Sachiyo Funamoto

The University of Hong Kong, Hong Kong, Hong Kong

Are you Sachiyo Funamoto?

Claim your profile

Publications (24)71.19 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: A marked increase in leukemia risks was the first and most striking late effect of radiation exposure seen among the Hiroshima and Nagasaki atomic bomb survivors. This article presents the analyses of radiation effects on leukemia, lymphoma and multiple myeloma incidence in the Life Span Study cohort of atomic bomb survivors updated 14 years since the last comprehensive report on these malignancies. These analyses make use of tumor- and leukemia-registry based incidence data on 113,011 cohort members with 3.6 million person-years of follow-up from late 1950 through the end of 2001. In addition to a detailed analysis of the excess risk for all leukemias other than chronic lymphocytic leukemia or adult T-cell leukemia (neither of which appear to be radiation-related), we present results for the major hematopoietic malignancy types: acute lymphoblastic leukemia, chronic lymphocytic leukemia, acute myeloid leukemia, chronic myeloid leukemia, adult T-cell leukemia, Hodgkin and non-Hodgkin lymphoma and multiple myeloma. Poisson regression methods were used to characterize the shape of the radiation dose-response relationship and, to the extent the data allowed, to investigate variation in the excess risks with gender, attained age, exposure age and time since exposure. In contrast to the previous report that focused on describing excess absolute rates, we considered both excess absolute rate (EAR) and excess relative risk (ERR) models and found that ERR models can often provide equivalent and sometimes more parsimonious descriptions of the excess risk than EAR models. The leukemia results indicated that there was a nonlinear dose response for leukemias other than chronic lymphocytic leukemia or adult T-cell leukemia, which varied markedly with time and age at exposure, with much of the evidence for this nonlinearity arising from the acute myeloid leukemia risks. Although the leukemia excess risks generally declined with attained age or time since exposure, there was evidence that the radiation-associated excess leukemia risks, especially for acute myeloid leukemia, had persisted throughout the follow-up period out to 55 years after the bombings. As in earlier analyses, there was a weak suggestion of a radiation dose response for non-Hodgkin lymphoma among men, with no indication of such an effect among women. There was no evidence of radiation-associated excess risks for either Hodgkin lymphoma or multiple myeloma.
    Radiation Research 02/2013; · 2.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Very high levels of ionizing radiation exposure have been associated with the development of soft-tissue sarcoma. The effects of lower levels of ionizing radiation on sarcoma development are unknown. This study addressed the role of low to moderately high levels of ionizing radiation exposure in the development of soft-tissue sarcoma. Based on the Life Span Study cohort of Japanese atomic-bomb survivors, 80,180 individuals were prospectively assessed for the development of primary soft-tissue sarcoma. Colon dose in gray (Gy), the excess relative risk, and the excess absolute rate per Gy absorbed ionizing radiation dose were assessed. Subject demographic, age-specific, and survival parameters were evaluated. One hundred and four soft-tissue sarcomas were identified (mean colon dose = 0.18 Gy), associated with a 39% five-year survival rate. Mean ages at the time of the bombings and sarcoma diagnosis were 26.8 and 63.6 years, respectively. A linear dose-response model with an excess relative risk of 1.01 per Gy (95% confidence interval [CI]: 0.13 to 2.46; p = 0.019) and an excess absolute risk per Gy of 4.3 per 100,000 persons per year (95% CI: 1.1 to 8.9; p = 0.001) were noted in the development of soft-tissue sarcoma. This is one of the largest and longest studies (fifty-six years from the time of exposure to the time of follow-up) to assess ionizing radiation effects on the development of soft-tissue sarcoma. This is the first study to suggest that lower levels of ionizing radiation may be associated with the development of soft-tissue sarcoma, with exposure of 1 Gy doubling the risk of soft-tissue sarcoma development (linear dose-response). The five-year survival rate of patients with soft-tissue sarcoma in this population was much lower than that reported elsewhere. Prognostic Level I. See Instructions for Authors for a complete description of levels of evidence.
