Frank Niessen

The Scripps Research Institute, La Jolla, CA, United States

Are you Frank Niessen?

Claim your profile

Publications (8)85.31 Total impact

  • Source
  • Source
    W Ruf, C Furlan-Freguia, F Niessen
    [Show abstract] [Hide abstract]
    ABSTRACT: The intrinsic signaling networks of the coagulation pathways have recently emerged as crucial determinants for survival in sepsis and systemic inflammatory response syndromes. Protease activated receptor (PAR) 1 is central to both lethality promoting and vascular protective signaling. In the vascular anticoagulant pathway, EPCR/aPC-PAR1 signaling prevents vascular leakage and genetic or acute deficiencies in this pathway promote lethality. In addition, coagulation signaling acts directly on cells of the innate immune system. Dendritic cell (DC) thrombin-PAR1 signaling is coupled to the migration promoting sphingosine 1 phosphate receptor 3 (S1P3). Thrombin generated in the lymphatic compartment perturbs DCs to promote systemic inflammation and disseminated intravascular coagulation in severe sepsis. Signaling-selective aPC variants and selective modulators of the S1P receptor system attenuate sepsis lethality, suggesting novel therapeutic approaches that can be employed to rebalance alterations in the coagulation signaling pathways in severe inflammatory disorders.
    Journal of Thrombosis and Haemostasis 08/2009; 7 Suppl 1:118-21. · 6.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteinases contribute to the pathogenesis of various lung diseases, partly through activating cell surface receptors by limited proteolytic cleavage. The authors provide evidence that in primary cultures of distal lung epithelia, basolateral protease-activated receptor 1 activation rapidly reduces transepithelial resistance but does not alter paracellular permeability to small uncharged solutes. Changes in transepithelial resistance were partially blocked by ion transport inhibitors and were completely blocked by placing cells in low chloride buffer. In vivo studies did not reveal enhanced lung permeability in response to pulmonary or intravenous administration of protease-activated receptor 1 activators. This information is relevant as strategies to inhibit protease-activated receptor 1 signaling are considered in order to preserve lung epithelial barrier function.
    Experimental Lung Research 04/2009; 35(2):136-54. · 1.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For more than 2 centuries active immunotherapy has been at the forefront of efforts to prevent infectious disease [Waldmann TA (2003) Nat Med 9:269-277]. However, the decreased ability of the immune system to mount a robust immune response to self-antigens has made it more difficult to generate therapeutic vaccines against cancer or chronic degenerative diseases. Recently, we showed that the site-specific incorporation of an immunogenic unnatural amino acid into an autologous protein offers a simple and effective approach to overcome self-tolerance. Here, we characterize the nature and durability of the polyclonal IgG antibody response and begin to establish the generality of p-nitrophenylalanine (pNO(2)Phe)-induced loss of self-tolerance. Mutation of several surface residues of murine tumor necrosis factor-alpha (mTNF-alpha) independently to pNO(2)Phe leads to a T cell-dependent polyclonal and sustainable anti-mTNF-alpha IgG autoantibody response that lasts for at least 40 weeks. The antibodies bind multiple epitopes on mTNF-alpha and protect mice from severe endotoxemia induced by lipopolysaccharide (LPS) challenge. Immunization of mice with a pNO(2)Phe(43) mutant of murine retinol-binding protein (RBP4) also elicited a high titer IgG antibody response, which was cross-reactive with wild-type mRBP4. These findings suggest that this may be a relatively general approach to generate effective immunotherapeutics against cancer-associated or other weakly immunogenic antigens.
    Proceedings of the National Academy of Sciences 03/2009; 106(11):4337-42. · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protease activated receptor 1 (PAR1) signaling can play opposing roles in sepsis, either promoting dendritic cell (DC)-dependent coagulation and inflammation or reducing sepsis lethality due to activated protein C (aPC) therapy. To further define this PAR1 paradox, we focused on the vascular effects of PAR1 signaling. Pharmacological perturbations of the intravascular coagulant balance were combined with genetic mouse models to dissect the roles of endogenously generated thrombin and aPC during escalating systemic inflammation. Acute blockade of the aPC pathway with a potent inhibitory antibody revealed that thrombin-PAR1 signaling increases inflammation-induced vascular hyperpermeability. Conversely, aPC-PAR1 signaling and the endothelial cell PC receptor (EPCR) prevented vascular leakage, and pharmacologic or genetic blockade of this pathway sensitized mice to LPS-induced lethality. Signaling-selective aPC variants rescued mice with defective PC activation from vascular leakage and lethality. Defects in the aPC pathway were fully compensated by sphingosine 1 phosphate receptor 3 (S1P3) deficiency or by selective agonists of the S1P receptor 1 (S1P1), indicating that PAR1 signaling contributes to setting the tone for the vascular S1P1/S1P3 balance. Thus, the activating proteases and selectivity in coupling to S1P receptor subtypes determine vascular PAR1 signaling specificity in systemic inflammatory response syndromes in vivo.
