Geoffrey Zhang

Moffitt Cancer Center, Tampa, Florida, United States

Are you Geoffrey Zhang?

Claim your profile

Publications (37)76.78 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, the feasibility of implementing a motion-perturbation approach to accurately estimate volumetric dose in the presence of organ motion-previously demonstrated for VMAT--is studied for static gantry IMRT. The method's accuracy is improved for the voxels that have very low planned dose but acquire appreciable dose due to motion. The study describes the modified algorithm and its experimental validation and provides an example of a clinical application.
    Medical physics. 06/2014; 41(6):061704.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Delta(4) (ScandiDos AB, Uppsala, Sweden) and ArcCHECK with 3DVH software (Sun Nuclear Corp., Melbourne, FL, USA) are commercial quasi-three-dimensional diode dosimetry arrays capable of volumetric measurement-guided dose reconstruction. A method to reconstruct dose for non-coplanar VMAT beams with 3DVH is described. The Delta(4) 3D dose reconstruction on its own phantom for VMAT delivery has not been thoroughly evaluated previously, and we do so by comparison with 3DVH. Reconstructed volumetric doses for VMAT plans delivered with different table angles were compared between the Delta(4) and 3DVH using gamma analysis. The average γ (2% local dose-error normalization/2mm) passing rate comparing the directly measured Delta(4) diode dose with 3DVH was 98.2±1.6% (1SD). The average passing rate for the full volumetric comparison of the reconstructed doses on a homogeneous cylindrical phantom was 95.6±1.5%. No dependence on the table angle was observed. Modified 3DVH algorithm is capable of 3D VMAT dose reconstruction on an arbitrary volume for the full range of table angles. Our comparison results between different dosimeters make a compelling case for the use of electronic arrays with high-resolution 3D dose reconstruction as primary means of evaluating spatial dose distributions during IMRT/VMAT verification.
    Radiotherapy and Oncology 01/2014; · 4.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose. Respiratory motion presents significant challenges for accurate PET/CT. It often introduces apparent increase of lesion size, reduction of measured standardized uptake value (SUV), and the mismatch in PET/CT fusion images. In this study, we developed the motion freeze method to use 100% of the counts collected by recombining the counts acquired from all phases of gated PET data into a single 3D PET data, with correction of respiration by deformable image registration. Methods. Six patients with diagnosis of lung cancer confirmed by oncologists were recruited. PET/CT scans were performed with Discovery STE system. The 4D PET/CT with the Varian real-time position management for respiratory motion tracking was followed by a clinical 3D PET/CT scan procedure in the static mode. Motion freeze applies the deformation matrices calculated by optical flow method to generate a single 3D effective PET image using the data from all the 4D PET phases. Results. The increase in SUV and decrease in tumor size with motion freeze for all lesions compared to the results from 3D and 4D was observed in the preliminary data of lung cancer patients. In addition, motion freeze substantially reduced tumor mismatch between the CT image and the corresponding PET images. Conclusion. Motion freeze integrating 100% of the PET counts has the potential to eliminate the influences induced by respiratory motion in PET data.
    BioMed Research International 01/2014; 2014:167491. · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the results of a preclinical evaluation of recently introduced commercial tools for 3D patient IMRT/VMAT dose reconstruction, the Delta4 Anatomy calculation algorithm. Based on the same initial measurement, volumetric dose can be reconstructed in two ways. Three-dimensional dose on the Delta4 phantom can be obtained by renormalizing the planned dose distribution by the measurement values (D4 Interpolation). Alternatively, incident fluence can be approximated from the phantom measurement and used for volumetric dose calculation on an arbitrary (patient) dataset with a pencil beam algorithm (Delta4 PB). The primary basis for comparison was 3D dose obtained by previously validated measurement-guided planned dose perturbation method (ACPDP), based on the ArcCHECK dosimeter with 3DVH software. For five clinical VMAT plans, D4 Interpolation agreed well with ACPDP on a homogeneous cylindrical phantom according to gamma analysis with local dose-error normalization. The average agreement rates were 98.2% ± 1.3% (1 SD), (range 97.0%-100%) and 92.8% ± 3.9% (89.5%-99.2%), for the 3%/3 mm and 2%/2 mm criteria, respectively. On a similar geometric phantom, D4 PB demonstrated substantially lower agreement rates with ACPDP: 88.6% ± 6.8% (81.2%-96.1%) and 72.4% ± 8.4% (62.1%-81.1%), for 3%/3 mm and 2%/2 mm, respectively. The average agreement rates on the heterogeneous patients' CT datasets are lower yet: 81.2% ± 8.6% (70.4%-90.4%) and 64.6% ± 8.4% (56.5%-74.7%), respectively, for the same two criteria sets. For both threshold combinations, matched analysis of variance (ANOVA) multiple comparisons showed statistically significant differences in mean agreement rates (p < 0.05) for D4 Interpolation versus ACPDP on one hand, and D4 PB versus ACPDP on either cylindrical or patient dataset on the other hand. Based on the favorable D4 Interpolation results for VMAT plans, the resolution of the reconstruction method rather than hardware design is likely to be responsible for D4 PB limitations.