    The Journal of Bone and Joint Surgery 02/2013; 95(3):222-9. · 3.23 Impact Factor
  • The Journal of Bone and Joint Surgery 02/2013; 95(3):222-9. · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To examine the incidence of clinically important cataracts in relation to lens radiation doses between 0 and approximately 3 Gy to address risks at relatively low brief doses. Materials and Methods: Informed consent was obtained, and human subjects procedures were approved by the ethical committee at the Radiation Effects Research Foundation. Cataract surgery incidence was documented for 6066 atomic bomb survivors during 1986-2005. Sixteen risk factors for cataract, such as smoking, hypertension, and corticosteroid use, were not confounders of the radiation effect on the basis of Cox regression analysis. Radiation dose-response analyses were performed for cataract surgery incidence by using Poisson regression analysis, adjusting for demographic variables and diabetes mellitus, and results were expressed as the excess relative risk (ERR) and the excess absolute risk (EAR) (ie, measures of how much radiation multiplies [ERR] or adds to [EAR] the risk in the unexposed group). Results: Of 6066 atomic bomb survivors, 1028 underwent a first cataract surgery during 1986-2005. The estimated threshold dose was 0.50 Gy (95% confidence interval [CI]: 0.10 Gy, 0.95 Gy) for the ERR model and 0.45 Gy (95% CI: 0.10 Gy, 1.05 Gy) for the EAR model. A linear-quadratic test for upward curvature did not show a significant quadratic effect for either the ERR or EAR model. The linear ERR model for a 70-year-old individual, exposed at age 20 years, showed a 0.32 (95% CI: 0.17, 0.52) excess risk at 1 Gy. The ERR was highest for those who were young at exposure. Conclusion: These data indicate a radiation effect for vision-impairing cataracts at doses less than 1 Gy. The evidence suggests that dose standards for protection of the eye from brief radiation exposures should be 0.5 Gy or less. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12111947/-/DC1.
    Radiology 08/2012; 265(1):167-74. · 6.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While the risk of lung cancer associated separately with smoking and radiation exposure has been widely reported, it is not clear how smoking and radiation together contribute to the risk of specific lung cancer histological types. With individual smoking histories and radiation dose estimates, we characterized the joint effects of radiation and smoking on type-specific lung cancer rates among the Life Span Study cohort of Japanese atomic bomb survivors. Among 105,404 cohort subjects followed between 1958 and 1999, 1,803 first primary lung cancer incident cases were diagnosed and classified by histological type. Poisson regression methods were used to estimate excess relative risks under several interaction models. Adenocarcinoma (636 cases), squamous-cell carcinoma (330) and small-cell carcinoma (194) made up 90% of the cases with known histology. Both smoking and radiation exposure significantly increased the risk of each major lung cancer histological type. Smoking-associated excess relative risks were significantly larger for small-cell and squamous-cell carcinomas than for adenocarcinoma. The gender-averaged excess relative risks per 1 Gy of radiation (for never-smokers at age 70 after radiation exposure at age 30) were estimated as 1.49 (95% confidence interval 0.1-4.6) for small-cell carcinoma, 0.75 (0.3-1.3) for adenocarcinoma, and 0.27 (0-1.5) for squamous-cell carcinoma. Under a model allowing radiation effects to vary with levels of smoking, the nature of the joint effect of smoking and radiation showed a similar pattern for different histological types in which the radiation-associated excess relative risk tended to be larger for moderate smokers than for heavy smokers. However, in contrast to analyses of all lung cancers as a group, such complicated interactions did not describe the data significantly better than either simple additive or multiplicative interaction models for any of the type-specific analyses.
    Radiation Research 08/2012; 178(3):191-201. · 2.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thyroid cancer risk following exposure to ionizing radiation in childhood and adolescence is a topic of public concern. To characterize the long-term temporal trend and age-at-exposure variation in the radiation-induced risk of thyroid cancer, we analyzed thyroid cancer incidence data for the period from 1958 through 2005 among 105,401 members of the Life Span Study cohort of Japanese atomic-bomb survivors. During the follow-up period, 371 thyroid cancer cases (excluding those with microcarcinoma with a diameter <10 mm) were identified as a first primary among the eligible subjects. Using a linear dose-response model, the excess relative risk of thyroid cancer at 1 Gy of radiation exposure was estimated as 1.28 (95% confidence interval: 0.59-2.70) at age 60 after acute exposure at age 10. The risk decreased sharply with increasing age-at-exposure and there was little evidence of increased thyroid cancer rates for those exposed after age 20. About 36% of the thyroid cancer cases among those exposed before age 20 were estimated to be attributable to radiation exposure. While the magnitude of the excess risk has decreased with increasing attained age or time since exposure, the excess thyroid cancer risk associated with childhood exposure has persisted for >50 years after exposure.
