Angelo Vacca

Policlinico di Bari, Bari, Apulia, Italy

Are you Angelo Vacca?

Claim your profile

Publications (367)1308.27 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bcl-6 translocation is a genetic alteration that is commonly detected in Primary Central Nervous System Lymphoma. The role of this protein in cerebral tumors is unclear. In this study we investigated Bcl-6 translocation and its transcriptional and translational levels in formalin-fixed, paraffin-embedded cerebral tissue sections from Glioblastoma (GBM), low-grade glioma (Astrocytoma grade II and III), and meningioma patients, and correlated them with apoptotic processes and p53 and caspase-3 expression. The results showed a frequency of 36.6% of Bcl-6 translocation in GBM patients and a decreased expression in low-grade glioma patients, correlated with the severity of the disease. Bcl-6 translocation induced an overexpression of both Bcl-6 protein and messenger in GBM, inhibiting apoptotic processes and caspases 3 expression. On the contrary, in low-grade gliomas and meningiomas Bcl-6 expression was reduced, resulting in an increase of apoptotic processes. Finally, p53 expression levels in brain tumors were comparable to Bcl-6 levels. Overall, these data demonstrate, for the first time, that the Bcl-6 gene translocates in GBM patients and that its translocation and expression are correlated with apoptosis inhibition, indicating a key role for this gene in the control of cellular proliferation. This study offers further insights into Glioblastoma biology, and supports Bcl-6 as a new diagnostic marker to evaluate the disease severity.
    Cancer Letters. 10/2014; 353(1):41.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A 61-year old man with coeliac disease and chronic lack of appetite, malabsorption and weight loss, despite the gluten-free diet, was operated because of a sub-diaphragmatic free air due to a small-bowel pneumatosis cystoides intestinalis (PCI). The jejunum showed granulomatous lesions with a honeycombed appearance of air cysts in the submucosa/subserosa. We found overexpression of peptide YY (PYY) into only the jejunum with PCI, while the expression was very weak or absent in the tissue without cysts. One year after surgery, he had no abdominal pain or PCI recurrence. The above chronic symptoms were plausibly attributable to the PYY.
    Clinical and experimental medicine. 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conventional radiographic skeletal survey has been for many years the gold standard to detect the occurrence of osteolytic lesions in patients with multiple myeloma (MM). However, the introduction of more sensitive imaging procedures has resulted in an updated anatomic and functional Durie and Salmon "plus" staging system and has remarkably changed the diagnostic and prognostic approach to this tumor. It is now established that (18)fluorine-fluorodeoxyglucose ((18)F-FDG) positron-emission tomography (PET) combined with low-dose computed tomography (CT), shortly designated PET/CT, exhibits a higher screening and diagnostic sensitivity and specificity over the skeleton X-ray. In patients with monoclonal gammopathy of undetermined significance and in those with smoldering MM, PET/CT is consistently unable to detect focal and/or diffuse marrow abnormalities. Conversely, based on a systematic review of 18 studies comprising almost 800 MM patients, PET/CT was able to detect MM osteolytic lesions with a sensitivity of approximately 80-90 % and a specificity of 80-100 %. Importantly, a poor degree of concordance has also been emphasized between PET/CT and whole-body magnetic resonance imaging (WB-MRI) in that when both techniques were applied to the same patients, double-positive results were recorded in approximately 30 % of the cases, but in the majority of them, a higher number of lesions were revealed with PET/CT than with MRI. Double-negative results, on the other hand, were found in about 22 % of the patients. Because PET/CT is able to identify tumor foci throughout the body, it can be usefully applied to the study of solitary bone plasmacytoma and extra-medullary plasmacytoma: In both conditions, the detection of additional, previously overlooked sites of skeletal involvement would falsify the diagnosis of single-district disease, upstage the tumor, and therefore require a different therapeutic approach. In addition, although PET/CT is poorly sensitive to diffuse bone marrow infiltration, it can anticipate a site of impending fracture throughout the body and can discriminate old from new pathologic fractures. MRI should, however, be preferred when vertebral bodies are suspected to be involved and the risk of vertebral fracture is to be assessed. PET/CT is a sensitive and reliable procedure to evaluate the response to chemotherapy and/or radiotherapy, which is shown by a remarkable reduction and sometimes total disappearance of FDG accumulation in the involved bony structures, although these structures remain morphologically abnormal. Conversely, an increased focal uptake of FDG in apparent remission