    Journal of Applied Clinical Medical Physics 01/2014; 15(2):4705. · 0.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: The effects of respiratory motion on the tumor dose can be divided into the gradient and interplay effects. While the interplay effect is likely to average out over a large number of fractions, it may play a role in hypofractionated [stereotactic body radiation therapy (SBRT)] treatments. This subject has been extensively studied for intensity modulated radiation therapy but less so for volumetric modulated arc therapy (VMAT), particularly in application to hypofractionated regimens. Also, no experimental study has provided full four-dimensional (4D) dose reconstruction in this scenario. The authors demonstrate how a recently described motion perturbation method, with full 4D dose reconstruction, is applied to describe the gradient and interplay effects during VMAT lung SBRT treatments.Methods: VMAT dose delivered to a moving target in a patient can be reconstructed by applying perturbations to the treatment planning system-calculated static 3D dose. Ten SBRT patients treated with 6 MV VMAT beams in five fractions were selected. The target motion (motion kernel) was approximated by 3D rigid body translation, with the tumor centroids defined on the ten phases of the 4DCT. The motion was assumed to be periodic, with the period T being an average from the empirical 4DCT respiratory trace. The real observed tumor motion (total displacement ≤8 mm) was evaluated first. Then, the motion range was artificially increased to 2 or 3 cm. Finally, T was increased to 60 s. While not realistic, making T comparable to the delivery time elucidates if the interplay effect can be observed. For a single fraction, the authors quantified the interplay effect as the maximum difference in the target dosimetric indices, most importantly the near-minimum dose (D99%), between all possible starting phases. For the three- and five-fractions, statistical simulations were performed when substantial interplay was found.Results: For the motion amplitudes and periods obtained from the 4DCT, the interplay effect is negligible (<0.2%). It is also small (0.9% average, 2.2% maximum) when the target excursion increased to 2-3 cm. Only with large motion and increased period (60 s) was a significant interplay effect observed, with D99% ranging from 16% low to 17% high. The interplay effect was statistically significantly lower for the three- and five-fraction statistical simulations. Overall, the gradient effect dominates the clinical situation.Conclusions: A novel method was used to reconstruct the volumetric dose to a moving tumor during lung SBRT VMAT deliveries. With the studied planning and treatment technique for realistic motion periods, regardless of the amplitude, the interplay has nearly no impact on the near-minimum dose. The interplay effect was observed, for study purposes only, with the period comparable to the VMAT delivery time.
    Medical Physics 09/2013; 40(9):091710. · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To present a framework for measurement-guided VMAT dose reconstruction to moving patient voxels from a known motion kernel and the static phantom data, and to validate this perturbation-based approach with the proof-of-principle experiments.Methods: As described previously, the VMAT 3D dose to a static patient can be estimated by applying a phantom measurement-guided perturbation to the treatment planning system (TPS)-calculated dose grid. The fraction dose to any voxel in the presence of motion, assuming the motion kernel is known, can be derived in a similar fashion by applying a measurement-guided motion perturbation. The dose to the diodes in a helical phantom is recorded at 50 ms intervals and is transformed into a series of time-resolved high-density volumetric dose grids. A moving voxel is propagated through this 4D dose space and the fraction dose to that voxel in the phantom is accumulated. The ratio of this motion-perturbed, reconstructed dose to the TPS dose in the phantom serves as a perturbation factor, applied to the TPS fraction dose to the similarly situated voxel in the patient. This approach was validated by the ion chamber and film measurements on