Guohong Li

Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, United States

Are you Guohong Li?

Claim your profile

Publications (15)56.06 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Although extensive investigation has been made on miR-29a in relation to malignancies, only a little information has been provided about the angiogenic property of this miRNA so far. Herein, we sought to investigate the role of miR-29a in regulating cell cycle and angiogenic phenotype of endothelial cells. The results showed that miR-29a is highly expressed and upregulated by hypoxia-mimicking reagents in human umbilical vein endothelial cells (HUVEC). Consistent with this preliminary finding, introduction of exogenous agomiR-29a, or antagomir-29a altered cell cycle progression and promoted, or repressed the proliferation and tube formation of HUVEC, respectively. Furthermore, by using luciferase reporter assay, the expression of HBP1, a suppressor transcription factor was directly regulated by miR-29a through 3'-UTR. Increased or decreased HBP1 protein level was associated with the inhibition or overexpression of miR-29a, respectively. We conclude that miR-29a has a significant role in regulating cell cycle, proliferation and angiogenic properties of HUVEC, and this function is likely mediated through HBP1 protein at the post-transcriptional level. As a novel molecular target, miR-29a may have a potential value for the treatment of angiogenesis-associated diseases such as cardiovascular diseases and cancers.
    Biochemical and Biophysical Research Communications 03/2013; · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been shown that CD40-TRAF6 axis in leukocytes plays a significant role in neointimal formation after carotid ligation. Because CD40 and TRAF6 are expressed not only in leukocytes but also in vascular cells, we examined the role of CD40 contributed by vascular wall cells in neointimal formation after carotid ligation in an atherogenic environment. Both CD40 and TRAF6 in medial smooth muscle cells (SMCs) was upregulated significantly at 3 days and more prominently at 7 days after injury in wildtype mice, but the TRAF6 upregulation was abolished in CD40(-/-) mice. In vitro, TRAF6 expression was induced by cytokines (tumor necrosis factor -α, interleukin-1β) via a NF-κB-dependent manner in wildtype SMCs, but this induction was blocked in CD40-deficient SMCs. Bone marrow chimeras revealed a comparable reduction in neointimal formation and lumen stenosis in mice lacking either vascular wall- or bone marrow-associated CD40. Lacking vascular wall-associated CD40 resulted in a significant reduction in monocyte/macrophage accumulation, NF-κB activation, and multiple proinflammatory mediators (ICAM-1, VCAM-1, MCP-1, MMP-9, tissue factor). In vitro data confirmed that CD40 deficiency or TRAF6 knockdown suppressed CD40L-induced proinflammatory phenotype of SMCs by inhibition of NF-κB activation. Moreover, both in vivo and in vitro data showed that CD40 deficiency prevented injury-induced SMC apoptosis but did not affect SMC proliferation and migration. CD40 signaling through TRAF6 in vascular SMCs seems to be centrally involved in neointimal formation in a NF-κB-dependent manner. Modulating CD40 signaling on local vascular wall may become a new therapeutic target against vascular restenosis.
    Arteriosclerosis Thrombosis and Vascular Biology 01/2012; 32(1):50-64. · 6.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoinositide 3-kinase (PI3K)-γ is linked to inflammation and oxidative stress. This study was conducted to investigate the role of the PI3Kγ in the blood-brain barrier dysfunction and brain damage induced by focal cerebral ischemia/reperfusion. Wild-type and PI3Kγ knockout mice were subjected to middle cerebral artery occlusion (60 minutes) followed by reperfusion. Evans blue leakage, brain edema, infarct volumes, and neurological deficits were examined. Oxidative stress, neutrophil infiltration, and matrix metallopeptidase-9 were assessed. Activation of nuclear factor-κB and expression of proinflammatory and pro-oxidative genes were studied. PI3Kγ deficiency significantly reduced blood-brain barrier permeability and brain edema formation, which were time-dependently correlated with preventing the degradation of the tight junction protein, claudin-5, and the basal lamina protein, collagen IV, and the phosphorylation of myosin light chain in brain microvessels. PI3Kγ deficiency suppressed ischemia/reperfusion-induced nuclear factor-κB p65 (Ser536) phosphorylation and the expression of the pro-oxidant enzyme NADPH oxidase (Nox1, Nox2, and Nox4) and proinflammatory adhesion molecules (E- and P-selectin, intercellular adhesion molecule-1) at different time points. These molecular changes were associated with significant inhibition of oxidative stress (superoxide production and malondialdehyde content), neutrophil infiltration, and matrix metallopeptidase-9 expression/activity in PI3Kγ knockout mice. Eventually, PI3Kγ deficiency significantly reduced infarct volumes and neurological scores at 24 hours after ischemia/reperfusion. Our results provide the first direct demonstration that PI3Kγ plays a significant role in ischemia/reperfusion-induced blood-brain barrier disruption and brain damage. Future studies need to explore PI3Kγ as a potential target for stroke therapy.