patients often precedes clinically overt relapse. PET/CT should be preferred to other imaging techniques to assess the remission status after autologous stem cell transplantation. In patients with primary and remission-induced non-secretory MM, the use of PET/CT may help to early detect single or multiple districts of focal non-secretory relapse. Osteonecrosis of the jaw, its location, and extent in MM patients receiving bis-phosphonates are better defined by both PET/CT and contrast-enhanced MRI compared with dental panoramic views derived from cone beam CT imaging. Little is known as to the possible role of PET/CT in the assessment of disease extension, tumor load, and response to therapy in patients with Waldenström's macroglobulinemia (WM). In a study conducted on 35 WM patients, comparative PET/CT before and after therapy was able to detect positive findings in 83 % of the patients, in contrast with the previous results achieved with conventional imaging that reported visceral involvement in much lower percentages. Similarly scanty are the data on the use of PET/CT in localized and systemic amyloidosis, given the small number of patients studied so far. A retrospective study has shown that, at variance from (123)Iodine-serum amyloid P component ((123)I-SAP) scintigraphy, which was found to be positive in about one-third of the patients with localized amyloidosis, an increased FDG uptake was detected at the amyloid site in virtually all of them. On the contrary, none of the patients with systemic amyloidosis showed an increased FDG uptake in sites of known deposition, whereas (123)I-SAP scintigraphy tested positive in the large majority of them. In another study, however, no such remarkable difference of positive PET/CT scans between localized and systemic amyloidosis was reported. Finally, false-positive and false-negative PET/CT findings can occur in different conditions that should be kept in mind to avoid wrong or omitted diagnoses.
    Clinical and experimental medicine. 09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To investigate the angiogenic role of the HGF/cMET pathway and its inhibition in bone marrow (BM) endothelial cells (ECs) from patients with multiple myeloma (MM) vs those with monoclonal gammopathy of undetermined significance (MGUS) or benign anemia (controls). Experimental Design: The HGF/cMET pathway was evaluated in ECs from MM patients (MMECs) at diagnosis, at relapse after bortezomib- or lenalidomide-based therapies or on refractory phase to these drugs, in ECs from patients with MGUS (MGECs), and in those from controls. The effects of a selective cMET tyrosine kinase inhibitor (SU11274) on the MMECs angiogenic activities were studied in vitro and in vivo. Results: MMECs express more HGF, cMET, and activated cMET (phospho (p)-cMET) at both RNA and protein level vs MGECs and control ECs. MMECs are able to maintain the HGF/cMET pathway activation in absence of external stimulation, while treatment with anti-HGF and anti-cMET neutralizing antibodies (Abs) is able to inhibit the cMET activation. The cMET pathway regulates several MMECs activities including chemotaxis, motility, adhesion, spreading, and whole angiogenesis. Its inhibition by SU11274 impairs these activities in a statistically significant fashion when combined with bortezomib or lenalidomide, both in vitro and in vivo. Conclusions: An autocrine HGF/cMET loop sustains MM angiogenesis, and represents an appealing new target to potentiate the antiangiogenic management of MM patients.
    Clinical cancer research : an official journal of the American Association for Cancer Research. 09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumour pathogenesis in multiple myeloma (MM) correlates with a high vascular index. Therefore, targeting angiogenesis is an important therapeutic tool to reduce MM progression. This study aimed to investigate the role of invariant natural killer T (iNKT) cells in angiogenesis and the mechanisms behind the stimulation by α-Galactosylceramide (α-GalCer). We have previously found that α-GalCer could increase the survival of 5T33MM mice and here we demonstrate that α-GalCer reduces the microvessel density. We performed both in vivo and in vitro angiogenic assays to confirm this observation. We found that conditioned medium of α-GalCer stimulated iNKT cells reduced neovascularization in the chick chorioallantoic membrane and in matrigel plug assays. Moreover, we observed a reduction in proliferation, migration and network formation and an induction of apoptosis upon exposure of murine endothelial cell lines to this conditioned medium. We furthermore observed that the JAK-STAT signaling pathway was highly activated in endothelial cells in response to stimulated iNKT cells, indicating the possible role of IFN-γ in the anti-angiogenic process. In conclusion, these results highlight the possibility of recruiting iNKT cells to target MM and angiogenesis. This gives a rationale for combining immunotherapy with conventional anti-tumour treatments in view of increasing their therapeutic potential.
