K K Sulik

University of North Carolina at Chapel Hill, North Carolina, United States

Are you K K Sulik?

Claim your profile

Publications (125)361.62 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Prenatal alcohol exposure can result in long-term cognitive and behavioral deficits. Fetal alcohol spectrum disorder (FASD) refers to a range of permanent birth defects caused by prenatal alcohol exposure, and is the most common neurodevelopmental disorder in the US. Studies by autopsy and conventional structural MRI indicate that the midline structures of the brain are particularly vulnerable to prenatal alcohol exposure. Diffusion tensor imaging (DTI) has shown that abnormalities in brain white matter especially the corpus callosum are very common in FASD. Quantitative susceptibility mapping (QSM) is a novel technique that measures tissue's magnetic property. Such magnetic property is affected by tissue microstructure and molecular composition including that of myelin in the white matter. In this work, we studied three major white matter fiber bundles of a mouse model of FASD and compared it to control mice using both QSM and DTI. QSM revealed clear and significant abnormalities in anterior commissure, corpus callosum, and hippocampal commissure, which were likely due to reduced myelination. Our data also suggested that QSM may be even more sensitive than DTI for examining changes due to prenatal alcohol exposure. Although this is a preclinical study, the technique of QSM is readily translatable to human brain.
    NeuroImage 08/2014; · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The first trimester of human development and the equivalent developmental period in animal models is a time when teratogenic ethanol (EtOH) exposure induces the major structural birth defects that fall within fetal alcohol spectrum disorder (FASD). Previous FASD research employing an acute high dose maternal intraperitoneal EtOH treatment paradigm has identified sensitive periods for a number of these defects. Extending this work, this investigation utilized high resolution magnetic resonance microscopy (MRM)-based analyses to examine the dysmorphology resulting from maternal dietary EtOH intake occurring during selected first trimester-equivalent time periods.
    Alcoholism Clinical and Experimental Research 06/2014; · 3.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Disruption of the Hedgehog signaling pathway has been implicated as an important molecular mechanism in the pathogenesis of fetal alcohol syndrome. In severe cases, the abnormalities of the face and brain that result from prenatal ethanol exposure fall within the spectrum of holoprosencephaly. Single allele mutations in the Hh pathway genes Sonic Hedgehog (SHH) and GLI2 cause holoprosencephaly with extremely variable phenotypic penetrance in humans. Here, we tested whether mutations in these genes alter the frequency or severity of ethanol-induced dysmorphology in a mouse model. Timed pregnancies were established by mating Shh(+/-) or Gli2(+/-) male mice backcrossed to C57BL/6J strain, with wildtype females. On gestational day 7, dams were treated with two ip doses of 2.9 g/kg ethanol (or vehicle alone), administered four hrs apart. Fetuses were then genotyped and imaged, and the severity of facial dysmorphology was assessed. Following ethanol exposure, mean dysmorphology scores were increased by 3.2- and 6.6-fold in Shh(+/-) and Gli2(+/-) groups, respectively, relative to their wildtype littermates. Importantly, a cohort of heterozygous fetuses exhibited phenotypes not typically produced in this model but associated with severe holoprosencephaly, including exencephaly, median cleft lip, otocephaly, and proboscis. As expected, a correlation between the severity of facial dysmorphology and medial forebrain deficiency was observed in affected animals. While Shh(+/-) and Gli2(+/-) mice have been described as phenotypically normal, these results illustrate a functional haploinsufficiency of both genes in combination with ethanol exposure. By demonstrating an interaction between specific genetic and environmental risk factors, this study provides important insights into the multifactorial etiology and complex pathogenesis of fetal alcohol syndrome and holoprosencephaly.
