhibit the expression of Star-PAP targets. We show that in addition to CKIα, Star-PAP associates with another CKI isoform, CKIε in the Star-PAP complex that phosphorylates Star-PAP and complements the loss of CKIα. Knockdown of both CKI isoforms (α and ε) resulted in the loss of expression and the 3'-end processing of Star-PAP targets similar to the CKI activity inhibitors. Our results demonstrate that CKI isoforms α and ε modulate Star-PAP activity and regulates Star-PAP target messages.
    Nucleic Acids Research 07/2011; 39(18):7961-73. · 8.28 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: While the presence of phosphoinositides in the nuclei of eukaryotes and the identity of the enzymes responsible for their metabolism have been known for some time, their functions in the nucleus are only now emerging. This is illustrated by the recent identification of effectors for nuclear phosphoinositides. Like the cytosolic phosphoinositide signaling pathway, nuclear phosphatidylinositol 4,5-bisphosphate (PI4,5P(2)) is at the center of the pathway and acts both as a messenger and as a precursor for many additional messengers. Here, recent advances in the understanding of nuclear phosphoinositide signaling and its functions are reviewed with an emphasis on PI4,5P(2) and its role in gene expression. The compartmentalization of nuclear phosphoinositide phosphates (PIP(n)) remains a mystery, but emerging evidence suggests that phosphoinositides occupy several functionally distinct compartments.
    Trends in cell biology 10/2009; 20(1):25-35. · 12.12 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Oxidant stress plays a role in the pathogenesis of pulmonary diseases, including fibrotic lung disease and cancer. We previously found that hydrogen peroxide (H2O2) initiates an increase in Ca2+/cAMP-response element binding protein (CREB) phosphorylation in C10 alveolar type II cells that requires activation of extracellular regulated kinases 1/2 (ERK1/2). Here, we investigated the role of crosstalk between protein kinase A (PKA) and epidermal growth factor receptor (EGFR) in oxidant-induced signaling to ERK1/2 and CREB in C10 cells. Application of H2O2 increased nuclear accumulation of PKA, and inhibition of PKA with H89 reduced oxidant-mediated phosphorylation of both CREB and ERK1/2. Single cell measurements of cAMP and redox status, using a FRET-based biosensor and a redox-sensitive GFP, respectively, indicated that H2O2 increases production of cAMP that correlates with redox state. Inhibition of EGFR activity decreased both H2O2-induced CREB phosphorylation and translocation of PKA to the nucleus, suggesting that crosstalk between PKA and EGFR underlies the oxidant-induced CREB response. Furthermore, knockdown of CREB expression using siRNA led to a decrease in bcl-2 and an increase in oxidant-induced apoptosis. Together these data reveal a novel role for crosstalk between PKA, ERK1/2 and CREB that mediates cell survival during oxidant stress.
    Apoptosis 06/2008; 13(5):681-92. · 4.07 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Phosphoinositides are a family of lipid signalling molecules that regulate many cellular functions in eukaryotes. Phosphatidylinositol-4,5-bisphosphate (PtdIns4,5P2), the central component in the phosphoinositide signalling circuitry, is generated primarily by type I phosphatidylinositol 4-phosphate 5-kinases (PIPKIalpha, PIPKIbeta and PIPKIgamma). In addition to functions in the cytosol, phosphoinositides are present in the nucleus, where they modulate several functions; however, the mechanism by which they directly regulate nuclear functions remains unknown. PIPKIs regulate cellular functions through interactions with protein partners, often PtdIns4,5P2 effectors, that target PIPKIs to discrete subcellular compartments, resulting in the spatial and temporal generation of PtdIns4,5P2 required for the regulation of specific signalling pathways. Therefore, to determine roles for nuclear PtdIns4,5P2 we set out to identify proteins that interacted with the nuclear PIPK, PIPKIalpha. Here we show that PIPKIalpha co-localizes at nuclear speckles and interacts with a newly identified non-canonical poly(A) polymerase, which we have termed Star-PAP (nuclear speckle targeted PIPKIalpha regulated-poly(A) polymerase) and that the activity of Star-PAP can be specifically regulated by PtdIns4,5P2. Star-PAP and PIPKIalpha function together in a complex to control the expression of select mRNAs, including the transcript encoding the key cytoprotective enzyme haem oxygenase-1 (refs 8, 9) and other oxidative stress response genes by regulating the 3'-end formation of their mRNAs. Taken together, the data demonstrate a model by which phosphoinositide signalling works in tandem with complement pathways to regulate the activity of Star-PAP and the subsequent biosynthesis of its target mRNA. The results reveal a mechanism for the integration of nuclear phosphoinositide signals and a method for regulating gene expression.
    Nature 03/2008; 451(7181):1013-7. · 38.60 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Asbestos is a ubiquitous, naturally occurring fiber that has been linked to the development of malignant and fibrotic lung diseases. Asbestos exposure leads to apoptosis, followed by compensatory proliferation, yet many of the signaling cascades coupled to these outcomes are unclear. Because CREs (Ca(2+)/cAMP-response elements) are found in the promoters of many genes important for regulation of proliferation and apoptosis, CREB (CRE binding protein) is likely to play an important role in the development of asbestos-mediated lung injury. To explore this possibility, we tested the hypotheses that asbestos exposure leads to CREB phosphorylation in lung epithelial cells and that protein kinase A (PKA) and extracellular signal-regulated kinases 1/2 (ERK1/2) are central regulators of the CREB pathway. Persistent CREB phosphorylation was observed in lung sections from mice following inhalation of crocidolite asbestos. Exposure of C10 lung epithelial cells to crocidolite asbestos led to rapid CREB phosphorylation and apoptosis that was decreased by the inhibition of PKA or ERK1/2 using the specific inhibitors H89 and U0126, respectively. Furthermore, crocidolite asbestos selectively induced a sustained increase in MAP kinase phosphatase-1 mRNA and protein. Silencing CREB protein dramatically reduced asbestos-mediated ERK1/2 phosphorylation, yet significantly increased the number of cells undergoing asbestos-induced apoptosis. These data reveal a novel and selective role for CREB in asbestos-mediated signaling through pathways regulated by PKA and ERK1/2, further providing evidence that CREB is an important regulator of apoptosis in asbestos-induced responses of lung epithelial cells.