    British Journal of Haematology 08/2014; · 4.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer associated fibroblasts (CAFs) comprise a heterogeneous population that resides within the tumor microenvironment. They actively participate in tumor growth and metastasis by production of cytokines and chemokines, and the release of pro-inflammatory and pro-angiogenic factors, creating a more supportive microenvironment. The aim of the current review is to summarize the origin and characteristics of CAFs, and to describe the role of CAFs in tumor progression and metastasis. Furthermore, we focus on the presence of CAFs in hypoxic conditions in relation to multiple myeloma disease.
    Cancers. 06/2014; 6(3):1363-1381.
  • Roberto Ria, Antonia Reale, Angelo Vacca
    [Show abstract] [Hide abstract]
    ABSTRACT: This review summarizes the therapeutic strategies and the drugs actually in development for the management of myeloma patients. Multiple myeloma is caused by the expansion of monoclonal plasma cells and secretion of M-protein (immunoglobulins, Bence Jones protein and free light chains). Multiple myeloma still remains an incurable disease with a high incidence rate in the elderly, despite the introduction of several new therapeutic agents (bortezomib, lenalidomide and thalidomide) which have changed its natural history. The high heterogeneity of this disease leads to large differences in clinical responses to treatments. Thus, the choice of the best treatment is a difficult issue. However, the introduction of new drugs has made it possible to achieve high response rates and good quality responses with long-term disease control. Interactions between tumor cells and their bone marrow microenvironment play a pivotal role in the development, maintenance, and progression of myeloma, inducing also drug resistance. These knowledges have improved treatment options, leading to the approval of new drugs which not only target the malignant cell itself, but also its microenvironment. These agents are in preclinical/early clinical evaluation and they appear to further improve disease control, but their use is still not approved outside of clinical trials.
    World journal of methodology. 06/2014; 4(2):73-90.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Primary tumors of the inferior vena cava are rare, with leiomyosarcoma representing the vast majority.
    Phlebology / Venous Forum of the Royal Society of Medicine. 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In patients with multiple myeloma (MM), the bone marrow (BM) contains hematopoietic stem cells (HSCs) and non-hematopoietic cells. HSCs are able to give rise to all types of mature blood cells, while the non hematopoietic component includes mesenchymal stem cells (MSCs), fibroblasts, osteoblasts, osteoclasts, chondroclasts, endothelial cells, endothelial progenitor cells (EPCs), B and T lymphocytes, NK cells, erythrocytes, megakaryocytes, platelets, macrophages and mast cells. All of these cells form specialized "niches" in the BM microenvironment which are close to the vasculature ("vascular niche") or to the endosteum ("osteoblast niche"). The "vascular niche" is rich in blood vessels where endothelial cells and mural cells (pericytes and smooth muscle cells) create a microenvironment that affects the behavior of several stem and progenitor cells. The vessel wall serves as an independent niche for the recruitment of endothelial progenitor cells, MSCs and HSCs. The activation by angiogenic factors and inflammatory cytokines switch the "vascular niche" to promote MM tumor growth and spread. This review will focus on the mechanisms involved in the generation of signals released by endothelial cells in the "vascular niche" that promote tumor growth and spread in MM. © 2014 Elsevier Ltd. All rights reserved.
    Thrombosis Research 05/2014; 133 Suppl 2:S102-6. · 3.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Modulation of dendritic cell (DC) function has been theorized as one of the mechanisms used by hepatitis C virus (HCV) to evade the host immune response and cause persistent infection. We used a range of cell and molecular biology techniques to study DC subsets from uninfected and HCV-infected individuals. We found that patients with persistent HCV infection have lower numbers of circulating myeloid DC and plasmacytoid DC than do healthy controls or patients who spontaneously recovered from HCV infection. Nonetheless, DC from patients with persistent HCV infection display normal phagocytic activity, typical expression of the class I and II HLA and co-stimulatory molecules, and conventional cytokine production when stimulated to mature in vitro. In contrast, they do not display the strong switch from immunoproteasome to standard proteasome subunit expression and the upregulation of the transporter-associated proteins following stimulation, which were instead observed in DC from uninfected individuals. This different modulation of components of the HLA class I antigen processing-presenting machinery results in a differential ability to present a CD8(+) T cell epitope whose generation is dependent on the LMP7 immunoproteasome subunit. Overall, these findings establish that under conditions of persistent HCV antigenemia, HLA class I antigen processing and presentation are distinctively regulated during DC maturation.
