Carl D Holmgren

Institut de neurobiologie de la méditerranée INMED, Marsiglia, Provence-Alpes-Côte d'Azur, France

Are you Carl D Holmgren?

Claim your profile

Publications (14)95.12 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X syndrome (FXS), the most common form of hereditary mental retardation, is caused by a loss-of-function mutation of the Fmr1 gene, which encodes fragile X mental retardation protein (FMRP). FMRP affects dendritic protein synthesis, thereby causing synaptic abnormalities. Here, we used a quantitative proteomics approach in an FXS mouse model to reveal changes in levels of hippocampal synapse proteins. Sixteen independent pools of Fmr1 knock-out mice and wild type mice were analyzed using two sets of 8-plex iTRAQ experiments. Of 205 proteins quantified with at least three distinct peptides in both iTRAQ series, the abundance of 23 proteins differed between Fmr1 knock-out and wild type synapses with a false discovery rate (q-value) <5%. Significant differences were confirmed by quantitative immunoblotting. A group of proteins that are known to be involved in cell differentiation and neurite outgrowth was regulated; they included Basp1 and Gap43, known PKC substrates, and Cend1. Basp1 and Gap43 are predominantly expressed in growth cones and presynaptic terminals. In line with this, ultrastructural analysis in developing hippocampal FXS synapses revealed smaller active zones with corresponding postsynaptic densities and smaller pools of clustered vesicles, indicative of immature presynaptic maturation. A second group of proteins involved in synaptic vesicle release was up-regulated in the FXS mouse model. In accordance, paired-pulse and short-term facilitation were significantly affected in these hippocampal synapses. Together, the altered regulation of presynaptically expressed proteins, immature synaptic ultrastructure, and compromised short-term plasticity points to presynaptic changes underlying glutamatergic transmission in FXS at this stage of development.
    Journal of Biological Chemistry 07/2011; 286(29):25495-25504.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X syndrome (FXS), the most common form of hereditary mental retardation, is caused by a loss-of-function mutation of the Fmr1 gene, which encodes fragile X mental retardation protein (FMRP). FMRP affects dendritic protein synthesis, thereby causing synaptic abnormalities. Here, we used a quantitative proteomics approach in an FXS mouse model to reveal changes in levels of hippocampal synapse proteins. Sixteen independent pools of Fmr1 knock-out mice and wild type mice were analyzed using two sets of 8-plex iTRAQ experiments. Of 205 proteins quantified with at least three distinct peptides in both iTRAQ series, the abundance of 23 proteins differed between Fmr1 knock-out and wild type synapses with a false discovery rate (q-value) <5%. Significant differences were confirmed by quantitative immunoblotting. A group of proteins that are known to be involved in cell differentiation and neurite outgrowth was regulated; they included Basp1 and Gap43, known PKC substrates, and Cend1. Basp1 and Gap43 are predominantly expressed in growth cones and presynaptic terminals. In line with this, ultrastructural analysis in developing hippocampal FXS synapses revealed smaller active zones with corresponding postsynaptic densities and smaller pools of clustered vesicles, indicative of immature presynaptic maturation. A second group of proteins involved in synaptic vesicle release was up-regulated in the FXS mouse model. In accordance, paired-pulse and short-term facilitation were significantly affected in these hippocampal synapses. Together, the altered regulation of presynaptically expressed proteins, immature synaptic ultrastructure, and compromised short-term plasticity points to presynaptic changes underlying glutamatergic transmission in FXS at this stage of development.