    Blood 02/2009; 113(12):2859-66. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to selectively induce a strong immune response against self-proteins, or increase the immunogenicity of specific epitopes in foreign antigens, would have a significant impact on the production of vaccines for cancer, protein-misfolding diseases, and infectious diseases. Here, we show that site-specific incorporation of an immunogenic unnatural amino acid into a protein of interest produces high-titer antibodies that cross-react with WT protein. Specifically, mutation of a single tyrosine residue (Tyr(86)) of murine tumor necrosis factor-alpha (mTNF-alpha) to p-nitrophenylalanine (pNO(2)Phe) induced a high-titer antibody response in mice, whereas no significant antibody response was observed for a Tyr(86) --> Phe mutant. The antibodies generated against the pNO(2)Phe are highly cross-reactive with native mTNF-alpha and protect mice against lipopolysaccharide (LPS)-induced death. This approach may provide a general method for inducing an antibody response to specific epitopes of self- and foreign antigens that lead to a neutralizing immune response.
    Proceedings of the National Academy of Sciences 08/2008; 105(32):11276-80. · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Defining critical points of modulation across heterogeneous clinical syndromes may provide insight into new therapeutic approaches. Coagulation initiated by the cytokine-receptor family member known as tissue factor is a hallmark of systemic inflammatory response syndromes in bacterial sepsis and viral haemorrhagic fevers, and anticoagulants can be effective in severe sepsis with disseminated intravascular coagulation. The precise mechanism coupling coagulation and inflammation remains unresolved. Here we show that protease-activated receptor 1 (PAR1) signalling sustains a lethal inflammatory response that can be interrupted by inhibition of either thrombin or PAR1 signalling. The sphingosine 1-phosphate (S1P) axis is a downstream component of PAR1 signalling, and by combining chemical and genetic probes for S1P receptor 3 (S1P3) we show a critical role for dendritic cell PAR1-S1P3 cross-talk in regulating amplification of inflammation in sepsis syndrome. Conversely, dendritic cells sustain escalated systemic coagulation and are the primary hub at which coagulation and inflammation intersect within the lymphatic compartment. Loss of dendritic cell PAR1-S1P3 signalling sequesters dendritic cells and inflammation into draining lymph nodes, and attenuates dissemination of interleukin-1beta to the lungs. Thus, activation of dendritic cells by coagulation in the lymphatics emerges as a previously unknown mechanism that promotes systemic inflammation and lethality in decompensated innate immune responses.
    Nature 05/2008; 452(7187):654-8. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue factor (TF) is the primary initiator of coagulation, and the TF pathway mediates signaling through protease-activated receptors (PARs). In sepsis, TF is up-regulated as part of the proinflammatory response in lipopolysaccharide (LPS)-stimulated monocytes leading to systemic coagulation activation. Here we demonstrate that TF cytoplasmic domain-deleted (TF(Delta CT)) mice show enhanced and prolonged systemic coagulation activation relative to wild-type upon LPS challenge. However, TF(Delta CT) mice resolve inflammation earlier and are protected from lethality independent of changes in coagulation. Macrophages from LPS-challenged TF(Delta CT) mice or LPS-stimulated, in vitro-differentiated bone marrow-derived macrophages show increased TF mRNA and functional activity relative to wild-type, identifying up-regulation of macrophage TF expression as a possible cause for the increase in coagulation of TF(Delta CT) mice. Increased TF expression of TF(Delta CT) macrophages does not require PAR2 and is specific for toll-like receptor, but not interferon gamma receptor, signaling. The presence of the TF cytoplasmic domain suppresses ERK1/2 phosphorylation that is reversed by p38 inhibition leading to enhanced TF expression specifically in wild-type but not TF(Delta CT) mice. The present study demonstrates a new role of the TF cytoplasmic domain in an autoregulatory pathway that controls LPS-induced TF expression in macrophages and procoagulant responses in endotoxemia.
    Blood 07/2007; 109(12):5251-9. · 9.78 Impact Factor

Publication Stats

256 Citations
85.31 Total Impact Points

Institutions

  • 2007–2009
    • The Scripps Research Institute
      • Department of Immunology and Microbial Science
      La Jolla, CA, United States
    • The Rockefeller University
      New York City, New York, United States