    Journal of Hepatology 04/2014; · 9.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with lymphoproliferative disorders, candidate to autologous stem cell transplantation (ASCT), require mobilization with chemotherapy and granulocyte colony -stimulating factor (G-CSF). This study looked for differences in hematopoietic peripheral stem cells (HPSCs) mobilization in response to the three available G-CSFs, namely lenograstim, filgrastim, and pegfilgrastim. Between 2000 and 2012, 146 patients (66 M and 80 F) who underwent ASCT for multiple myeloma, non-Hodgkin's lymphoma or Hodgkin's lymphoma were studied. All patients received induction therapy and then a mobilization regimen with cyclophosphamide plus lenograstim, or filgrastim, or pegfilgrastim. From days 12 to 14, HPSCs were collected by two to three daily leukaphereses. Our results show that high-dose cyclophosphamide plus lenograstim achieved adequate mobilization and the collection target more quickly and with fewer leukaphereses as compared to filgrastim and pegfilgrastim. No differences between the three regimens were observed regarding toxicity and days to WBC and platelet recovery. Thus, lenograstim may represent the ideal G-CSF for PBSC mobilization in patients with lymphoproliferative diseases. Further studies are needed to confirm these results and better understand the biological bases of these differences.
    Clinical and Experimental Medicine 04/2014; · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor-associated neovasculature is a critical therapeutic target; however, despite significant progress made in the clinical efficacy of anti-vessel drugs, the effect of these agents remains transient: over time, most patients develop resistance, which inevitably leads to tumor progression. To develop more effective treatments, it is imperative that we better understand mechanisms involved in tumor vessel formation, how they participate to the tumor progression and metastasis, and the best way to target them. Several mechanisms contribute to the formation of tumor associated vasculature: i) neoangiogenesis; ii) vascular co-option; iii) mosaicism; iv) vasculogenic mimicry, and iv) postnatal vasculogenesis. These mechanisms can also play a role in the development of resistance to antiangiogenic drugs, and could serve as targets for designing new anti-vascular molecules to treat solid as well as hematological malignancies. Bone marrow-derived endothelial progenitor cell (EPC)-mediated vasculogenesis represents an important new target, especially at the early stage of tumor growth (when EPCs are critical for promoting the "angiogenic switch"), and during metastasis, when EPCs promote the transition from micro- to macro-metastases. In hematologic malignancies, the EPC population could be related to the neoplastic clone, and both may share a common ontogeny. Thus, characterization of tumor-associated EPCs in blood cancers may provide clues for more specific anti-vascular therapy that has both direct and indirect antitumor effects. Here, we review the role of vasculogenesis, mediated by bone marrow-derived EPCs, in the progression of cancer, with a particular focus on the role of these cells in promoting progression of hematological malignancies.
    Biochimica et Biophysica Acta 04/2014; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian target of rapamycin (mTOR) plays an important role in the regulation of protein translation, cell growth and metabolism. The mTOR protein forms two distinct multi-subunit complexes: mTORC1 and mTORC2. The mTORC1 complex is activated by diverse stimuli, such as growth factors, nutrients, energy and stress signals; and essential signaling pathways, such as PI3K and MAPK, in order to control cell growth, proliferation and survival. mTORC1 also activates S6K1 and 4EBP1, which are involved in mRNA translation. The mTORC2 complex is resistant to rapamycin inhibitory activity and is generally insensitive to nutrient- and energy- dependent signals. It activates PKC-α and AKT and regulates the actin cytoskeleton. Deregulation of the mTOR signaling pathway (PI3K amplification/mutation, PTEN loss of function, AKT overexpression, and S6K1, 4EBP1 and eIF4E overexpression) is common in cancer, and alterations in components of the mTOR pathway have a major role in tumour progression. Therefore, mTOR is an appealing therapeutic target in many tumours. Here we summarize the upstream regulators and downstream effectors of the mTORC1 and mTORC2 pathways, the role of mTOR in cancer, and the potential therapeutic values and issues related to the novel agents targeting the mTOR-signaling pathway.