    International Journal of Cancer 07/2012; · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ensuring privacy of research subjects when epidemiologic data are shared with outside collaborators involves masking (modifying) the data, but overmasking can compromise utility (analysis potential). Methods of statistical disclosure control for protecting privacy may be impractical for individual researchers involved in small-scale collaborations. We investigated a simple approach based on measures of disclosure risk and analytical utility that are straightforward for epidemiologic researchers to derive. The method is illustrated using data from the Japanese Atomic-bomb Survivor population. Masking by modest rounding did not adequately enhance security but rounding to remove several digits of relative accuracy effectively reduced the risk of identification without substantially reducing utility. Grouping or adding random noise led to noticeable bias. When sharing epidemiologic data, it is recommended that masking be performed using rounding. Specific treatment should be determined separately in individual situations after consideration of the disclosure risks and analysis needs.
    Journal of Environmental and Public Health 01/2012; 2012:421989.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Radiation-induced bone sarcoma has been associated with high doses of ionizing radiation from therapeutic or occupation-related exposures. However, the development of bone sarcoma following exposure to lower doses of ionizing radiation remains speculative. A cohort analysis based on the Life Span Study (n = 120,321) was performed to assess the development of bone sarcoma in atomic-bomb survivors of Hiroshima and Nagasaki followed from 1958 to 2001. The excess relative risk per gray of ionizing radiation absorbed by the bone marrow was estimated. Additional subject demographic, survival, and clinical factors were evaluated. Nineteen cases of bone sarcoma (in eleven males and eight females) were identified among the 80,181 subjects who met the inclusion criteria, corresponding to an incidence of 0.9 per 100,000 person-years. The mean ages at the time of the bombing and at diagnosis were 32.4 and 61.6 years, respectively. The mean bone marrow dose was 0.43 Gy. Osteosarcoma was the most commonly identified bone sarcoma. The most common bone sarcoma site was the pelvis. The overall unadjusted five-year survival rate was 25%. A dose threshold was found at 0.85 Gy (95% confidence interval, 0.12 to 1.85 Gy), with a linear dose-response association above this threshold. The linear slope equaled an excess relative risk of 7.5 per Gy (95% confidence interval, 1.34 to 23.14 per Gy) in excess of 0.85 Gy. On the basis of what we believe is one of the longest and largest prospective studies assessing the development of bone sarcoma in individuals exposed to ionizing radiation, it appears that the development of radiation-induced bone sarcoma may be associated with exposure to much lower doses of ionizing radiation than have previously been reported. Such new insights may potentially improve bone sarcoma prevention measures and broaden our understanding of the role of ionizing radiation from various sources on the development of malignant tumors. This study stresses the need to become increasingly aware of the various health risks that may be attributable to even low levels of ionizing radiation exposure. Prognostic Level I. See Instructions to Authors for a complete description of levels of evidence.
    The Journal of Bone and Joint Surgery 06/2011; 93(11):1008-15. · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose. There is evidence in the literature of increased maternal radiosensitivity during pregnancy. Materials and Methods. We tested this hypothesis using information from the atomic-bomb survivor cohort, that is, the Adult Health Study database at the Radiation Effects Research Foundation, which contains data from a cohort of women who were pregnant at the time of the bombings of Hiroshima and Nagasaki. Previous evaluation has demonstrated long-term radiation dose-response effects. Results/Conclusions. Data on approximately 250 women were available to assess dose-response rates for serum cholesterol, white blood cell count, erythrocyte sedimentation rate, and serum hemoglobin, and on approximately 85 women for stable chromosome aberrations, glycophorin A locus mutations, and naïve CD4 T-cell counts. Although there is no statistically significant evidence of increased radiosensitivity in pregnant women, the increased slope of the linear trend line in the third trimester with respect to stable chromosome aberrations is suggestive of an increased radiosensitivity.