    Journal of Biological Chemistry 05/2011; 286(29):25495-504. DOI:10.1074/jbc.M110.210260
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X Syndrome (FXS), the most common form of hereditary mental retardation, is caused by a loss-of-function mutation of the Fmr1 gene, which encodes Fragile X Mental Retardation Protein (FMRP). FMRP affects dendritic protein synthesis thereby causing synaptic abnormalities. Here, we used a quantitative proteomics approach in an FXS mouse model to reveal changes in levels of hippocampal synapse proteins. Sixteen independent pools of Fmr1 knockout mice and wild type mice were analyzed using two sets of 8-plex iTRAQ experiments. Of 205 proteins quantified with at least 3 distinct peptides in both iTRAQ series, the abundance of 23 proteins differed between Fmr1 knock-out and wild type synapses with a false discovery rate (q-value) < 5%. Significant differences were confirmed by quantitative immuno-blotting. A group of proteins that are known to be involved in cell differentiation and neurite outgrowth were regulated, which included Basp1 and Gap43, known PKC substrates, and Cend1. Basp1 and Gap43 are predominantly expressed in growth cones and presynaptic terminals. In line with this, ultrastructural analysis in developing hippocampal FXS synapses revealed smaller active zones with corresponding postsynaptic densities and smaller pools of clustered vesicles, indicative of immature presynaptic maturation. A second group of proteins involved in synaptic vesicle release were up-regulated in the FXS mouse model. In accordance, paired-pulse- and short-term facilitation were significantly affected in these hippocampal synapses. Together, the altered regulation of presynaptically-expressed proteins, immature synaptic ultrastructure and compromised short-term plasticity point to presynaptic changes underlying glutamatergic transmission in FXS at this stage of development.
    Journal of Biological Chemistry 05/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While the ultimate dependence of brain function on its energy supply is evident, how basic neuronal parameters and network activity respond to energy metabolism deviations is unresolved. The resting membrane potential (E(m)) and reversal potential of GABA-induced anionic currents (E(GABA)) are among the most fundamental parameters controlling neuronal excitability. However, alterations of E(m) and E(GABA) under conditions of metabolic stress are not sufficiently documented, although it is well known that metabolic crisis may lead to neuronal hyper-excitability and aberrant neuronal network activities. In this work, we show that in slices, availability of energy substrates determines whether GABA signaling displays an inhibitory or excitatory mode, both in neonatal neocortex and hippocampus. We demonstrate that in the neonatal brain, E(m) and E(GABA) strongly depend on composition of the energy substrate pool. Complementing glucose with ketone bodies, pyruvate or lactate resulted in a significant hyperpolarization of both E(m) and E(GABA), and induced a radical shift in the mode of GABAergic synaptic transmission towards network inhibition. Generation of giant depolarizing potentials, currently regarded as the hallmark of spontaneous neonatal network activity in vitro, was strongly inhibited both in neocortex and hippocampus in the energy substrate enriched solution. Based on these results we suggest the composition of the artificial cerebrospinal fluid, which bears a closer resemblance to the in vivo energy substrate pool. Our results suggest that energy deficits induce unfavorable changes in E(m) and E(GABA), leading to neuronal hyperactivity that may initiate a cascade of pathological events.
    Journal of Neurochemistry 11/2009; 112(4):900-12. DOI:10.1111/j.1471-4159.2009.06506.x
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the early postnatal period, energy metabolism in the suckling rodent brain relies to a large extent on metabolic pathways alternate to glucose such as the utilization of ketone bodies (KBs). However, how KBs affect neuronal excitability is not known. Using recordings of single NMDA and GABA-activated channels in neocortical pyramidal cells we studied the effects of KBs on the resting membrane potential (E(m)) and reversal potential of GABA-induced anionic currents (E(GABA)), respectively. We show that during postnatal development (P3-P19) if neocortical brain slices are adequately supplied with KBs, E(m) and E(GABA) are both maintained at negative levels of about -83 and -80 mV, respectively. Conversely, a KB deficiency causes a significant depolarization of both E(m) (>5 mV) and E(GABA) (>15 mV). The KB-mediated shift in E(GABA) is largely determined by the interaction of the NKCC1 cotransporter and Cl(-)/HCO3 transporter(s). Therefore, by inducing a hyperpolarizing shift in E(m) and modulating GABA signaling mode, KBs can efficiently control the excitability of neonatal cortical neurons.