    British Journal of Pharmacology 04/2014; · 5.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Component Resolved Diagnostic (CRD) approach has been developed when highly purified or recombinant allergen molecules have become available. These molecules are the allergenic proteins toward which the specific and clinically relevant IgE immune response is directed. So, the identification of protein families and cross-reactivity patterns of importance in allergy have been possible. The Italian advisory BOARD for ISAC was born: to evaluate the advantages, disadvantages and placement in diagnosis of CRD studying its application in allergic patients; to facilitate the interpretation of molecular diagnostics for clinical allergists; to evaluate the effectiveness of CRD in improving diagnostic risk assessment and early preventive treatment of allergic diseases. In the last years, its fields of interest have been: the evaluation of the performance of CRD on multi-sensitized allergic patients with respiratory symptoms and on poly-sensitized athletes; the evolution of IgE repertoire directed to single allergenic components by evaluating allergic patients with different age at a molecular level; the relevance of results obtained using allergen microarray technique for describing the IgE repertoire in allergic patients by reviewing the main articles focused on CRD published in the last 2 years; the need for an educational program focused on this new diagnostic tool also through the creation of an exhaustive and interactive explanation of the laboratory report molecular allergy; the investigation of the performance and potential additional diagnostic values of the ISAC microarray in a real-life clinical setting, taking into account also the economic values.
    European annals of allergy and clinical immunology 03/2014; 46(2):68-73.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Primary Sjögren's syndrome (pSS) is a chronic autoimmune exocrine disease associated with variable lymphocytic infiltration of the affected organs (primarily salivary and lachrymal glands). To investigate the potential implication of nerve growth factor-β (NGF-β) and its high affinity receptor tyrosine kinase receptor A (TrkA) in the regulation of pSS inflammatory responses, we studied their expression in the human salivary gland epithelial cells (SGEC) cultures from pSS minor salivary glands (MSG) biopsies and their relationship with histopathological disease parameters. Here, we demonstrated an increased expression of the NGF-β/TrkA system in pSS SGEC, correlated with the MSG inflammation grade. The results demonstrate that the pro-inflammatory cytokines TNF-α and IL-6 enhance NGF-β production; on the contrary, NGF-β production was reduced in the presence of both Raf-1 kinase and MEK inhibitors. Furthermore, TNF-α/IL-6 treatment increased ERK1/2 phosphorylation. Inhibition of the EGF/EGFR system also decreased NGF-β release by pSS SGEC, indicating that the chronic inflammatory condition characteristic of pSS enhances NGF-β production via EGFR/Raf-1/MEK/ERK pathway activation. NGF-β and TrkA expression is elevated in salivary gland epithelial cells of primary Sjögren's syndrome (pSS). Overexpression of NGF-β/TrkA system in pSS occurs via EGFR/Raf-1/MEK/ERK pathway. In pSS, NGF-β overexpression was prevented by EGFR/Raf-1/MEK/ERK pathway inhibition.
    Journal of Molecular Medicine 02/2014; · 4.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor-associated neovasculature is a critical therapeutic target; however, despite significant progress made in the clinical efficacy of anti-vessel drugs, the effect of these agents remains transient: over time, most patients develop resistance, which inevitably leads to tumor progression. To develop more effective treatments, it is imperative that we better understand mechanisms involved in tumor vessel formation, how they participate to the tumor progression and metastasis, and the best way to target them. Several mechanisms contribute to the formation of tumor associated vasculature: i) neoangiogenesis; ii) vascular co-option; iii) mosaicism; iv) vasculogenic mimicry, and iv) postnatal vasculogenesis. These mechanisms can also play a role in the development of resistance to antiangiogenic drugs, and could serve as targets for designing new anti-vascular molecules to treat solid as well as hematological malignancies. Bone marrow-derived endothelial progenitor cell (EPC)-mediated vasculogenesis represents an important new target, especially at the early stage of tumor growth (when EPCs are critical for promoting the “angiogenic switch”), and during metastasis, when EPCs promote the transition from micro- to macro-metastases. In hematologic malignancies, the EPC population could be related to the neoplastic clone, and both may share a common ontogeny. Thus, characterization of tumor-associated EPCs in blood cancers may provide clues for more specific anti-vascular therapy that has both direct and indirect antitumor effects. Here, we review the role of vasculogenesis, mediated by bone marrow-derived EPCs, in the progression of cancer, with a particular focus on the role of these cells in promoting progression of hematological malignancies.
    Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 01/2014; · 9.03 Impact Factor
  • Domenico Ribatti, Angelo Vacca
    [Show abstract] [Hide abstract]
    ABSTRACT: Both innate and adaptive immune cells are involved in the mechanisms of endothelial cell proliferation, migration and activation, via production and release of a large spectrum of pro-angiogenic mediators, thus creating the specific microenvironment that favors increased rate of tissue vascularization. In this article, we focus on the immune cell component of the angiogenic process occurring during multiple myeloma progression. We also provide information on some anti-angiogenic properties of immune cells that may be applied for a potential pharmacological use as anti-angiogenic agents in the disease treatment.
