Dmitry B Staroverov

Pacific Institute of Bioorganic Chemistry, Wladiwostok, Primorskiy, Russia

Are you Dmitry B Staroverov?

Claim your profile

Publications (28)320.58 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deep profiling of antibody and T cell-receptor repertoires by means of high-throughput sequencing has become an attractive approach for adaptive immunity studies, but its power is substantially compromised by the accumulation of PCR and sequencing errors. Here we report MIGEC (molecular identifier groups-based error correction), a strategy for high-throughput sequencing data analysis. MIGEC allows for nearly absolute error correction while fully preserving the natural diversity of complex immune repertoires.
    Nature Methods 05/2014; DOI:10.1038/nmeth.2960 · 25.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multicolour labelling with fluorescent proteins is frequently used to differentially highlight specific structures in living systems. Labelling with fusion proteins is particularly demanding and is still problematic with the currently available palette of fluorescent proteins that emit in the red range due to unsuitable subcellular localization, protein-induced toxicity and low levels of labelling efficiency. Here we report a new monomeric red fluorescent protein, called FusionRed, which demonstrates both high efficiency in fusions and low toxicity in living cells and tissues.
    Nature Communications 11/2012; 3:1204. DOI:10.1038/ncomms2208 · 10.74 Impact Factor
  • Source
    Bone marrow transplantation 03/2012; DOI:10.1038/bmt.2012.44 · 3.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternative splicing plays a major role in increasing proteome complexity and regulating gene expression. Here, we developed a new fluorescent protein-based approach to quantitatively analyze the alternative splicing of a target cassette exon (skipping or inclusion), which results in an open-reading frame shift. A fragment of a gene of interest is cloned between red and green fluorescent protein (RFP and GFP)-encoding sequences in such a way that translation of the normally spliced full-length transcript results in expression of both RFP and GFP. In contrast, alternative exon skipping results in the synthesis of RFP only. Green and red fluorescence intensities can be used to estimate the proportions of normal and alternative transcripts in each cell. The new method was successfully tested for human PIG3 (p53-inducible gene 3) cassette exon 4. Expected pattern of alternative splicing of PIG3 minigene was observed, including previously characterized effects of UV light irradiation and specific mutations. Interestingly, we observed a broad distribution of normal to alternative transcript ratio in individual cells with at least two distinct populations with ∼45% and >95% alternative transcript. We believe that this method is useful for fluorescence-based quantitative analysis of alternative splicing of target genes in a variety of biological models.
    Nucleic Acids Research 01/2012; 40(8):e57. DOI:10.1093/nar/gkr1314 · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Computer analysis predicted a strong donor splice site within the 3'-part of the far-red fluorescent protein Katushka coding region. To test the functional activity of this site a model vector has been constructed. This vector encoded Katushka and green fluorescent protein TagGFP2 with a gene fragment of tafazzin in between. Normal splicing of this pre-mRNA should result in a frameshift between Katushka and TagGFP2. Alternatively, after splicing at internal katushka donor splice site appearance of Katushka-TagGFP2 fusion protein was expected. Expression of this construct in a mammalian cell culture led to bright red and green fluorescence. Therefore, katushka-specific donor splice site is functional. Disruption of this splice site by several silent substitutions resulted in red-only fluorescent cells that corresponded to normal splicing. The mutant katushka can be used for visualization of pre-mRNA splicing at single cell level by fluorescence microscopy and flow cytometry.
    Bioorganicheskaia khimiia 05/2011; 37(3):425-8. DOI:10.1134/S1068162011030071
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ankylosing spondylitis (AS) belongs to a group of autoimmune diseases affecting the axial skeleton. Beside thehla-b*27allele, several other human genes that control the variety processes of immune homeostasis are considered to be associated with AS manifestation in different human populations. Among strong associated non-MHC geneserap1 encodingthe endoplasmic reticulum aminopeptidase 1 isoform was recently identified by single nucleotide polymorphisms (SNPs) meta analysis. In our study we inspected the genetic association of five non-synonymous coding SNPs fromerap1 withAS in Caucasians. We implemented the SSP-PCR system for precise genotyping of 87hla-b*27positive AS patients and 77hla-b*27healthy donors from the Russian population. Considerable differences in allele's frequencies within patients vs control cohort were shown for 3 of 5 SNPs under investigation. Using the EM-algorhitm we reconstructed 3-marker haplotypes that distinguish with high probability two cohorts due to differences in the haplotypes frequencies. In such a way both the sensitive, CCT, haplotype and the protective, TTC, one were predicted. To verify the calculation we determined genuine frequencies of 5-marker haplotypes in AS cohort by haplotyping of individual cDNA samples using improved SSP-PCR primer set. We demonstrated that the frequencies ofin silicareconstucted haplotypes and the frequencies of experimentally detected haplotypes are in a good agreement. Frequency of the risk haplotype CCT (rs17482078/10050860/2287987) detected within AS cohort reaches 88%, as well as the frequency calculated by EM-algorhitm.