four phantoms of different shape and structure: homogeneous and inhomogeneous cylinders, a homogeneous cube, and an anthropomorphic thoracic phantom. A 2D motion stage was used to simulate the motion. The stage position was synchronized with the beam start time with the respiratory gating simulator. The motion patterns were designed such that the motion speed was in the upper range of the expected tumor motion (1-1.4 cm∕s) and the range exceeded the normally observed limits (up to 5.7 cm). The conformal arc plans for X or Y motion (in the IEC 61217 coordinate system) consisted of manually created narrow (3 cm) rectangular strips moving in-phase (tracking) or phase-shifted by 90° (crossing) with respect to the phantom motion. The XY motion was tested with the computer-derived VMAT MLC sequences. For all phantoms and plans, time-resolved (10 Hz) ion chamber dose was collected. In addition, coronal (XY) films were exposed in the cube phantom to a VMAT beam with two different starting phases, and compared to the reconstructed motion-perturbed dose planes.Results: For the X or Y motions with the moving strip and geometrical phantoms, the maximum difference between perturbation-reconstructed and ion chamber doses did not exceed 1.9%, and the average for any motion pattern∕starting phase did not exceed 1.3%. For the VMAT plans on the cubic and thoracic phantoms, one point exhibited a 3.5% error, while the remaining five were all within 1.1%. Across all the measurements (N = 22), the average disagreement was 0.5 ± 1.3% (1 SD). The films exhibited γ(3%∕3 mm) passing rates ≥90%.Conclusions: The dose to an arbitrary moving voxel in a patient can be estimated with acceptable accuracy for a VMAT delivery, by performing a single QA measurement with a cylindrical phantom and applying two consecutive perturbations to the TPS-calculated patient dose. The first one accounts for the differences between the planned and delivered static doses, while the second one corrects for the motion.
    Medical Physics 02/2013; 40(2):021708. · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Postmastectomy radiation (PMRT) lowers local-regional recurrence risk and improves survival in selected patients with breast cancer. The chest wall and lower axilla are technically challenging areas to treat with homogenous doses and normal tissue sparing. This study compares several techniques for PMRT to provide data to guide selection of optimal treatment techniques. Twenty-five consecutive left-sided patients treated postmastectomy were contoured using Radiation Therapy Oncology Group (RTOG) atlas guidelines then planned using 4 different PMRT techniques: opposed tangents with wedges (3-dimensional [3D] wedges), opposed tangents with field-in-field (FiF) modulation, 8-field intensity modulation radiotherapy (IMRT), and custom bolus electron conformal therapy (BolusECT, .decimal, Inc., Sanford, FL). Required planning target volume (PTV) coverage was held constant, and then dose homogeneity and normal tissue dose parameters were compared among the 4 techniques. BolusECT achieved clincally acceptable PTV coverage for 22 out of 25 cases. Compared with either tangential technique, IMRT and BolusECT provided the lowest heart V25 doses (3.3% ± 0.9% and 6.6% ± 3.2%, respectively with p < 0.0001). FiF had the lowest mean total lung dose (7.3 ± 1.1Gy, with p = 0.0013), IMRT had the lowest total lung V20 (10.3% ± 1.6%, p < 0.0001), and BolusECT had the lowest mean heart dose (7.3 ± 2.0Gy, p = 0.0002). IMRT provided the optimal dose homogeneity and normal tissue sparing compared with all other techniques for the cases in which BolusECT could not achieve acceptable PTV coverage. IMRT generally exposes contralateral breast and lung to slightly higher doses. Optimal PMRT technique depends upon patient anatomy. Patients whose maximal target volume depth is about 5.7cm or less can be treated with BolusECT-assisted 12 or 15MeV electron beams. At these energies, BolusECT has comparable dose-volume statistics as IMRT and lower heart V25 than opposed tangential beams. Patients with larger depths are best treated with IMRT, which provides significant advantages in both dose homogeneity and normal tissue sparing compared with all other techniques.