    Stroke 05/2011; 42(7):2033-44. · 6.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite extensive investigations, restenosis, which is characterized primarily by neointima formation, remains an unsolved clinical problem after vascular interventions. A recent study has shown that CD40 signaling through TNF receptor associated factor 6 (TRAF6) plays a key role in neointima formation after carotid artery injury; however, underlying mechanisms are not clearly elucidated. Because neointima formation may vary significantly depending on the type of injury, we first assessed the effect of CD40 deficiency on neointima formation in 2 injury models, carotid artery ligation and femoral artery denudation injury. Compared with wild-type mice, CD40 deficiency significantly reduced neointima formation and lumen stenosis in two different models. Further, we investigated the mechanism by which CD40 signaling affects neointima formation after arterial injury. In wild-type mice, the expression levels of CD40, several TRAF proteins, including TRAF1, TRAF2, TRAF3, TRAF5, and TRAF6, as well as total NF-kB p65 and phospho-NF-kB p65, in the carotid artery were markedly upregulated within 3-7 days after carotid ligation. Deficiency of CD40 abolished the injury-induced upregulation of TRAFs including TRAF6 and NF-kB-p65 in the injured vessel wall. Further, CD40(-/-) mice showed a significant decrease in the recruitment of neutrophils (at 3, 7d) and macrophages (at 7, 21d) into injured artery; this effect was most likely attributed to inhibition of NF-kB activation and marked downregulation of NF-kB-related gene expression, including cytokines (TNFα, IL-1β, IL-6), chemokines (MCP-1), and adhesion molecules (ICAM-1, VCAM-1). Moreover, neutrophil recruitment in a model of thioglycollate-induced peritonitis is impaired in CD40-deficient mice. In vitro data revealed that CD40 deficiency blocked CD40L-induced NF-kB p65 nuclear translocation in leukocytes. Altogether, our data identified for the first time that CD40 is essential in the upregulation of TRAF6, NF-kB activation, and NF-kB-dependent proinflammatory genes in vivo. Our findings firmly established the role for CD40 in neointima formation in 2 distinct injury models.
    PLoS ONE 01/2011; 6(8):e23239. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microglia, the resident microphages of the CNS, are rapidly activated after ischemic stroke. Inhibition of microglial activation may protect the brain by attenuating blood-brain barrier damage and neuronal apoptosis after ischemic stroke. However, the mechanisms by which microglia is activated following cerebral ischemia is not well defined. In this study, we investigated the expression of PI3Kgamma in normal and ischemic brains and found that PI3Kgamma mRNA and protein are constitutively expressed in normal brain microvessels, but significantly upregulated in postischemic brain primarily in activated microglia following cerebral ischemia. In vitro, the expression of PI3Kgamma mRNA and protein was verified in mouse brain endothelial and microglial cell lines. Importantly, absence of PI3Kgamma blocked the early microglia activation (at 4h) and subsequent expansion (at 24-72 h) in PI3Kgamma knockout mice. The results suggest that PI3Kgamma is an ischemia-responsive gene in brain microglia and contributes to ischemia-induced microglial activation and expansion.