    AJP Lung Cellular and Molecular Physiology 07/2007; 292(6):L1361-9. · 3.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Altered Ca2+ handling has immediate physiological and long-term genomic effects on vascular smooth muscle function. Previously we showed that Ca2+ entry through voltage-dependent Ca2+ channels (VDCCs) or store-operated Ca2+ channels (SOCCs) results in phosphorylation of the Ca2+/cAMP response element (CRE)-binding protein in cerebral arteries. Here, oligonucleotide array analysis was used to determine gene transcription profiles resulting from these two Ca2+ entry pathways in human cerebrovascular smooth muscle cell cultures. Results were confirmed and expanded using quantitative RT-PCR, Western blot, and immunofluorescence. A distinct, yet overlapping, set of CRE-regulated genes was induced by VDCC activation using K+ membrane depolarization vs. SOCC activation by thapsigargin (TG). Membrane depolarization selectively induced a sustained increase in early growth response-1 (Egr-1) mRNA and protein, which were inhibited by the VDCC blocker nimodipine and the SOCC inhibitor 2-aminoethoxydiphenylborate (2-APB). TG selectively induced a sustained increase in MAPK phosphatase-1 (MKP-1) mRNA and protein, and these effects were decreased by 2-APB, but not by nimodipine. The physiological agonist ANG II also stimulated expression of Egr-1 and MKP-1. Coadministration of 2-APB prevented expression of Egr-1 and MKP-1, whereas nimodipine blocked only Egr-1 expression. TG and ANG II induced phosphorylation of ERK, which was sensitive to 2-APB and was selectively required for CRE-binding protein phosphorylation. Our findings thus indicate that Ca2+ entry through VDCCs and store-operated Ca2+ entry can differentially regulate CRE-containing genes in vascular smooth muscle and also imply that agonist-induced signals involved in modulation of gene transcription can be controlled by multiple sources of Ca2+.
    AJP Heart and Circulatory Physiology 08/2006; 291(1):H97-105. · 3.63 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Calcium (Ca2+) signals affect virtually every biological process, including both contraction and gene transcription in smooth muscle. Ca2+-regulated gene transcription is known to be important for both physiological and pathological responses in smooth muscle. The aim of this review is to discuss the current understanding of gene transcription regulated by excitation through Ca2+ signalling using a comparison of the two most characterized Ca2+-regulated transcription factors in smooth muscle, Ca2+-cyclic AMP response element binding protein (CREB) and nuclear factor of activated T-cells (NFAT). Recent studies have shown commonalities and differences in the regulation of CREB and NFAT through both voltage- and non-voltage-gated Ca2+ channels that lead to expression of smooth muscle cell specific differentiation markers as well as markers of proliferation. New insights into the regulation of specific genes through companion elements on the promoters of Ca2+-regulated genes have led to new models for transcriptional regulation by Ca2+ that are defined both by the source and duration of the Ca2+ signal and the composition of enhancer elements found within the regulatory regions of specific genes. Thus the combination of signalling pathways elicited by particular Ca2+ signals affect selective promoter elements that are key to the ultimate pattern of gene transcription.
    The Journal of Physiology 02/2006; 570(Pt 1):59-64. · 4.38 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Oxidant stress-mediated regulation of extracellular signal-regulated kinases (ERK1/2) is linked to pathologic outcomes in lung epithelium, yet a role for Ca2+ and Ca2+/cAMP-response element binding protein (CREB) in ERK1/2 signaling has not been defined. In this study, we tested the hypotheses that oxidants induce Ca2+-mediated phosphorylation of ERK and CREB, and that CREB is required for oxidant-induced proliferation and apoptosis. H2O2 initiated an influx of extracellular Ca2+ that was required for phosphorylation of both ERK and CREB in C10 lung epithelial cells. H2O2-mediated CREB phosphorylation was sensitive to MEK inhibition, suggesting that crosstalk between Ca2+, ERK, and CREB signaling pathways contributes to the oxidant-induced response. Reduction of CREB activity, using a dominant-negative CREB construct, inhibited c-fos steady-state mRNA levels, but unexpectedly enhanced bcl-2 steady-state mRNA levels after H2O2 exposure. Whereas inhibition of CREB activity had no detectable effect on H2O2 stimulation of cell cycle, loss of CREB activity significantly reduced the number of cells undergoing apoptosis. These data support a novel communication between Ca2+-ERK1/2 and CREB elicited by H2O2, and further provide evidence that CREB is an important regulator of apoptosis in oxidant-mediated responses of lung epithelial cells.
    American Journal of Respiratory Cell and Molecular Biology 02/2006; 34(1):7-14. · 4.15 Impact Factor

Publication Stats

202 Citations
9 Downloads
551 Views
93.34 Total Impact Points

Institutions

  • 2008–2012
    • University of Wisconsin, Madison
      • Department of Pharmacology
      Madison, MS, United States
  • 2006–2008
    • University of Vermont
      • Department of Pharmacology
      Burlington, VT, United States