    Journal of Neurochemistry 06/2009; 110(4):1330-8. DOI:10.1111/j.1471-4159.2009.06230.x
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Layer 2/3 (L2/3) pyramidal cells receive excitatory afferent input both from neighbouring pyramidal cells and from cortical and subcortical regions. The efficacy of these excitatory synaptic inputs is modulated by spike timing-dependent plasticity (STDP). Here we report that synaptic connections between L2/3 pyramidal cell pairs are located proximal to the soma, at sites overlapping those of excitatory inputs from other cortical layers. Nevertheless, STDP at L2/3 pyramidal to pyramidal cell connections showed fundamental differences from known STDP rules at these neighbouring contacts. Coincident low-frequency pre- and postsynaptic activation evoked only LTD, independent of the order of the pre- and postsynaptic cell firing. This symmetric anti-Hebbian STDP switched to a typical Hebbian learning rule if a postsynaptic action potential train occurred prior to the presynaptic stimulation. Receptor dependence of LTD and LTP induction and their pre- or postsynaptic loci also differed from those at other L2/3 pyramidal cell excitatory inputs. Overall, we demonstrate a novel means to switch between STDP rules dependent on the history of postsynaptic activity. We also highlight differences in STDP at excitatory synapses onto L2/3 pyramidal cells which allow for input specific modulation of synaptic gain.
    Cerebral Cortex 03/2009; 19(10):2308-20. DOI:10.1093/cercor/bhn247
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X syndrome, caused by a mutation in the Fmr1 gene, is characterized by mental retardation. Several studies reported the absence of long-term potentiation (LTP) at neocortical synapses in Fmr1 knockout (FMR1-KO) mice, but underlying cellular mechanisms are unknown. We find that in the prefrontal cortex (PFC) of FMR1-KO mice, spike-timing-dependent LTP (tLTP) is not so much absent, but rather, the threshold for tLTP induction is increased. Calcium signaling in dendrites and spines is compromised. First, dendrites and spines more often fail to show calcium transients. Second, the activity of L-type calcium channels is absent in spines. tLTP could be restored by improving reliability and amplitude of calcium signaling by increasing neuronal activity. In FMR1-KO mice that were raised in enriched environments, tLTP was restored to WT levels. Our results show that mechanisms for synaptic plasticity are in place in the FMR1-KO mouse PFC, but require stronger neuronal activity to be triggered.
    Neuron 06/2007; 54(4):627-38. DOI:10.1016/j.neuron.2007.04.028
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive decline in Alzheimer's disease (AD) stems from the progressive dysfunction of synaptic connections within cortical neuronal microcircuits. Recently, soluble amyloid beta protein oligomers (Abeta(ol)s) have been identified as critical triggers for early synaptic disorganization. However, it remains unknown whether a deficit of Hebbian-related synaptic plasticity occurs during the early phase of AD. Therefore, we studied whether age-dependent Abeta accumulation affects the induction of spike-timing-dependent synaptic potentiation at excitatory synapses on neocortical layer 2/3 (L2/3) pyramidal cells in the APPswe/PS1dE9 transgenic mouse model of AD. Synaptic potentiation at excitatory synapses onto L2/3 pyramidal cells was significantly reduced at the onset of Abeta pathology and was virtually absent in mice with advanced Abeta burden. A decreased alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/N-methyl-D-aspartate (NMDA) receptor-mediated current ratio implicated postsynaptic mechanisms underlying Abeta synaptotoxicity. The integral role of Abeta(ol)s in these processes was verified by showing that pretreatment of cortical slices with Abeta((25-35)ol)s disrupted spike-timing-dependent synaptic potentiation at unitary connections between L2/3 pyramidal cells, and reduced the amplitude of miniature excitatory postsynaptic currents therein. A robust decrement of AMPA, but not NMDA, receptor-mediated currents in nucleated patches from L2/3 pyramidal cells confirmed that Abeta(ol)s perturb basal glutamatergic synaptic transmission by affecting postsynaptic AMPA receptors. Inhibition of AMPA receptor desensitization by cyclothiazide significantly increased the amplitude of excitatory postsynaptic potentials evoked by afferent stimulation, and rescued synaptic plasticity even in mice with pronounced Abeta pathology. We propose that soluble Abeta(ol)s trigger the diminution of synaptic plasticity in neocortical pyramidal cell networks during early stages of AD pathogenesis by preferentially targeting postsynaptic AMPA receptors.