    Medical dosimetry: official journal of the American Association of Medical Dosimetrists 01/2013; 38(4):448-53. · 1.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deformable image registration (DIR) has been proposed for lung ventilation calculation using 4D CT. Spatial accuracy of DIR can be evaluated using expert landmark correspondences. Additionally, image differences between the deformed and the target images give a degree of accuracy of DIR algorithms for the same image modality registration. DIR of the normal end-expiration (50%), end-inspiration (0%), midexpiration (30%), and midinspiration image (70%) phases of the 4D CT images was used to correlate the voxels between the respiratory phases. Three DIR algorithms, optical flow (OF), diffeomorphic morphons (DM), and diffeomorphic demons (DD) were validated using a 4D thorax model, consisting of a 4D CT image dataset, along with associated landmarks delineated by a radiologist. Image differences between the deformed and the target images were used to evaluate the degree of registration accuracy of the three DIR algorithms. In the validation of the DIR algorithms, the average target registration error (TRE) for normal end-expiration-to-end-inspiration registration with one standard deviation (SD) for the DIR algorithms was 1.6 ± 0.9 mm (maximum 3.1 mm) for OF, 1.4± 0.6 mm (maximum 3.3 mm) for DM, and 1.4 ± 0.7 mm (maximum 3.3 mm) for DD, indicating registration errors were within two voxels. As a reference, the median value of TRE between 0 and 50% phases with rigid registration only was 5.0 mm with one SD of 2.5 mm and the maximum value of 12.0 mm. For the OF algorithm, 81% of voxels were within a difference of 50 HU, and 93% of the voxels were within 100HU. For the DM algorithm, 69% of voxels were within 50 HU, and 87% within 100 HU. For the DD algorithm, 71% of the voxels were within 50 HU, and 87% within a difference of 100 HU. These data suggest that the three DIR methods perform accurate registrations in the thorax region. The mean TRE for all three DIR methods was less than two voxels suggesting that the registration performed by all methods are equally accurate in the thorax.
    Journal of Applied Clinical Medical Physics 01/2013; 14(1):3834. · 0.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The 6 MV flattening filter-free (FFF) beam has been commissioned for use with compensators at our institution. This novel combination promises advantages in mitigating tumor motion due to the reduced treatment time made possible by the greatly increased dose rate of the FFF beam. Given the different energy spectrum of the FFF beam and the beam hardening effect of the compensator, the accuracy of the treatment planning system (TPS) model in the presence of low-density heterogeneities cannot be assumed. Therefore, inhomogeneity correction factors (ICF) for an FFF beam attenuated by brass slabs were measured and compared to the TPS calculations in this work. The ICF is the ratio of the point dose in the presence of inhomogeneity to the dose in the same point in a homogeneous medium. The ICFs were measured with an ion chamber at a number of points in a flat water-equivalent slab phantom containing a 7.5 cm deep heterogeneity (air or 0.27 g/cm3 wood). Comparisons for the FFF beam were carried out for the field sizes from 5× 5 to 20 × 20 cm2 with the brass slabs ranging from 0 to 5 cm in thickness. For a low-density wood heterogeneity in a slab phantom, with the exception of the point 1cm beyond the proximal buildup interface, the TPS handles the inhomogeneity correction with the brass-filtered 6 MV FFF beam at the requisite 2% error level. The combinations of field sizes and compensator thicknesses when the error exceeds 2% (2.6% maximum) are not likely to be experienced in clinical practice. In terms of heterogeneity corrections, the beam model is adequate for clinical use.
    Journal of Applied Clinical Medical Physics 01/2013; 14(3):3990. · 0.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 3DVH software (Sun Nuclear Corp., Melbourne, FL) is capable of generating a volumetric patient VMAT dose by applying a volumetric perturbation algorithm based on comparing measurement-guided dose reconstruction and TPS-calculated dose to a cylindrical phantom. The primary purpose of this paper is to validate this dose reconstruction on an anthropomorphic heterogeneous thoracic phantom by direct comparison to independent measurements. The dosimetric insert to the phantom is novel, and thus the secondary goal is to demonstrate how it can be used for the hidden target end-to-end testing of VMAT treatments in lung. A dosimetric insert contains a 4 cm diameter unit-density spherical target located inside the right lung (0.21 g/cm3 density). It has 26 slots arranged in two orthogonal directions, milled to hold optically stimulated luminescent dosimeters (OSLDs). Dose profiles in three cardinal orthogonal directions were obtained for five VMAT plans with varying degrees of modulation. After appropriate OSLD corrections were applied, 3DVH measurement-guided VMAT dose reconstruction agreed 100% with the measurements in the unit density target sphere at 3%/3 mm level (composite analysis) for all profile points for the four less-modulated VMAT plans, and for 96% of the points in the highly modulated C-shape plan (from TG-119). For this latter plan, while 3DVH shows acceptable agreement with independent measurements in the unit density target, in the lung disagreement with experiment is relatively high for both the TPS calculation and 3DVH reconstruction. For the four plans excluding the C-shape, 3%/3 mm overall composite analysis passing rates for 3DVH against independent measurement ranged from 93% to 100%. The C-shape plan was deliberately chosen as a stress test of the algorithm. The dosimetric spatial alignment hidden target test demonstrated the average distance to agreement between the measured and TPS profiles in the steep dose gradient area at the edge of the 2 cm target to be 1.0 ± 0.7, 0.3 ± 0.3, and 0.3 ± 0.3 mm for the IEC X, Y, and Z directions, respectively.
