John A. S. Smith

King's College London, Londinium, England, United Kingdom

Are you John A. S. Smith?

Claim your profile

Publications (16)44.5 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection and analysis of a suspected counterfeit sample of the anti-malarial medicine Metakelfin through developing Nitrogen-14 Nuclear Quadrupole Resonance (14N NQR) spectroscopy at a quantitative level. The sensitivity of quadrupolar parameters to the solid-state chemical environment of the molecule enables development of a technique capable of discrimination between the same pharmaceutical preparations made by different manufacturers. The 14N NQR signal returned by a tablet (or tablets) from a Metakelfin batch suspected to be counterfeit was compared with that acquired from a tablet(s) from a known-to-be-genuine batch from the same named manufacturer. Metakelfin contains two active pharmaceutical ingredients, sulfalene and pyrimethamine and NQR analysis revealed spectral differences for the sulfalene component indicative of differences in the processing history of the two batches. Furthermore, the NQR analysis provided quantitative information that the suspected counterfeit tablets contained only 43  3 % as much sulfalene as the genuine Metakelfin tablets. Conversely, conventional non-destructive analysis by FT-Raman and FT-NIR spectroscopies only achieved differentiation between batches, but no ascription. HPLC-UV analysis of the suspect tablets revealed a sulfalene content of 42  2 % of the labelled claim. The degree of agreement shows the promise of NQR as a means of the non-destructive identification and content-indicating first-stage analysis of counterfeit pharmaceuticals.
    Analytical Chemistry 02/2013; · 5.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The performance of rectangular radiofrequency (RF) coils capable of being used to detect Nuclear Quadrupole Resonance (NQR) signals from blister packs of medicines has been compared. The performance of a fixed-pitch RF coil was compared with that from two variable-pitch coils, one based on a design in the literature and the other optimized to obtain the most homogeneous RF field over the whole volume of the coil. It has been shown from 14N NQR measurements with two medicines, the antibiotic ampicillin (as trihydrate) and the analgesic medicine Paracetamol, that the latter design gives NQR signal intensities almost independent of the distribution of the capsules or pills within the RF coil and is therefore more suitable for quantitative analysis.
    Analytical Chemistry 10/2012; · 5.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The explosive hexahydro-1,3,5-trinitro-s-triazine (CH2-N-NO2)3, commonly known as RDX, has been studied by 14N NQR and 1H NMR. NQR frequencies and relaxation times for the three ν+ and ν- lines of the ring 14N nuclei have been measured over the temperature range 230-330 K. The 1H NMR T1 dispersion has been measured for magnetic fields corresponding to the 1H NMR frequency range of 0-5.4 M Hz. The results have been interpreted as due to hindered rotation of the NO2 group about the N-NO2 bond with an activation energy close to 92 kJ mol(-1). Three dips in the 1H NMR dispersion near 120, 390 and 510 kHz are assigned to the ν0, ν- and ν+ transitions of the 14NO2 group. The temperature dependence of the inverse line-width parameters T2∗ of the three ν+ and ν- ring nitrogen transitions between 230 and 320 K can be explained by a distribution in the torsional oscillational amplitudes of the NO2 group about the N-NO2 bond at crystal defects whose values are consistent with the latter being mainly edge dislocations or impurities in the samples studied. Above 310 K, the 14N line widths are dominated by the rapid decrease in the spin-spin relaxation time T2 due to hindered rotation of the NO2 group. A consequence of this is that above this temperature, the 1H T1 values at the quadrupole dips are dominated by the spin mixing time between the 1H Zeeman levels and the combined 1H and 14N spin-spin levels.
    Journal of Magnetic Resonance 12/2011; 213(1):98-106. · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The problem of estimating the spectral content of exponentially decaying signals from a set of irregularly sampled data is of considerable interest in several applications, for example in various forms of radio frequency spectroscopy. In this paper, we propose a new nonparametric iterative adaptive approach that provides a solution to this estimation problem. As opposed to commonly used methods in the field, the damping coefficient, or linewidth, is explicitly modeled, which allows for an improved estimation performance. Numerical examples using both simulated data and data from NQR experiments illustrate the benefits of the proposed estimator as compared to currently available nonparametric methods.