    07/2010; 2(3):72-7.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel experimental approach to the investigation of the repertoire of peripheral T lymphocytes of patients suffering from ankylosing spondylitis (AS) is proposed. This approach is based on the wide-range sequencing of cDNA of the β-chain of the T-cellular receptor (TcR). The results of the analysis of the diversity of sequences of the TcR antigen-binding domain (CDR3) inside the total pool of one patient with AS are presented by the example of the second V family (BV2) of TcR. The expansion of six independent TcR-expressing clones of T cells with a similar amino acid sequence of the CDR3 domains was proposed based on the results of the comparative structural analysis of the clone libraries of the cDNA of TcR BV2. The long-time stable expansion of these T clones was demonstrated during the development of the disease by specific monitoring. Key wordsrepertoire of T lymphocytes-oligoclonal T-cellular expansion-genes of the T-cellular receptor-ankylosing spondylitis
    Russian Journal of Bioorganic Chemistry 03/2010; 36(2):191-198. DOI:10.1134/S1068162010020081 · 0.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ankylosing spondylitis (AS) is commonly characterized by clonal expansions of T cells. However, these clonal populations are poorly studied and their role in disease initiation and progression remains unclear. Here, we performed mass sequencing of TCR V beta libraries to search for the expanded T cell clones for two AS patients. A number of clones comprising more than 5% of the corresponding TCR V beta family were identified in both patients. For the first time, expanded clones were shown to be stably abundant in blood samples of AS patients for the prolonged period (1.5 and 2.5 years for two patients, correspondingly). These clones were individually characterized in respect to their differentiation status using fluorescent cell sorting with CD27, CD28, and CD45RA markers followed by quantitative identification of each clone within corresponding fraction using real time PCR analysis. Stable clones differed in phenotype and several were shown to belong to the proinflammatory CD27 - /CD28 - population. Their potentially cytotoxic status was confirmed by staining with perforin-specific antibodies. Search for the TCR V beta CRD3 sequences homologous to the identified clones revealed close matches with the previously reported T cell clones from AS and reactive arthritis patients, thus supporting their role in the disease and proposing consensus TCR V beta CDR3 motifs for AS. Interestingly, these motifs were also found to have homology with earlier reported virus-specific CDR3 variants, indicating that viral infections could play role in development of AS.
    Autoimmunity 09/2009; 42(6):525-36. DOI:10.1080/08916930902960362 · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen species (ROS) regulate both normal cell functions by activating a number of enzymatic cascades and pathological processes in many diseases by inducing oxidative stress. For many years since the discovery of ROS in biological systems, there were no adequate methods of detection and quantification of these molecules inside the living cells. We developed the first genetically encoded fluorescent indicator for the intracellular detection of hydrogen peroxide, HyPer, that can be used for imaging of H2O2 production by cells under various physiological and pathological conditions. Unlike most known ROS indicators, HyPer allows the generation of a real-time image series that give precise information about the time course and intensity of H2O2 changes in any compartment of interest. In this chapter, we describe the method of confocal imaging of hydrogen peroxide production in HeLa cells upon stimulation with epidermal growth factor. The technique described may be accepted with minimal variations for the use in other cell lines upon various conditions leading to H2O2 production.
    Methods in molecular biology (Clifton, N.J.) 02/2009; 476:76-83. DOI:10.1007/978-1-59745-129-1_6 · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nucleases, which are key components of biologically diverse processes such as DNA replication, repair and recombination, antiviral defense, apoptosis and digestion, have revolutionized the field of molecular biology. Indeed many standard molecular strategies, including molecular cloning, studies of DNA-protein interactions, and analysis of nucleic acid structures, would be virtually impossible without these versatile enzymes. The discovery of nucleases with unique properties has often served as the basis for the development of modern molecular biology methods. Thus, the search for novel nucleases with potentially exploitable functions remains an important scientific undertaking. Using degenerative primers and the rapid amplification