    Journal of Applied Clinical Medical Physics 01/2013; 14(4):4154. · 0.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To develop and validate a volume-modulated arc therapy (VMAT) quality assurance (QA) tool that takes as input a time-resolved, low-density (∼10 mm) cylindrical surface dose map from a commercial helical diode array, and outputs a high density, volumetric, time-resolved dose matrix on an arbitrary patient dataset. This first validation study is limited to a homogeneous "patient." A VMAT treatment is delivered to a diode array phantom (ARCCHECK, Sun Nuclear Corp., Melbourne, FL). 3DVH software (Sun Nuclear) derives the high-density volumetric dose using measurement-guided dose reconstruction (MGDR). MGDR cylindrical phantom results are then used to perturb the three-dimensional (3D) treatment planning dose on the patient dataset, producing a semiempirical volumetric dose grid. Four-dimensional (4D) dose reconstruction on the patient is also possible by morphing individual sub-beam doses instead of the composite. For conventional (3D) dose comparison two methods were developed, using the four plans (Multi-Target, C-shape, Mock Prostate, and Head and Neck), including their structures and objectives, from the AAPM TG-119 report. First, 3DVH and treatment planning system (TPS) cumulative point doses were compared to ion chamber in a cube water-equivalent phantom ("patient"). The shape of the phantom is different from the ARCCHECK and furthermore the targets were placed asymmetrically. Second, coronal and sagittal absolute film dose distributions in the cube were compared with 3DVH and TPS. For time-resolved (4D) comparisons, three tests were performed. First, volumetric dose differences were calculated between the 3D MGDR and cumulative time-resolved patient (4D MGDR) dose at the end of delivery, where they ideally should be identical. Second, time-resolved (10 Hz sampling rate) ion chamber doses were compared to cumulative point dose vs time curves from 4D MGDR. Finally, accelerator output was varied to assess the linearity of the 4D MGDR with global fluence change. Across four TG-119 plans, the average PTV point dose difference in the cube between 3DVH and ion chamber is 0.1 ± 1.0%. Average film vs TPS γ-analysis passing rates are 83.0%, 91.1%, and 98.4% for 1%∕2 mm, 2%∕2 mm, and 3%∕3 mm threshold combinations, respectively, while average film vs 3DVH γ-analysis passing rates are 88.6%, 96.1%, and 99.5% for the same respective criteria. 4D MGDR was also sufficiently accurate. First, for 99.5% voxels in each case, the doses from 3D and 4D MGDR at the end of delivery agree within 0.5% local dose-error∕1 mm distance. Moreover, all failing voxels are confined to the edge of the cylindrical reconstruction volume. Second, dose vs time curves track between the ion chamber and 4D MGDR within 1%. Finally, 4D MGDR dose changes linearly with the accelerator output: the difference between cumulative ion chamber and MGDR dose changed by no more than 1% (randomly) with the output variation range of 10%. Even for a well-commissioned TPS, comparison metrics show better agreement on average to MGDR than to TPS on the arbitrary-shaped measurable "patient." The method requires no more accelerator time than standard QA, while producing more clinically relevant information. Validation in a heterogeneous thoracic phantom is under way, as is the ultimate application of 4D MGDR to virtual motion studies.