    PLoS ONE 01/2014; 9(2):e89448. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Subtle behavioral and cognitive deficits have been documented in patient cohorts with orofacial clefts (OFCs). Recent neuroimaging studies argue that these traits are associated with structural brain abnormalities but have been limited to adolescent and adult populations where brain plasticity during infancy and childhood may be a confounding factor. Here, we employed high resolution magnetic resonance microscopy to examine primary brain morphology in a mouse model of OFCs. Transient in utero exposure to the Hedgehog (Hh) signaling pathway antagonist cyclopamine resulted in a spectrum of facial dysmorphology, including unilateral and bilateral cleft lip and palate, cleft of the secondary palate only, and a non-cleft phenotype marked by midfacial hypoplasia. Relative to controls, cyclopamine-exposed fetuses exhibited volumetric differences in several brain regions, including hypoplasia of the pituitary gland and olfactory bulbs, hyperplasia of the forebrain septal region, and expansion of the third ventricle. However, in affected fetuses the corpus callosum was intact and normal division of the forebrain was observed. This argues that temporally-specific Hh signaling perturbation can result in typical appearing OFCs in the absence of holoprosencephaly-a condition classically associated with Hh pathway inhibition and frequently co-occurring with OFCs. Supporting the premise that some forms of OFCs co-occur with subtle brain malformations, these results provide a possible ontological basis for traits identified in clinical populations. They also argue in favor of future investigations into genetic and/or environmental modulation of the Hh pathway in the etiopathogenesis of orofacial clefting.
    PLoS ONE 01/2014; 9(7):e102603. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Animal model-based studies have shown that ethanol exposure during early gestation induces developmental stage-specific abnormalities of the face and brain. The exposure time-dependent variability in ethanol's teratogenic outcomes is expected to contribute significantly to the wide spectrum of effects observed in humans with fetal alcohol spectrum disorder (FASD). The work presented here employs a mouse FASD model and magnetic resonance microscopy (MRM; high resolution magnetic resonance imaging) in studies designed to further our understanding of the developmental stage-specific defects of the brain that are induced by ethanol. At neurulation stages, i.e. at the beginning of gestational day (GD) 9 and again 4 hours later, time-mated C57Bl/6J dams were intraperitoneally administered 2.9 g/kg ethanol or vehicle. Ethanol-exposed fetuses were collected on GD 17, processed for MRM analysis, and results compared to comparably staged controls. Linear and volume measurements as well as shape changes for numerous individual brain regions were determined. GD 9 ethanol exposure resulted in significantly increased septal region width, reduction of cerebellar volume, and enlargement of all of the ventricles. Additionally, the results of shape analyses showed that many areas of the ethanol-exposed brains including the cerebral cortex, hippocampus and right striatum were significantly misshapen. These data demonstrate that ethanol can induce dysmorphology that may not be obvious based on volumetric analyses alone, highlight the asymmetric aspects of ethanol-induced defects, and add to our understanding of ethanol's developmental stage-dependent neuroteratogenesis.
    Neurotoxicology and Teratology 07/2013; · 3.18 Impact Factor
  • Lee Langer, Kathleen Sulik, Larysa Pevny
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective : While sex-determining region Y-Box 2 (SOX2) mutations are typically recognized as yielding ocular and central nervous system abnormalities, they have also been associated with other craniofacial defects. To elucidate the genesis of the latter, Sox2 hypomorphic (Sox2(HYP)) mice were examined, with particular attention to secondary palatal development. Results : Clefts of the secondary palate were found to be highly penetrant in Sox2(HYP) mice. The palatal clefting occurred in the absence of mandibular hypoplasia and resulted from delayed or failed shelf elevation. Conclusions : Sox2 hypomorphism can result in clefting of the secondary palate, an effect that appears to be independent of mandibular hypoplasia and is thus expected to result from an abnormality that is inherent to the palatal shelves and/or their progenitor tissues. Further clinical attention relative to SOX2 mutations as a basis for secondary palatal clefts appears warranted.
    The Cleft Palate-Craniofacial Journal 05/2013; · 1.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is a genetic contribution to fetal alcohol spectrum disorders (FASD), but the identification of candidate genes has been elusive. Ethanol may cause FASD in part by decreasing the adhesion of the developmentally critical L1 cell adhesion molecule through interactions with an alcohol binding pocket on the extracellular domain. Pharmacologic inhibition or genetic knockdown of ERK2 did not alter L1 adhesion, but markedly decreased ethanol inhibition of L1 adhesion in NIH/3T3 cells and NG108-15 cells. Likewise, leucine replacement of S1248, an ERK2 substrate on the L1 cytoplasmic domain, did not decrease L1 adhesion, but abolished ethanol inhibition of L1 adhesion. Stable transfection of NIH/3T3 cells with human L1 resulted in clonal cell lines in which L1 adhesion was consistently sensitive or insensitive to ethanol for more than a decade. ERK2 activity and S1248 phosphorylation were greater in ethanol-sensitive NIH/3T3 clonal cell lines than in their ethanol-insensitive counterparts. Ethanol-insensitive cells became ethanol sensitive after increasing ERK2 activity by transfection with a constitutively active MAP kinase kinase 1. Finally, embryos from two substrains of C57BL mice that differ in susceptibility to ethanol teratogenesis showed corresponding differences in MAPK activity. Our data suggest that ERK2 phosphorylation of S1248 modulates ethanol inhibition of L1 adhesion by inside-out signaling and that differential regulation of ERK2 signaling might contribute to genetic susceptibility to FASD. Moreover, identification of a specific locus that regulates ethanol sensitivity, but not L1 function, might facilitate the rational design of drugs that block ethanol neurotoxicity.