of cDNA ends (RACE) procedure, we cloned the Duplex-Specific Nuclease (DSN) gene from the hepatopancreas of the Kamchatka crab and determined its full primary structure. We also developed an effective method for purifying functional DSN from the crab hepatopancreas. The isolated enzyme was highly thermostable, exhibited a broad pH optimum (5.5 - 7.5) and required divalent cations for activity, with manganese and cobalt being especially effective. The enzyme was highly specific, cleaving double-stranded DNA or DNA in DNA-RNA hybrids, but not single-stranded DNA or single- or double-stranded RNA. Moreover, only DNA duplexes containing at least 9 base pairs were effectively cleaved by DSN; shorter DNA duplexes were left intact. We describe a new DSN from Kamchatka crab hepatopancreas, determining its primary structure and developing a preparative method for its purification. We found that DSN had unique substrate specificity, cleaving only DNA duplexes longer than 8 base pairs, or DNA in DNA-RNA hybrids. Interestingly, the DSN primary structure is homologous to well-known Serratia-like non-specific nucleases structures, but the properties of DSN are distinct. The unique substrate specificity of DSN should prove valuable in certain molecular biology applications.
    BMC Biochemistry 02/2008; 9:14. DOI:10.1186/1471-2091-9-14 · 1.94 Impact Factor
  • Source
    BioTechniques 05/2007; 42(4):446, 448, 450. DOI:10.2144/000112453 · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We overexpressed duplex-specific nuclease (DSN) from Kamchatka crab in Escherichia coli cells and developed procedures for purification, renaturation, and activation of this protein. We demonstrated identity of the properties of the native and recombinant DSN. We also successfully applied the recombinant DSN for full-length cDNA library normalization.
    Biochemistry (Moscow) 06/2006; 71(5):513-9. DOI:10.1134/S0006297906050075 · 1.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Green fluorescent protein (GFP) and GFP-like proteins represent invaluable genetically encoded fluorescent probes. In the last few years a new class of photoactivatable fluorescent proteins (PAFPs) capable of pronounced light-induced spectral changes have been developed. Except for tetrameric KFP1 (ref. 4), all known PAFPs, including PA-GFP, Kaede, EosFP, PS-CFP, Dronpa, PA-mRFP1 and KikGR require light in the UV-violet spectral region for activation through one-photon excitation--such light can be phototoxic to some biological systems. Here, we report a monomeric PAFP, Dendra, derived from octocoral Dendronephthya sp. and capable of 1,000- to 4,500-fold photoconversion from green to red fluorescent states in response to either visible blue or UV-violet light. Dendra represents the first PAFP, which is simultaneously monomeric, efficiently matures at 37 degrees C, demonstrates high photostability of the activated state, and can be photoactivated by a common, marginally phototoxic, 488-nm laser line. We demonstrate the suitability of Dendra for protein labeling and tracking to quantitatively study dynamics of fibrillarin and vimentin in mammalian cells.
    Nature Biotechnology 05/2006; 24(4):461-5. DOI:10.1038/nbt1191 · 39.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We developed a genetically encoded, highly specific fluorescent probe for detecting hydrogen peroxide (H(2)O(2)) inside living cells. This probe, named HyPer, consists of circularly permuted yellow fluorescent protein (cpYFP) inserted into the regulatory domain of the prokaryotic H(2)O(2)-sensing protein, OxyR. Using HyPer we monitored H(2)O(2) production at the single-cell level in the cytoplasm and mitochondria of HeLa cells treated with Apo2L/TRAIL. We found that an increase in H(2)O(2) occurs in the cytoplasm in parallel with a drop in the mitochondrial transmembrane potential (DeltaPsi) and a change in cell shape. We also observed local bursts in mitochondrial H(2)O(2) production during DeltaPsi oscillations in apoptotic HeLa cells. Moreover, sensitivity of the probe was sufficient to observe H(2)O(2) increase upon physiological stimulation. Using HyPer we detected temporal increase in H(2)O(2) in the cytoplasm of PC-12 cells stimulated with nerve growth factor.
    Nature Methods 05/2006; 3(4):281-6. DOI:10.1038/nmeth866 · 25.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Photosensitizers are chromophores that generate reactive oxygen species (ROS) upon light irradiation. They are used for inactivation of specific proteins by chromophore-assisted light inactivation (CALI) and for light-induced cell killing in photodynamic therapy. Here we report a genetically encoded photosensitizer, which we call KillerRed, developed from the hydrozoan chromoprotein anm2CP, a homolog of green fluorescent protein (GFP). KillerRed generates ROS upon irradiation with green light. Whereas known photosensitizers must be added to living systems exogenously, KillerRed is fully genetically encoded. We demonstrate the utility of KillerRed for light-induced killing of Escherichia coli and eukaryotic cells and for inactivating fusions to beta-galactosidase and phospholipase Cdelta1 pleckstrin homology domain.
    Nature Biotechnology 02/2006; 24(1):95-9. DOI:10.1038/nbt1175 · 39.08 Impact Factor