    ISRN obstetrics and gynecology 01/2011; 2011:264978.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While radiation increases the risk of lung cancer among members of the Life Span Study (LSS) cohort of atomic bomb survivors, there are still important questions about the nature of its interaction with smoking, the predominant cause of lung cancer. Among 105,404 LSS subjects, 1,803 primary lung cancer incident cases were identified for the period 1958-1999. Individual smoking history information and the latest radiation dose estimates were used to investigate the joint effects of radiation and smoking on lung cancer rates using Poisson grouped survival regression methods. Relative to never-smokers, lung cancer risks increased with the amount and duration of smoking and decreased with time since quitting smoking at any level of radiation exposure. Models assuming generalized interactions of smoking and radiation fit markedly better than simple additive or multiplicative interaction models. The joint effect appeared to be super-multiplicative for light/moderate smokers, with a rapid increase in excess risk with smoking intensity up to about 10 cigarettes per day, but additive or sub-additive for heavy smokers smoking a pack or more per day, with little indication of any radiation-associated excess risk. The gender-averaged excess relative risk per Gy of lung cancer (at age 70 after radiation exposure at 30) was estimated as 0.59 (95% confidence interval: 0.31-1.00) for nonsmokers with a female : male ratio of 3.1. About one-third of the lung cancer cases in this cohort were estimated to be attributable to smoking while about 7% were associated with radiation. The joint effect of smoking and radiation on lung cancer in the LSS is dependent on smoking intensity and is best described by the generalized interaction model rather than a simple additive or multiplicative model.
    Radiation Research 07/2010; 174(1):72-82. · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: : Radiation exposure is an established cause of clinical thyroid cancer, but little is known about radiation effects on papillary microcarcinoma (PMC) of the thyroid, a relatively common subclinical thyroid malignancy. Because the incidence of these small thyroid cancers has been increasing, it is important to better understand them and their relation to radiation. : PMCs were identified in a subset of 7659 members of the Life Span Study of atomic bomb survivors who had archived autopsy or surgical materials. We conducted a pathology review of these specimens and evaluated the histological features of the tumors and the association between PMCs and thyroid radiation dose. : From 1958 to 1995, 458 PMCs were detected among 313 study subjects. The majority of cancers exhibited pathologic features of papillary thyroid cancers. Overall, 81% of the PMCs were of the sclerosing variant and 91% were nonencapsulated, psammoma bodies that occurred in 13% and calcification was observed in 23%. Over 95% had papillary or papillary-follicular architecture and most displayed nuclear overlap, clear nuclei, and nuclear grooves. Several of these features increased with increasing tumor size, but no association was found with radiation dose. A significant radiation-dose response was found for the prevalence of PMCs (estimated excess odds ratio/Gy = 0.57; 95% confidence interval, 0.01-1.55), with the excess risk observed primarily among women. : Exposure to low-to-moderate doses of ionizing radiation appears to increase the risk of thyroid PMCs, even when exposure occurs during adulthood. Cancer 2010. (c) 2010 American Cancer Society.
    Cancer 04/2010; 116(7):1646-55. · 5.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leukemia was one of the first late health effects of radiation exposure observed among the atomic bomb survivors, initially appearing in the late 1940s. Several Atomic Bomb Casualty Commission/Radiation Effects Research Foundation studies have reported a highly significant radiation-associated excess risk for leukemia, although the evidence for increased risks of lymphoma and myeloma are less clear in the Life Span Study (LSS) cohort. As this cohort ages, the number of incident leukemia and lymphoma cases continues to increase. The current analyses update the incidence risk estimates with a particular focus on how the radiationassociated excess risk varies with age at exposure, gender, and attained age or time since exposure. Consideration is also given to characterization of curvature in the leukemia dose response.