    Biochemical and Biophysical Research Communications 08/2010; 399(3):458-64. · 2.28 Impact Factor
  • Source
    Shiyong Yu, Guohong Li
    [Show abstract] [Hide abstract]
    ABSTRACT: Ischemic heart disease (IHD) or myocardial ischemia is one of the leading causes of mortality all over the world. There is a definite need for new approaches to improve therapies and diagnostics. The pathological process leading to IHD is associated with an altered expression of genes that are important for cardiac functions. Micro-RNAs (miRNAs) have emerged as one of the central players regulating gene expression via degradation or translational inhibition of their target genes. Increasing evidence indicates that miRNAs may serve as potential diagnostic biomarkers and innovative therapeutic targets in several human diseases including cardiovascular disease. Here, we review the latest advances in the identification and validation of myocardial ischemia-related miRNAs and their target genes and discuss the roles of specific miRNAs in regulating ischemia-related cardiac injury, including apoptosis, fibrosis, arrhythmia, and angiogenesis.
    Journal of Cardiovascular Translational Research 06/2010; 3(3):241-5. · 3.06 Impact Factor
  • Source
    Zifang Song, Guohong Li
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular smooth muscle cells (VSMCs) exhibit remarkable plasticity during postnatal development. Vascular injury initiates and perpetuates VSMCs dedifferentiation to a synthetic phenotype, which has been increasingly recognized to play a central role in neointimal hyperplasia during the pathogenesis of vascular proliferative diseases. MicroRNAs (miRNAs) are a novel class of regulatory noncoding RNAs that regulate gene expression at the posttranscriptional level by binding to 3' untranslated regions of target mRNAs, leading to either degrading mRNAs or inhibiting their translation. There is emerging evidence that miRNAs are critical regulators of widespread cellular functions such as differentiation, proliferation, and migration. Recent studies have indicated that a number of specific miRNAs play important roles in regulation of vascular cell functions and contribute to neointimal hyperplasia after vascular injury. Here, we review recent advance regarding functions of specific miRNAs in vasculature and discuss possible mechanisms by which miRNAs modulate proliferation and differentiation of VSMCs.
    Journal of Cardiovascular Translational Research 06/2010; 3(3):246-50. · 3.06 Impact Factor
  • Rong Jin, Guojun Yang, Guohong Li
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation plays an important role in the pathogenesis of ischemic stroke and other forms of ischemic brain injury. Experimentally and clinically, the brain responds to ischemic injury with an acute and prolonged inflammatory process, characterized by rapid activation of resident cells (mainly microglia), production of proinflammatory mediators, and infiltration of various types of inflammatory cells (including neutrophils, different subtypes of T cells, monocyte/macrophages, and other cells) into the ischemic brain tissue. These cellular events collaboratively contribute to ischemic brain injury. Despite intense investigation, there are still numerous controversies concerning the time course of the recruitment of inflammatory cells in the brain and their pathogenic roles in ischemic brain injury. In this review, we provide an overview of the time-dependent recruitment of different inflammatory cells following focal cerebral I/R. We discuss how these cells contribute to ischemic brain injury and highlight certain recent findings and currently unanswered questions about inflammatory cells in the pathophysiology of ischemic stroke.
    Journal of leukocyte biology 05/2010; 87(5):779-89. · 4.99 Impact Factor
  • Source
    Rong Jin, Guojun Yang, Guohong Li
    [Show abstract] [Hide abstract]
    ABSTRACT: Blood-brain barrier (BBB) disruption, mediated through matrix metalloproteinases (MMPs) and other mechanisms, is a critical event during ischemic stroke. Tissue plasminogen activator (tPA) is the only FDA-approved thrombolytic therapy for acute ischemic stroke, but the efficacy and safety of its therapeutic application are limited by narrow treatment time windows and side effects. Thus, there is a pressing need to develop combinational therapy that could offset tPA side effects and improve efficacy in clinical practice. Recent experimental studies indicate that tPA has previously unidentified functions in the brain beyond its well-established thrombolytic activity, which might contribute to tPA-related side effects through MMPs (mainly MMP-9) and several signaling pathways involved in LDL receptor-related protein (LRP), activated protein C (APC) and protease-activated receptor 1 (PAR-1), platelet-derived growth factor C (PDGF-C), and N-methyl-d-aspartate (NMDA) receptor. Therapeutic targeting of MMPs and/or tPA-related signaling pathways might offer promising new approaches to combination therapies for ischemic stroke. This review provides an overview of the relationship between structural components and function of the BBB/neurovascular unit with respect to ischemic stroke. We discuss how MMPs and tPA contribute to BBB disruption during ischemic stroke and highlight recent findings of molecular signaling pathways involved in neurotoxicity of tPA therapy.