    Journal of Magnetic Resonance 03/2010; 203(1):167-76. · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The explosive pentaerythritol tetranitrate (PETN) C(CH(2)-O-NO(2))(4) has been studied by (1)H NMR and (14)N NQR. The (14)N NQR frequency and spin-lattice relaxation time T(1Q) for the nu(+) line have been measured at temperatures from 255 to 325K. The (1)H NMR spin-lattice relaxation time T(1) has been measured at frequencies from 1.8kHz to 40MHz and at temperatures from 250 to 390K. The observed variations are interpreted as due to hindered rotation of the NO(2) group about the bond to the oxygen atom of the CH(2)-O group, which produces a transient change in the dipolar coupling of the CH(2) protons, generating a step in the (1)H T(1) at frequencies between 2 and 100kHz. The same mechanism could also explain the two minima observed in the temperature variation of the (14)N NQR T(1Q) near 284 and 316K, due in this case to the transient change in the (14)N...(1)H dipolar interaction, the first attributed to hindered rotation of the NO(2) group and the second to an increase in torsional amplitude of the NO(2) group due to molecular distortion of the flexible CH(2)-O-NO(2) chain which produces a 15% increase in the oscillational amplitude of the CH(2) group. The correlation times governing the (1)H T(1) values are approximately 25 times longer than those governing the (14)N NQR T(1Q), explained by the slow spin-lattice cross-coupling between the two spin systems. At higher frequencies, the (1)H T(1) dispersion results show well-resolved dips between 200 and 904kHz assigned to level crossing with (14)N and weaker features between 3 and 5MHz tentatively assigned to level crossing with (17)O.
    Journal of Magnetic Resonance 02/2010; 204(1):139-44. · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pulsed (35)Cl nuclear quadrupole resonance (NQR) experiments have been performed on 250-mg tablets of the antidiabetic medicine Diabinese to establish the conditions needed for noninvasive quantitative analysis of the medicine in standard bottles. One important condition is the generation of a uniform radio-frequency (RF) field over the sample, which has been achieved by two designs of sample coil: one of variable pitch, and the other a resonator that has been fabricated from a single turn of copper sheet with a longitudinal gap bridged by tuning capacitors. The results from blind tests show that the number of tablets in a bottle could be predicted to within +/-3%.
    Analytical Chemistry 07/2009; 81(13):5574-6. · 5.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, we present a novel method for non-invasive identification of liquids, for instance to allow for the detection of liquid explosives at airports or border controls. The approach is based on a nuclear magnetic resonance technique with an inhomogeneous magnetic field, forming estimates of the liquid's spin-spin relaxation time, T2, and diffusion constant, D, thereby allowing for a unique classification of the liquid. The proposed detectors are evaluated using both simulated and measured data sets.
    Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2009, 19-24 April 2009, Taipei, Taiwan; 01/2009
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear quadrupole resonance (NQR) is a solid-state radio frequency (RF) spectroscopic technique, allowing the detection of compounds containing quadrupolar nuclei, a requirement fulfilled by many high explosives and narcotics. The practical use of NQR is restricted by the inherently low signal-to-noise ratio (SNR) of the observed signals, a problem that is further exacerbated by the presence of strong RF interference (RFI). The current literature focuses on the use of conventional, multiple-pulsed NQR (cNQR) to obtain signals. Here, we investigate an alternative method called stochastic NQR (sNQR), having many advantages over cNQR, one of which is the availability of signal-of-interest free samples. In this paper, we exploit these samples forming a matched subspace-type detector and a detector employing a prewhitening approach, both of which are able to efficiently reduce the influence of RFI. Further, many of the ideas already developed for cNQR, including providing robustness to uncertainties in the assumed complex amplitudes and exploiting the temperature dependencies of the NQR spectral components, are recast for sNQR. The presented detectors are evaluated on both simulated and measured trinitro-toluene (TNT) data.
    IEEE Transactions on Signal Processing 01/2008; 56:4221-4229. · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear quadrupole resonance (NQR) is a radio frequency (RF) spectroscopic technique, allowing the detection of many high explosives and narcotics. In practice, NQR is restricted by the low signal-to-noise ratio of the observed signals, a problem further exacerbated by the presence of strong RF interference (RFI). The current literature focuses on the use of conventional, multiple-pulsed NQR (cNQR) to obtain signals. Here, we investigate an alternative method called stochastic NQR (sNQR), having many advantages over cNQR, one of which is the availability of signal-of-interest free samples. We exploit these samples forming a matched subspace-type detector, able to efficiently reduce the influence of RFI. Further, many of the ideas already developed for cNQR, including providing robustness to uncertainties in the assumed complex amplitudes and exploiting the temperature dependencies of the NQR spectral components, are recast for sNQR. The presented detector is evaluated on both simulated and measured trinitrotoluene (TNT) data.
    Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2008, March 30 - April 4, 2008, Caesars Palace, Las Vegas, Nevada, USA; 01/2008
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear quadrupole resonance (NQR) is a non-invasive, solid state, radio frequency (RF) technique, able to distinguish between polymorphic forms of certain compounds. Exploiting the signals from multiple polymorphs is important in explosives detection, whilst quantifying these polymorphs is important in pharmaceutical applications. Recently proposed hybrid algorithms, able to process the signals from multiple polymorphs, assume that the amplitudes associated with each polymorph are known to be within a scaling. Any error in this a priori information will lead to performance degradation in these algorithms. In this paper, we develop a robust hybrid algorithm allowing for uncertainties in the assumed amplitudes, extending a recently proposed robust algorithm, formulated for single polymorphs, to process signals from multiple polymorphs. In the proposed robust algorithm, the amplitudes are allowed to vary within an uncertainty hyper-sphere whose radius is evaluated using analytical expressions derived herein. Extensive numerical investigations indicate that the proposed algorithm provides significant performance gains as compared to both the existing hybrid algorithms, when uncertainties in the amplitudes exist, and the existing robust algorithm, when there are multiple polymorphs. Finally, the Cramér–Rao lower bound is derived for the uncertain data case as a reference for the quantification problem.
    Signal Processing 01/2008; 88:834-843. · 2.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.
    Proc SPIE 06/2006;
  • Source
    IEEE Transactions on Signal Processing. 01/2006; 54:1610-1616.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear quadrupole resonance is a radio frequency (rf) spectroscopic technique, closely related to NMR, which can be used to detect signals from solids containing nuclei with spin quantum number >1/2. It is nondestructive, highly specific and noninvasive, requires no static magnetic field, and as such is currently used in the detection of explosives and narcotics. Recent technological advances in pulsed NQR methods have shortened detection times, eliminated spurious signals, and enhanced the sensitivity of detection of 14N frequencies, which lie in the low rf range of 0.4-6 MHz, encouraging a wider range of "real world" applications. This Perspective highlights some of the advantages of NQR, the applications in which it could be used, such as the quantification of pharmaceuticals and the identification of polymorphs. Other roles could include detection, analysis, and quality control of pharmaceuticals at all stages of manufacture. Finally, recent advances which enhance even further the sensitivity of detection will be discussed.
    Analytical Chemistry 08/2005; 77(13):3925-30. · 5.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear quadrupole resonance (NQR) is a sensor technology that measures a signature unique to the explosive contained in the mine, thus providing a means of efficiently detecting landmines. Unfortunately, the measured signals are inherently weak and therefore detection times are currently too long (especially for TNT-based landmines) to implement in a man-portable detection system. However, the NQR hardware is light enough to be integrated into a robot based system. This paper investigates several power spectrum estimation algorithms applied to NQR signals in order to distinguish between data containing signals from explosive and data that does not. KeywordsNQR–Explosives Detection–Power Spectrum Estimation
    Climbing and Walking Robots - Proceedings of the 8th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2005, London, UK, September 13-15, 2005; 01/2005
  • IEEE T. Geoscience and Remote Sensing. 01/2005; 43:2659-2665.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A comparison of the NQR parameters of the monoclinic and orthorhombic phases of TNT and their relation to the twist or dihedral angle between the plane of the NO2 substituents and that of the benzene ring as determined in the X-Ray crystal structure analysis enables an assignment of different frequencies to specific sites in the two independent molecules in the unit cell of both forms to be made. The slow transformation of the metastable orthorhombic phase to monoclinic can then be followed by monitoring the NQR spectrum in which specific lines can be assigned to molecular sites in the two phases. NQR spectra of TNT referred to in the literature often differ; this could be due partly to the TNT often being a mixture of monoclinic and orthorhombic phases and partly to changes in the spectral line width, factors which must be taken into account when NQR is used to detect landmines.
    Proc SPIE 01/2004;