    European Journal of Neuroscience 05/2006; 23(8):2035-47. DOI:10.1111/j.1460-9568.2006.04733.x
  • Source
    Yuri Zilberter, Tibor Harkany, Carl D Holmgren
    [Show abstract] [Hide abstract]
    ABSTRACT: The contribution of retrograde signaling to information processing in the brain has been contemplated for a long time, especially with respect to central nervous system development and long-term synaptic plasticity. During the past few years, however, the concept of retrograde signaling has been expanding to include short-term modifications of synaptic efficacy. The classic point of view on synaptic transmission represents it as a unidirectional transfer of information from presynaptic to postsynaptic sites. This paradigm has, however, been questioned in several experimental studies of neurons in different brain regions. These results suggest that a fast retrograde signal, which provides feedback, exists in active synaptic contacts. In particular, it was found that the dendritic release of retrograde messengers controls the efficacy of synaptic transmission in both excitatory and inhibitory connections between neocortical pyramidal cells and interneurons. The present review discusses these findings and the mechanisms underlying synaptic retrograde signaling.
    The Neuroscientist 09/2005; 11(4):334-44. DOI:10.1177/1073858405275827
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies implicate dendritic endocannabinoid release from subsynaptic dendrites and subsequent inhibition of neurotransmitter release from nerve terminals as a means of retrograde signaling in multiple brain regions. Here we show that type 1 cannabinoid receptor-mediated endocannabinoid signaling is not involved in the retrograde control of synaptic efficacy at inhibitory synapses between fast-spiking interneurons and pyramidal cells in layer 2/3 of the neocortex. Vesicular neurotransmitter transporters, such as vesicular glutamate transporters (VGLUTs) 1 and 2, are localized to presynaptic terminals and accumulate neurotransmitters into synaptic vesicles. A third subtype of VGLUTs (VGLUT3) was recently identified and found localized to dendrites of various cell types. We demonstrate, using multiple immunofluorescence labeling and confocal laser-scanning microscopy, that VGLUT3-like immunoreactivity is present in dendrites of layer 2/3 pyramidal neurons in the rat neocortex. Electron microscopy analysis confirmed that VGLUT3-like labeling is localized to vesicular structures, which show a tendency to accumulate in close proximity to postsynaptic specializations in dendritic shafts of pyramidal cells. Dual whole-cell recordings revealed that retrograde signaling between fast-spiking interneurons and pyramidal cells was enhanced under conditions of maximal efficacy of VGLUT3-mediated glutamate uptake, whereas it was reduced when glutamate uptake was inhibited by incrementing concentrations of the nonselective VGLUT inhibitor Evans blue (0.5-5.0 microm) or intracellular Cl- concentrations (4-145 mm). Our results present further evidence that dendritic vesicular glutamate release, controlled by novel VGLUT isoforms, provides fast negative feedback at inhibitory neocortical synapses, and demonstrate that glutamate can act as a retrograde messenger in the CNS.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 06/2004; 24(21):4978-88. DOI:10.1523/JNEUROSCI.4884-03.2004
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Embryonic stem (ES) cells are multipotent progenitors with unlimited developmental potential, and in vitro differentiated ES cell-derived neuronal progenitors can develop into functional neurons when transplanted in the central nervous system. As the capacity of naive primary ES cells to integrate in the adult brain and the role of host neural tissue therein are yet largely unknown, we grafted low densities of undifferentiated mouse ES (mES) cells in adult mouse brain regions associated with neurodegenerative disorders; and we demonstrate that ES cell-derived neurons undergo gradual integration in recipient tissue and acquire morphological and electrophysiological properties indistinguishable from those of host neurons. Only some brain areas permitted survival of mES-derived neural progenitors and formed instructive environments for neuronal differentiation and functional integration of naive mES cells. Hence, region-specific presence of microenvironmental cues and their pivotal involvement in controlling ES cell integration in adult brain stress the importance of recipient tissue characteristics in formulating cell replacement strategies for neurodegenerative disorders.