    12/2008: pages 69-73;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Given the well-documented association of in utero radiation exposure with childhood cancer and developmental impairments, the possibility of effects on adult onset diseases is an important issue. The objectives of the present study were to examine the effects of atomic bomb radiation dose on the incidence of hypertension, hypercholesterolemia and cardiovascular disease (myocardial infarction and stroke) among survivors exposed in utero and to compare their risk estimates with those of survivors exposed in childhood (<10 years old) at the time of the bombing. A total of 506 participants exposed in utero and 1,053 participants exposed in childhood were followed during 1978-2003 with biennial clinical examinations. There were no significant radiation dose effects for any diseases in the entire in utero-exposed cohort or in trimester-of-exposure subgroups, though there was a suggestion of an increased risk when fatal and nonfatal cardiovascular disease cases were combined. Positive radiation dose effects were found for hypertension and cardiovascular disease in the childhood-exposure cohort, but there were no statistically significant differences in the relative risks when we compared the two cohorts. Since the in utero cohort was under age 60 at the latest examination, continued follow-up is needed to document cardiovascular disease risk more fully.
    Radiation Research 09/2008; 170(3):269-74. · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In utero exposure to radiation is known to increase risks of childhood cancers, and childhood exposure is associated with increased risks of adult-onset cancers. However, little is known about whether in utero exposure to radiation increases risks of adult-onset cancers. Solid cancer incidence rates were examined among survivors of the atomic bombings of Hiroshima and Nagasaki who were in utero (n = 2452) or younger than 6 years (n = 15388) at the time of the bombings. Poisson regression was used to estimate and compare the levels and temporal patterns of the radiation-associated excess risks of first primary solid cancers among these survivors at ages 12-55. All statistical tests were two-sided. There were 94 eligible cancers in the in utero group and 649 in the early childhood group. The excess relative risk (ERR) increased with dose for both in utero (age 50, ERR = 1.0 per Sv, 95% confidence interval [CI] = 0.2 to 2.3 per Sv) and early childhood (age 50, ERR = 1.7 per Sv, 95% CI = 1.1 to 2.5 Sv) exposures. The ERR declined (P = .046) with increasing attained age in the combined cohort. Excess absolute rates (EARs) increased markedly with attained age among those exposed in early childhood but exhibited little change in the in utero group. At age 50, the estimated EARs per 10,000 person-years per Sv were 6.8 (95% CI = <0 to 49) for those exposed in utero and 56 (95% CI = 36 to 79) for those exposed as young children. Both the in utero and early childhood groups exhibited statistically significant dose-related increases in incidence rates of solid cancers. The apparent difference in EARs between the two groups suggests that lifetime risks following in utero exposure may be considerably lower than for early childhood exposure, but further follow-up is needed.
    CancerSpectrum Knowledge Environment 03/2008; 100(6):428-36. · 14.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The age-time patterns of risk in the atomic bomb survivor data on incidence of solid cancers suggest an action of low-LET radiation not only on the initiating event but also on promotion in a biologically motivated model that allows for both actions. The favored model indicates a decrease of radiation risks with age at exposure due to the initiating effect and with time since exposure due to the promoting effect. These result in a relative risk that depends mostly on attained age for ages at exposure above 20 years. According to the model, a dose of 100 mGy is inducing about the same number of initiating events that occur spontaneously in 1 year. Assuming that several mutations are needed to obtain intermediate cells with growth advantage does not improve the quality of fit. The estimated promoting effect could be explained if the number of intermediate cells increases by 80% at 1 Gy, e.g. due to stimulated cell repopulation.
    Radiation Research 01/2008; 168(6):750-6. · 2.70 Impact Factor
  • International Journal of Radiation Oncology Biology Physics - INT J RADIAT ONCOL BIOL PHYS. 01/2008; 72(1).