    Neurobiology of Disease 03/2010; 38(3):376-85. · 5.62 Impact Factor
  • Source
    Fusheng Wu, Zeran Yang, Guohong Li
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence indicates that various aspects of angiogenesis, such as proliferation, migration, and morphogenesis of endothelial cells, can be regulated by specific miRNAs in an endothelial-specific manner. As novel molecular targets, miRNAs have a potential value for treatment of angiogenesis-associated diseases such as cancers, inflammation, and vascular diseases. In this article, we review the latest advances in the identification and validation of angiogenesis-regulatory miRNAs and their targets, and discuss their roles and mechanisms in regulating endothelial cell function and angiogenesis.
    Biochemical and Biophysical Research Communications 07/2009; 386(4):549-53. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress is an important contributor to cancer development. Consistent with that, antioxidant enzymes have been demonstrated to suppress tumorigenesis when being elevated both in vitro and in vivo, making induction of these enzymes a more potent approach for cancer prevention. Protandim, a well-defined combination of widely studied medicinal plants, has been shown to induce superoxide dismutase (SOD) and catalase activities and reduce superoxide generation and lipid peroxidation in healthy human subjects. To investigate whether Protandim can suppress tumor formation by a dietary approach, a two-stage mouse skin carcinogenesis study was performed. At the end of the study, the mice on a Protandim-containing basal diet had similar body weight compared with those on the basal diet, which indicated no overt toxicity by Protandim. After three weeks on the diets, there was a significant increase in the expression levels of SOD and catalase, in addition to the increases in SOD activities. Importantly, at the end of the carcinogenesis study, both skin tumor incidence and multiplicity were reduced in the mice on the Protandim diet by 33% and 57% respectively, compared with those on basal diet. Biochemical and histological studies revealed that the Protandim diet suppressed tumor promoter-induced oxidative stress (evidenced by reduction of protein carbonyl levels), cell proliferation (evidenced by reduction of skin hyperplasia and suppression of PKC/JNK/Jun pathway), and inflammation (evidenced by reduction of ICAM-1/VCAM-1 expression, NF-kappaB binding activity, and nuclear p65/p50 levels). Overall, induction of antioxidant enzymes by Protandim may serve as a practical and potent approach for cancer prevention.
    PLoS ONE 02/2009; 4(4):e5284. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High levels of circulating soluble CD40 ligand (sCD40L) are frequently found in patients with hypercholesterolemia, diabetes, ischemic stroke, or acute coronary syndromes, predicting an increased rate of atherosclerotic plaque rupture and restenosis after coronary/carotid interventions. Clinical restenosis is characterized in part by exaggerated neointima formation, but the underlying mechanism remains incompletely understood. This study investigated the role of elevated sCD40L in neointima formation in response to vascular injury in an atherogenic animal model and explored the molecular mechanisms involved. apoE(-/-) mice fed a Western diet developed severe hypercholesterolemia, significant hyperglycemia, and high levels of plasma sCD40L. Neointima formation after carotid denudation injury was exaggerated in the apoE(-/-) mice. In vivo, blocking CD40L with anti-CD40L monoclonal antibody attenuated the early accumulation of Ly-6G(+) neutrophils and Gr-1(+) monocytes (at 3 days) and the late accumulation of Mac-2(+) macrophages (at 28 days) in the denudated arteries; it also reduced the exaggerated neointima formation at 28 days. In vitro, recombinant CD40L stimulated platelet P-selectin and neutrophil Mac-1 expression and platelet-neutrophil co-aggregation and adhesive interaction. These effects were abrogated by anti-CD40L or anti-Mac-1 monoclonal antibody. Moreover, recombinant CD40L stimulated neutrophil oxidative burst and release of matrix metalloproteinase-9 in vitro. We conclude that elevated sCD40L promotes platelet-leukocyte activation and recruitment and neointima formation after arterial injury, potentially through enhancement of platelet P-selectin and leukocyte Mac-1 expression and oxidative activity.