    Advances in experimental medicine and biology 01/2014; 816:361-76. · 1.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angiogenesis is a constant hallmark of multiple myeloma progression and has prognostic potential. Multiple myeloma cells interact with surrounding host cells and extracellular matrix, this crosstalk affecting the most important aspects of the malignant phenotype, both at primary and secondary tumor sites. The pathophysiology of multiple myeloma-induced angiogenesis involves both direct production of angiogenic cytokines by plasma cells and their induction within the bone marrow microenvironment cells. A direct involvement of bone marrow macrophages and mast cells in vasculogenic mimicry has been demonstrated, thus contributing together with circulating endothelial cells and endothelial precursor cells to the multiple myeloma neovascularization. The role of host cells or the niche microenvironment and extracellular matrix represents an intense area of research, finalized at a better understanding of the pathophysiological modifications of the complete tumor entity, i.e. malignant cells and microenvironment.
    Progress in allergy 01/2014; 99:180-96.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to identify the main features of a cohort of Caucasian patients with idiopathic (I) and systemic disease-associated (SDA) autoimmune uveitis (AU) who were followed up at a single tertiary reference center. The study consisted of a retrospective analysis of the demographic, clinical, and laboratory features and the response to treatment of 104 patients with AU evaluated between 2004 and 2013, with a median follow-up of 4.8 years. The primary outcome measure was the response to systemic treatment after 24 months of therapy. The data are expressed as the range, percentage, or mean ± standard error. Categorical variables were assessed by Fisher's exact test.
    Journal of ophthalmic inflammation and infection. 01/2014; 4:17.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone marrow contains hematopoietic stem cells (HSCs) and non hematopoietic cells. HSCs are able to give rise to all types of mature blood cells, while the non hematopoietic component includes osteoblasts/osteoclasts, endothelial cells, endothelial progenitor cells and mesenchymal stem cells. All of these cells form specialized "niches" which are close to the vasculature ("vascular niche") or to the endosteum ("osteoblast niche"). The "vascular niche" is rich in blood vessels where endothelial cells and mural cells (pericytes and smooth muscle cells) create a microenvironment that affects the behavior of several stem and progenitor cells. The vessel wall serves as an independent niche for the recruitment of endothelial progenitor cells, mesenchymal stem cells and HSCs. The activation by angiogenic factors and inflammatory cytokines switch of the "vascular niche" promote tumor growth. This review article will focus on the description of the mechanisms involved in the generation of signals released by endothelial cells in the "vascular niche" that promote tumor growth in multiple myeloma.
    Frontiers in Bioscience 01/2014; 19:304-11. · 3.29 Impact Factor

Publication Stats

8k Citations
1,308.27 Total Impact Points

Institutions

  • 2003–2014
    • Policlinico di Bari
      • Department of Allergy and Clinical Immunology
      Bari, Apulia, Italy
  • 1985–2014
    • Università degli Studi di Bari Aldo Moro
      • • Dipartimento di Scienze Biomediche ed Oncologia Umana (DIMO)
      • • Department of Chemistry
      Bari, Apulia, Italy
  • 2013
    • Azienda Ospedaliera Universitaria San Martino di Genova
      Genova, Liguria, Italy
  • 2011–2012
    • Università degli Studi di Perugia
      • Department of Clinical and Experimental Medicine
      Perugia, Umbria, Italy
  • 2005–2011
    • Ospedali Vito Fazzi
      Lecce, Apulia, Italy
  • 2002–2009
    • Azienda Ospedaliera Pugliese Ciaccio
      • Department of Oncology and Hematology
      Catanzaro, Calabria, Italy
  • 2006–2008
    • Università degli studi di Foggia
      • Department of Medical and Surgical Sciences
      Foggia, Apulia, Italy
  • 2004–2008
    • The Human Anatomy and Physiology Society
      Italy, Texas, United States
  • 2005–2006
    • CRO Centro di Riferimento Oncologico di Aviano
      • Division of Experimental and Clinical Pharmacology
      Aviano, Friuli Venezia Giulia, Italy
  • 2003–2004
    • University of Udine
      • Department of Medical and Biological Sciences
      Udine, Friuli Venezia Giulia, Italy
  • 1996–2002
    • Università degli Studi di Brescia
      • Department of Clinical and Experimental Sciences
      Brescia, Lombardy, Italy
  • 2000
    • Istituto Ortopedico Rizzoli
      • Laboratory of Experimental Oncology
      Bolonia, Emilia-Romagna, Italy