  • Radiation Research - RADIAT RES. 01/2008; 169(5).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This is the second general report on radiation effects on the incidence of solid cancers (cancers other than malignancies of the blood or blood-forming organs) among members of the Life Span Study (LSS) cohort of Hiroshima and Nagasaki atomic bomb survivors. The analyses were based on 17,448 first primary cancers (including non-melanoma skin cancer) diagnosed from 1958 through 1998 among 105,427 cohort members with individual dose estimates who were alive and not known to have had cancer prior to 1958. Radiation-associated relative risks and excess rates were considered for all solid cancers as a group, for 19 specific cancer sites or groups of sites, and for five histology groups. Poisson regression methods were used to investigate the magnitude of the radiation-associated risks, the shape of the dose response, how these risks vary with gender, age at exposure, and attained age, and the evidence for inter-site variation in the levels and patterns of the excess risk. For all solid cancers as a group, it was estimated that about 850 (about 11%) of the cases among cohort members with colon doses in excess of 0.005 Gy were associated with atomic bomb radiation exposure. The data were consistent with a linear dose response over the 0- to 2-Gy range, while there was some flattening of the dose response at higher doses. Furthermore, there is a statistically significant dose response when analyses were limited to cohort members with doses of 0.15 Gy or less. The excess risks for all solid cancers as a group and many individual sites exhibit significant variation with gender, attained age, and age at exposure. It was estimated that, at age 70 after exposure at age 30, solid cancer rates increase by about 35% per Gy (90% CI 28%; 43%) for men and 58% per Gy (43%; 69%) for women. For all solid cancers as a group, the excess relative risk (ERR per Gy) decreases by about 17% per decade increase in age at exposure (90% CI 7%; 25%) after allowing for attained-age effects, while the ERR decreased in proportion to attained age to the power 1.65 (90% CI 2.1; 1.2) after allowing for age at exposure. Despite the decline in the ERR with attained age, excess absolute rates appeared to increase throughout the study period, providing further evidence that radiation-associated increases in cancer rates persist throughout life regardless of age at exposure. For all solid cancers as a group, women had somewhat higher excess absolute rates than men (F:M ratio 1.4; 90% CI 1.1; 1.8), but this difference disappears when the analysis was restricted to non-gender-specific cancers. Significant radiation-associated increases in risk were seen for most sites, including oral cavity, esophagus, stomach, colon, liver, lung, non-melanoma skin, breast, ovary, bladder, nervous system and thyroid. Although there was no indication of a statistically significant dose response for cancers of the pancreas, prostate and kidney, the excess relative risks for these sites were also consistent with that for all solid cancers as a group. Dose-response estimates for cancers of the rectum, gallbladder and uterus were not statistically significant, and there were suggestions that the risks for these sites may be lower than those for all solid cancers combined. However, there was emerging evidence from the present data that exposure as a child may increase risks of cancer of the body of the uterus. Elevated risks were seen for all of the five broadly classified histological groups considered, including squamous cell carcinoma, adenocarcinoma, other epithelial cancers, sarcomas and other non-epithelial cancers. Although the data were limited, there was a significant radiation-associated increase in the risk of cancer occurring in adolescence and young adulthood. In view of the persisting increase in solid cancer risks, the LSS should continue to provide important new information on radiation exposure and solid cancer risks for at least another 15 to 20 years.
    Radiation Research 08/2007; 168(1):1-64. · 2.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the decade after the bombings of Hiroshima and Nagasaki, several large cohorts of survivors were organized for studies of radiation health effects. The U.S. Atomic Bomb Casualty Commission (ABCC) and its U.S./Japan successor, the Radiation Effects Research Foundation (RERF), have performed continuous studies since then, with extensive efforts to collect data on survivor locations and shielding and to create systems to estimate individual doses from the bombs' neutrons and gamma rays. Several successive systems have been developed by extramural working groups and collaboratively implemented by ABCC and RERF investigators. We describe the cohorts and the history and evolution of dose estimation from early efforts through the newest system, DS02, emphasizing the technical development and use of DS02. We describe procedures and data developed at RERF to implement successive systems, including revised rosters of survivors, development of methods to calculate doses for some classes of persons not fitting criteria of the basic systems, and methods to correct for bias arising from errors in calculated doses. We summarize calculated doses and illustrate their change and elaboration through the various systems for a hypothetical example case in each city. We conclude with a description of current efforts and plans for further improvements.
    Radiation Research 08/2006; 166(1 Pt 2):219-54. · 2.70 Impact Factor
  • 01/2005;

Publication Stats

953 Citations
71.19 Total Impact Points

Institutions

  • 2013
    • The University of Hong Kong
      Hong Kong, Hong Kong
  • 2002–2013
    • Radiation Effects Research Foundation
      Hirosima, Hiroshima, Japan
  • 2012
    • Hiroshima City Hospital
      Hirosima, Hiroshima, Japan