  • Nature Biotechnology 01/2006; 24:95-99. · 39.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years diverse photolabeling techniques using green fluorescent protein (GFP)-like proteins have been reported, including photoactivatable PA-GFP, photoactivatable protein Kaede, the DsRed 'greening' technique and kindling fluorescent proteins. So far, only PA-GFP, which is monomeric and gives 100-fold fluorescence contrast, could be applied for protein tracking. Here we describe a dual-color monomeric protein, photoswitchable cyan fluorescent protein (PS-CFP). PS-CFP is capable of efficient photoconversion from cyan to green, changing both its excitation and emission spectra in response to 405-nm light irradiation. Complete photoactivation of PS-CFP results in a 1,500-fold increase in the green-to-cyan fluorescence ratio, making it the highest-contrast monomeric photoactivatable fluorescent protein described to date. We used PS-CFP as a photoswitchable tag to study trafficking of human dopamine transporter in living cells. At moderate excitation intensities, PS-CFP can be used as a pH-stable cyan label for protein tagging and fluorescence resonance energy transfer applications.
    Nature Biotechnology 12/2004; 22(11):1435-9. DOI:10.1038/nbt1025 · 39.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nature of coloration in many marine animals remains poorly investigated. Here we studied the blue pigment of a scyfoid jellyfish Rhizostoma pulmo and determined it to be a soluble extracellular 30-kDa chromoprotein with a complex absorption spectrum peaking at 420, 588, and 624 nm. Furthermore, we cloned the corresponding cDNA and confirmed its identity by immunoblotting and mass spectrometry experiments. The chromoprotein, named rpulFKz1, consists of two domains, a Frizzled cysteine-rich domain and a Kringle domain, inserted into one another. Generally, Frizzleds are members of a basic Wnt signal transduction pathway investigated intensely with regard to development and cancerogenesis. Kringles are autonomous structural domains found throughout the blood clotting and fibrinolytic proteins. Neither Frizzled and Kringle domains association with any type of coloration nor Kringle intrusion into Frizzled sequence was ever observed. Thus, rpulFKz1 represents a new class of animal pigments, whose chromogenic group remains undetermined. The striking homology between a chromoprotein and members of the signal transduction pathway provides a novel node in the evolution track of growth factor-mediated morphogenesis compounds.
    Journal of Biological Chemistry 11/2004; 279(42):43367-70. DOI:10.1074/jbc.C400337200 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have cloned the genes PANX1, PANX2 and PANX3, encoding putative gap junction proteins homologous to invertebrate innexins, which constitute a new family of mammalian proteins called pannexins. Phylogenetic analysis revealed that pannexins are highly conserved in worms, mollusks, insects and mammals, pointing to their important function. Both innexins and pannexins are predicted to have four transmembrane regions, two extracellular loops, one intracellular loop and intracellular N and C termini. Both the human and mouse genomes contain three pannexin-encoding genes. Mammalian pannexins PANX1 and PANX3 are closely related, with PANX2 more distant. The human and mouse pannexin-1 mRNAs are ubiquitously, although disproportionately, expressed in normal tissues. Human PANX2 is a brain-specific gene; its mouse orthologue, Panx2, is also expressed in certain cell types in developing brain. In silico evaluation of Panx3 expression predicts gene expression in osteoblasts and synovial fibroblasts. The apparent conservation of pannexins between species merits further investigation.
    Genomics 05/2004; 83(4):706-16. DOI:10.1016/j.ygeno.2003.09.025 · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have cloned an unusual colourless green fluorescent protein (GFP)-like protein from Aequorea coerulescens (acGFPL). The A. coerulescens specimens displayed blue (not green) luminescence, and no fluorescence was detected in these medusae. Escherichia coli expressing wild-type acGFPL showed neither fluorescence nor visible coloration. Random mutagenesis generated green fluorescent mutants of acGFPL, with the strongest emitters found to contain an Glu(222)-->Gly (E222G) substitution, which removed the evolutionarily invariant Glu(222). Re-introduction of Glu(222) into the most fluorescent random mutant, named aceGFP, converted it into a colourless protein. This colourless aceGFP-G222E protein demonstrated a novel type of UV-induced photoconversion, from an immature non-fluorescent form into a green fluorescent form. Fluorescent aceGFP may be a useful biological tool, as it was able to be expressed in a number of mammalian cell lines. Furthermore, expression of a fusion protein of 'humanized' aceGFP and beta-actin produced a fluorescent pattern consistent with actin distribution in mammalian cells.
    Biochemical Journal 07/2003; 373(Pt 2):403-8. DOI:10.1042/BJ20021966 · 4.78 Impact Factor

Publication Stats

2k Citations
320.58 Total Impact Points

Institutions

  • 2006–2012
    • Pacific Institute of Bioorganic Chemistry
      Wladiwostok, Primorskiy, Russia
  • 2006–2011
    • Russian Academy of Sciences
      • Institute of Inorganic Chemistry
      Moskva, Moscow, Russia
  • 2009
    • JSC Mikron
      Moskva, Moscow, Russia