    Medical Physics 07/2012; 39(7):4228-38. · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Compensator-based IMRT coupled with the high dose rate flattening filter free (FFF) beams offers an intriguing possibility of delivering an intensity modulated radiation field in just a few seconds. As a first step, the authors evaluate the dosimetric accuracy of the treatment planning system (TPS) FFF beam model with compensators. A 6 MV FFF beam from a TrueBeam accelerator (Varian Medical Systems, Palo Alto CA) was modeled in PINNACLE TPS (v. 9.0, Philips Radiation Oncology, Fitchburg WI). Flat brass slabs from 0.3 to 7 cm thick and an 18° brass wedge were used to adjust the beam model. A 2D (MAPCHECK) and 3D (ARCCHECK) diode arrays (Sun Nuclear Corp, Melbourne FL), were investigated for use with the compensator FFF beams. Corrections for diode sensitivity caused by the spectral changes in the beam were introduced. Four compensator plans based on the AAPM TG-119 report were developed. A composite ion chamber measurement, beam by beam MAPCHECK measurements, and a composite ARCCHECK measurement were performed. The array results were analyzed with the same thresholds as in TG-119 report-3%/3 mm with global dose normalization-as well as with the more stringent combinations of the gamma analysis criteria. The FFF beam shows a greater variation of the effective attenuation coefficient with brass thickness due to the prevalence of the low energy photons compared to the conventional 6X beam. As a result, a compromise had to be made while trying to achieve dose agreement for a combination of field sizes, brass thicknesses, and measurement depths (≥5 cm in water). An agreement of measured and calculated dose to within 1% was observed for brass thicknesses up to 2 cm. For the 3 cm slab, an error of up to 2.8% was noted for the field sizes above 10 × 10 cm(2), and up to 3.8% for the 5 × 5 cm(2) field. Both diode arrays exhibit a substantial sensitivity drop as the compensator thickness increases, reaching 10% for a 7 cm brass slab. A simple correction based on the brass thickness along the ray was introduced to counteract this effect. Pooled for five profiles, the average ratio of uncorrected and corrected MAPCHECK to ion chamber readings are 0.966 and 1.008, respectively. With the proper correction, all MAPCHECK measurement to calculation comparisons exhibit 100% γ(3%/3 mm) passing rates with global dose-error normalization. For the TG-119-type plans, the average γ(2%/2 mm) passing rate with local normalization is 94% (range 87.8%-98.3%). The lower ARCCHECK γ-analysis passing rates (corrected for diode sensitivity) are predictable based on the observed PDD discrepancies. However, with the 3%/3 mm thresholds and global normalization, the average γ-analysis passing rate is 96.4% (range 89.9%-100%). MAPCHECK analysis demonstrates high passing rates with the stringent γ(2%/2 mm) and local normalization criteria combination. The geometry of the ARCCHECK array creates a stress test for the FFF TPS model because of the shallow depth of the entrance diodes and large air cavity. Hence, the ARCCHECK γ-analysis passing rates are lower than with the MAPCHECK, while still on par with TG-119.
    Medical Physics 01/2012; 39(1):342-52. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The goal of any dosimeter is to be as accurate as possible when measuring absolute dose to compare with calculated dose. This limits the uncertainties associated with the dosimeter itself and allows the task of dose QA to focus on detecting errors in the treatment planning (TPS) and/or delivery systems. This work introduces enhancements to the measurement accuracy of a 3D dosimeter comprised of a helical plane of diodes in a volumetric phantom. We describe the methods and derivations of new corrections that account for repetition rate dependence, intrinsic relative sensitivity per diode, field size dependence based on the dynamic field size determination, and positional correction. Required and described is an accurate "virtual inclinometer" algorithm. The system allows for calibrating the array directly against an ion chamber signal collected with high angular resolution. These enhancements are quantitatively validated using several strategies including ion chamber measurements taken using a "blank" plastic shell mimicking the actual phantom, and comparison to high resolution dose calculations for a variety of fields: static, simple arcs, and VMAT. A number of sophisticated treatment planning algorithms were benchmarked against ion chamber measurements for their ability to handle a large air cavity in the phantom. Each calibration correction is quantified and presented vs its independent variable(s). The virtual inclinometer is validated by direct comparison to the gantry angle vs time data from machine log files. The effects of the calibration are quantified and improvements are seen in the dose agreement with the ion chamber reference measurements and with the TPS calculations. These improved agreements are a result of removing prior limitations and assumptions in the calibration methodology. Average gamma analysis passing rates for VMAT plans based on the AAPM TG-119 report are 98.4 and 93.3% for the 3%/3 mm and 2%/2 mm dose-error/distance to agreement threshold criteria, respectively, with the global dose-error normalization. With the local dose-error normalization, the average passing rates are reduced to 94.6 and 85.7% for the 3%/3 mm and 2%/2 mm criteria, respectively. Some algorithms in the convolution/superposition family are not sufficiently accurate in predicting the exit dose in the presence of a 15 cm diameter air cavity. Introduction of the improved calibration methodology, enabled by a robust virtual inclinometer algorithm, improves the accuracy of the dosimeter's absolute dose measurements. With our treatment planning and delivery chain, gamma analysis passing rates for the VMAT plans based on the AAPM TG-119 report are expected to be above 91% and average at about 95% level for γ(3%/3 mm) with the local dose-error normalization. This stringent comparison methodology is more indicative of the true VMAT system commissioning accuracy compared to the often quoted dose-error normalization to a single high value.