    American Journal Of Pathology 05/2008; 172(4):1141-52. · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Periostin is dramatically upregulated in rat carotid arteries after balloon injury. The objective of the present study was to understand mechanisms underlying periostin upregulation in balloon-injured rat carotid arteries and in cultured vascular smooth muscle cells (VSMCs). Periostin protein was strongly expressed at 3 days (in the medial SMCs) and 7 days (in the neointima) after injury. It was also abundantly expressed in the neointima in the late phase (at 14 and 28 days) after injury. Periostin upregulation was mediated through PI-3-kinase-dependent signaling pathway. In vivo, wortmannin, a PI-3-kinase inhibitor, inhibited balloon injury-induced Akt phosphorylation and periostin mRNA expression. In vitro, periostin mRNA expression in cultured VSMCs was stimulated by growth factors (transforming growth factor-beta1 (TGF-beta1), fibroblast growth factors (FGFs), PDGF-BB, and angiotensin II). This stimulatory effect was inhibited by the PI-3-kinase inhibitor LY294002. Further, periostin protein was mostly located in the cytoplasma of VSMCs in culture and abundantly secreted into the culture medium (CM) after stimulation with FGF-2, which significantly promoted VSMC migration in vitro. Immunodepletion of periostin from the VSMC-CM or blockade of periostin function with an anti-periostin antibody significantly reduced VSMC migration. Upregulation of periostin expression in rat carotid arteries following balloon injury and in cultured VSMCs after stimulation by growth factors is mediated through PI-3-kinase-dependent signaling pathway. Periostin protein secreted by VSMCs plays a significant role in regulating VSMC migration in vitro.
    Atherosclerosis 11/2006; 188(2):292-300. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: P-selectin expression has been reported in platelets, endothelial cells, and vascular smooth muscle cells in response to vascular injury. Here, we report P-selectin expression on macrophages in the arterial wall after carotid denudation injury and spontaneous atherosclerosis in atherosclerosis-prone apoE-deficient (apoE(-/-)) mice. Double-immunofluorescence staining revealed robust P-selectin expression in macrophage-rich regions of both denudation-induced carotid neointimal lesions and innominate atherosclerotic plaques. Co-localization of P-selectin with macrophages was verified at the single cell level using double immunostaining plus 4,6-diamidino-2-phenylindole (for nuclei) counterstaining. No platelet staining was seen in association with the macrophage staining, excluding platelet contamination. Furthermore, P-selectin mRNA expression was readily detectable in macrophage-rich plaques of atherosclerotic innominate arteries and blood monocyte-derived macrophages from apoE(-/-) mice. Strong P-selectin expression was also seen in the areas of regenerated endothelium after arterial injury. In addition, co-localization of P-selectin with vascular smooth muscle cells was readily observed in denudation-injured carotid arteries at 7 and 14 days. We conclude that macrophages in carotid injury-induced neointimal lesions and spontaneous atherosclerotic plaques of the innominate artery acquire the ability to express P-selectin, as does regenerating endothelium. These findings provide a potential new paradigm in macrophage-mediated vascular inflammation, atherosclerosis, and neointimal hyperplasia after arterial injury.
    American Journal Of Pathology 01/2006; 167(6):1511-8. · 4.60 Impact Factor
  • Cardiovascular Pathology - CARDIOVASC PATHOL. 01/2004; 13(3):99-99.

Publication Stats

453 Citations
56.06 Total Impact Points

Institutions

  • 2008–2013
    • Louisiana State University Health Sciences Center Shreveport
      • Department of Neurosurgery
      Shreveport, Louisiana, United States
  • 2010–2012
    • Louisiana State University Health Sciences Center New Orleans
      • Department of Neurosurgery
      Baton Rouge, LA, United States
  • 2006–2008
    • University of Virginia
      • Robert M. Berne Cardiovascular Research Center
      Charlottesville, VA, United States
    • Cardiovascular Research Foundation
      New York City, New York, United States