    Journal of Neurochemistry 04/2004; 88(5):1229-39. DOI:10.1046/j.1471-4159.2003.02243.x
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The extent to which neocortical pyramidal cells function as a local network is determined by the strength and probability of their connections. By mapping connections between pyramidal cells we show here that in a local network of about 600 pyramidal cells located within a cylindrical volume of 200 microm x 200 microm of neocortical layer 2/3, an individual pyramidal cell receives synaptic inputs from about 30 other pyramidal neurons, with the majority of EPSP amplitudes in the 0.2-1.0 mV range. The probability of connection decreased from 0.09 to 0.01 with intercell distance (over the range 25-200 microm). Within the same volume, local interneuron (fast-spiking non-accommodating interneuron, FS)-pyramidal cell connections were about 10 times more numerous, with the majority of connections being reciprocal. The probability of excitatory and inhibitory connections between pyramidal cells and FS interneurons decreased only slightly with distance, being in the range 0.5-0.75. Pyramidal cells in the local network received strong synaptic input during stimulation of afferent fibres in layers 1 and 6. Minimal-like stimulation of layer 1 or layer 6 inputs simultaneously induced postsynaptic potentials in connected pyramidal cells as well as in pyramidal-FS cell pairs. These inputs readily induced firing of pyramidal cells, although synaptically connected cells displayed different firing patterns. Unitary EPSPs in pyramidal-pyramidal cell pairs did not detectably alter cell firing. FS interneurons fire simultaneously with pyramidal cells. In pyramidal-FS cell pairs, both unitary EPSPs and IPSPs efficiently modulated cell firing patterns. We suggest that computation in the local network may proceed not only by direct pyramidal-pyramidal cell communication but also via local interneurons. With such a high degree of connectivity with surrounding pyramidal cells, local interneurons are ideally poised to both coordinate and expand the local pyramidal cell network via pyramidal-interneuron-pyramidal communication.
    The Journal of Physiology 09/2003; 551(Pt 1):139-53. DOI:10.1113/jphysiol.2003.044784
  • Source
    Nature Neuroscience 04/2003; 6(3):221-2. DOI:10.1038/nn1021
  • Source
    C D Holmgren, Y Zilberter
    [Show abstract] [Hide abstract]
    ABSTRACT: In pyramidal cells, induction of long-term potentiation (LTP) and long-term depression (LTD) of excitatory synaptic transmission by coincidence of presynaptic and postsynaptic activity is considered relevant to learning processes in vivo. Here we show that temporally correlated spiking activity of a pyramidal cell and an inhibiting interneuron may cause LTD or LTP of unitary IPSPs. Polarity of change in synaptic efficacy depends on timing between Ca(2+) influx induced by a backpropagating train of action potentials (APs) in pyramidal cell dendrites (10 APs, 50 Hz) and subsequent activation of inhibitory synapses. LTD of IPSPs was induced by synaptic activation in the vicinity of the AP train (<300 msec relative to the beginning of the train), whereas LTP of IPSPs was initiated with more remote synaptic activation (>400 msec relative to the beginning of the AP train). Solely AP trains induced neither LTP nor LTD. Both LTP and LTD were prevented by 5 mm BAPTA loaded into pyramidal cells. LTD was prevented by 5 mm EGTA, whereas EGTA failed to affect LTP. Synaptic plasticity was not dependent on activation of GABA(B) receptors. It was also not affected by the antagonists of vesicular exocytosis, botulinum toxin D, and GDP-beta-S.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 10/2001; 21(20):8270-7.

Publication Stats

792 Citations
95.12 Total Impact Points

Institutions

  • 2009
    • Institut de neurobiologie de la méditerranée INMED
      Marsiglia, Provence-Alpes-Côte d'Azur, France
  • 2005
    • VU University Amsterdam
      Amsterdamo, North Holland, Netherlands
  • 2001–2004
    • Karolinska Institutet
      • Department of Neuroscience
      Solna, Stockholm, Sweden