    Medical Physics 09/2011; 38(9):5021-32. · 2.91 Impact Factor
  • Source
    Physics in Medicine and Biology 06/2011; 56(11):3445-6. · 2.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study is to evaluate the feasibility of using cone-beam CT system as a near real-time measurement device in dose estimation with normoxic polymer gel dosimetry (MAG). Each vial was filled with MAG gel and irradiated with uniform doses of 0–10 Gy to generate dose response curves. After irradiation, a cone-beam CT was used to perform the 3D dose measurement. In this study, two groups of gel samples were irradiated and measured in two ways for comparison: near real-time measurement, in which the gel phantom was read right after the irradiation, and delayed measurement, in which the measurement was performed 30 min, 4 h and 1 day after the irradiation for the gel phantom to be exposed to oxygen. All groups were also performed with and without a full bowtie filter to estimate the influence of a full bowtie filter to dose response. The linear dose response curves with and without a full bowtie filter for the four different CT imaging times were within a range 0.044–0.049ΔNCT cGy−1 and 0.061–0.063ΔNCT cGy−1, respectively, with no significant difference at different imaging times. Nevertheless, dose response curves with the full bowtie filter were higher than those without, with p-value <0.05 for all the different imaging times tested. Normoxic polymer gel dosimetry combined with cone-beam CT provides a useful method for near real-time dose measurement.
    Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 05/2011; 633. · 1.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To reduce positron emission tomography (PET) and computed tomography (CT) misalignments and standardized uptake value (SUV) errors, cine average CT (CACT) has been proposed to replace helical CT (HCT) for attenuation correction (AC). A new method using interpolated average CT (IACT) for AC is introduced to further reduce radiation dose with similar image quality. Six patients were recruited in this study. The end-inspiration and -expiration phases from cine CT were used as the two original phases. Deformable image registration was used to generate the interpolated phases. The IACT was calculated by averaging the original and interpolated phases. The PET images were then reconstructed with AC using CACT, HCT and IACT, respectively. Their misalignments were compared by visual assessment, mutual information, correlation coefficient and SUV. The doses from different CT maps were analyzed. The misalignments were reduced for CACT and IACT as compared to HCT. The maximum SUV difference between the use of IACT and CACT was ∼3%, and it was ∼20% between the use of HCT and CACT. The estimated dose for IACT was 0.38 mSv. The radiation dose using IACT could be reduced by 85% compared to the use of CACT. IACT is a good low-dose approximation of CACT for AC.
    Physics in Medicine and Biology 03/2011; 56(8):2559-67. · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In ITV-based 3D-planning, the information of volume occupancy versus respiratory phase is not utilized. We propose a motion-weighted CTV (mwCTV) delineation method, which carries some 4D-information into planning. This method allows plan optimization based on occupancy-weighting and generation of motion-weighted DVH (mwDVH) that approximate the DVHs of full 4D-dose accumulation. Occupancy information from contours in 4D-CT is incorporated in the mwCTV generation. Higher-occupancy volumes receive higher dosimetric priority in planning. The temporally-weighted mwCTV is converted to a spatially-weighted mwCTV incorporating the temporal-weighting in mwDVH generation using the 3D-dose distribution. The mwDVHs were compared with DVHs of deformable-image-registration (DIR)-based 4D-dose accumulation and 3D-method for 10 cases. For all the cases, the mwDVH curves are closer to the 4D-calculated DVH than the 3D-DVHs are, indicating a better approximation of the 4D-DVH. The 70 Gy-covered percentage-CTV volume differed by -2.8% ± 0.8% between 3D and 4D, and 0.3% ± 0.7% between mwDVH and 4D-methods. The mean RMS values of the percentage-volume differences for the 4D-3D is 1.7 ± 1.1, while for the 4D-mwDVH is 0.4 ± 0.3. The mwCTV and mwDVH method, which is simple in implementation and does not require DIR, is a practical approximation of DIR-based 4D-planning and evaluation.
    Radiotherapy and Oncology 03/2011; 99(1):67-72. · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Misregistration resulting from the difference of temporal resolution in PET and CT scans occur frequently in PET/CT imaging, which causes distortion in tumor quantification in PET. Respiration cine average CT (CACT) for PET attenuation correction has been reported to improve the misalignment effectively by several papers. However, the radiation dose to the patient from a four-dimensional CT scan is relatively high. In this study, we propose a method to interpolate respiratory CT images over a respiratory cycle from inhalation and exhalation breath-hold CT images, and use the average CT from the generated CT set for PET attenuation correction. The radiation dose to the patient is reduced using this method. Six cancer patients of various lesion sites underwent routine free-breath helical CT (HCT), respiration CACT, interpolated average CT (IACT), and 18F-FDG PET. Deformable image registration was used to interpolate the middle phases of a respiratory cycle based on the end-inspiration and end-expiration breath-hold CT scans. The average CT image was calculated from the eight interpolated CT image sets of middle respiratory phases and the two original inspiration and expiration CT images. Then the PET images were reconstructed by these three methods for attenuation correction using HCT, CACT, and IACT. Misalignment of PET image using either CACT or IACT for attenuation correction in PET/CT was improved. The difference in standard uptake value (SUV) from tumor in PET images was most significant between the use of HCT and CACT, while the least significant between the use of CACT and IACT. Besides the similar improvement in tumor quantification compared to the use of CACT, using IACT for PET attenuation correction reduces the radiation dose to the patient.
    Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 01/2011; 633. · 1.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cutaneous red blood cell velocity in vivo can be measured by using capillaroscopy with image processing techniques. However, unlike simulated blood flow images, there is no standard to determine the accuracy of the techniques for computing blood flow velocities. In this paper, we quantitatively evaluated the accuracy of previously proposed optical flow method for measuring red blood cell velocity in nail-fold capillaries. Blood flow images of subjects under normal and occlusion-release conditions were examined by a capillaroscope. To obtain velocity values, the images were further analyzed by using optical flow, cross-correlation and visual inspection methods, respectively. Visual inspection method was taken as the golden standard to determine the accuracy of blood flow velocity measurement using optical flow and cross-correlation techniques. Results showed that optical flow estimation provided superior accuracy to cross-correlation when assessing real blood flow velocity in nail-fold capillaries. Optical flow estimation is able to measure red blood cell velocity with a high accuracy of 91% and 86% when the observed velocity is less than 0.5mm/s under normal and occlusion-release conditions, respectively. In addition, optical flow method showed good agreement with visual inspection in determining blood flow velocity in both normal and occlusion-release conditions when the high-velocity zone is excluded.
    Microvascular Research 01/2011; 81(3):252-60. · 2.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We introduce a logical process of three distinct phases to begin the evaluation of a new 3D dosimetry array. The array under investigation is a hollow cylinder phantom with diode detectors fixed in a helical shell forming an "O" axial detector cross section (ArcCHECK), with comparisons drawn to a previously studied 3D array with diodes fixed in two crossing planes forming an "X" axial cross section (Delta⁴). Phase I testing of the ArcCHECK establishes: robust relative calibration (response equalization) of the individual detectors, minor field size dependency of response not present in a 2D predecessor, and uncorrected angular response dependence in the axial plane. Phase II testing reveals vast differences between the two devices when studying fixed-width full circle arcs. These differences are primarily due to arc discretization by the TPS that produces low passing rates for the peripheral detectors of the ArcCHECK, but high passing rates for the Delta⁴. Similar, although less pronounced, effects are seen for the test VMAT plans modeled after the AAPM TG119 report. The very different 3D detector locations of the two devices, along with the knock-on effect of different percent normalization strategies, prove that the analysis results from the devices are distinct and noninterchangeable; they are truly measuring different things. The value of what each device measures, namely their correlation with--or ability to predict--clinically relevant errors in calculation and/or delivery of dose is the subject of future Phase III work.
    Journal of Applied Clinical Medical Physics 01/2011; 12(2):3346. · 0.96 Impact Factor

Publication Stats

300 Citations
76.78 Total Impact Points

Institutions

  • 2008–2014
    • Moffitt Cancer Center
      • Department of Biostatistics
      Tampa, Florida, United States
  • 2012–2013
    • University of South Florida
      • Department of Physics
      Tampa, FL, United States
  • 2011
    • Taipei Veterans General Hospital
      • Nuclear Medicine Division
      T’ai-pei, Taipei, Taiwan
    • Sun Nuclear Corporation
      Melbourne, Florida, United States
  • 2010–2011
    • National Yang Ming University
      • Department of Biomedical Imaging and Radiological Sciences
      Taipei, Taipei, Taiwan
    • China Medical University (ROC)
      臺中市, Taiwan, Taiwan
    • China Medical University Hospital
      臺中市, Taiwan, Taiwan
  • 2009–2010
    • Chung Yuan Christian University
      臺中市, Taiwan, Taiwan
  • 2004–2005
    • University of Texas MD Anderson Cancer Center
      • Division of Radiation Oncology
      Houston, TX, United States