    Proceedings of the National Academy of Sciences 02/2013; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prenatal ethanol exposure is the leading preventable cause of congenital mental disability. Whereas a diagnosis of fetal alcohol syndrome (FAS) requires identification of a specific pattern of craniofacial dysmorphology, most individuals with behavioral and neurological sequelae of heavy prenatal ethanol exposure do not exhibit these defining facial characteristics. Here, a novel integration of MRI and dense surface modeling-based shape analysis was applied to characterize concurrent face-brain phenotypes in C57Bl/6J fetuses exposed to ethanol on gestational day (GD)7 or GD8.5. The facial phenotype resulting from ethanol exposure depended upon stage of insult and was predictive of unique patterns of corresponding brain abnormalities. Ethanol exposure on GD7 produced a constellation of dysmorphic facial features characteristic of human FAS, including severe midfacial hypoplasia, shortening of the palpebral fissures, an elongated upper lip, and deficient philtrum. In contrast, ethanol exposure on GD8.5 caused mild midfacial hypoplasia and palpebral fissure shortening, a shortened upper lip, and a preserved philtrum. These distinct, stage-specific facial phenotypes were associated with unique volumetric and shape abnormalities of the septal region, pituitary, and olfactory bulbs. By demonstrating that early prenatal ethanol exposure can cause more than one temporally-specific pattern of defects, these findings illustrate the need for an expansion of current diagnostic criteria to better capture the full range of facial and brain dysmorphology in fetal alcohol spectrum disorders.
    PLoS ONE 08/2012; 7(8). · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Please cite this paper as: Sulik K, O'Leary-Moore S, Riley E. Better safe than sorry. BJOG 2012; DOI: 10.1111/j.1471-0528.2012.03434.x.
    BJOG An International Journal of Obstetrics & Gynaecology 07/2012; 119(10):1159-61. · 3.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Haploinsufficiency for the HMG-box transcription factor SOX2 results in abnormalities of the human ventral forebrain and its derivative structures. These defects include anophthalmia (absence of eye), microphthalmia (small eye) and hypothalamic hamartoma (HH), an overgrowth of the ventral hypothalamus. To determine how Sox2 deficiency affects the morphogenesis of the ventral diencephalon and eye, we generated a Sox2 allelic series (Sox2(IR), Sox2(LP), and Sox2(EGFP)), allowing for the generation of mice that express germline hypomorphic levels (<40%) of SOX2 protein and that faithfully recapitulate SOX2 haploinsufficient human phenotypes. We find that Sox2 hypomorphism significantly disrupts the development of the posterior hypothalamus, resulting in an ectopic protuberance of the prechordal floor, an upregulation of Shh signaling, and abnormal hypothalamic patterning. In the anterior diencephalon, both the optic stalks and optic cups (OC) of Sox2 hypomorphic (Sox2(HYP)) embryos are malformed. Furthermore, Sox2(HYP) eyes exhibit a loss of neural potential and coloboma, a common phenotype in SOX2 haploinsufficient humans that has not been described in a mouse model of SOX2 deficiency. These results establish for the first time that germline Sox2 hypomorphism disrupts the morphogenesis and patterning of the hypothalamus, optic stalk, and the early OC, establishing a model of the development of the abnormalities that are observed in SOX2 haploinsufficient humans.
    Mechanisms of development 04/2012; 129(1-4):1-12. · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Structural abnormalities of the corpus callosum (CC), such as reduced size and increased shape variability, have been documented in individuals with fetal alcohol spectrum disorders (FASD). However, the regional specificity of altered CC structure, which may point to the timing of neurodevelopmental disturbances and/or relate to specific functional impairments, remains unclear. Furthermore, associations between facial dysmorphology and callosal structure remain undetermined. One hundred and fifty-three participants (age range 8 to 16) including 82 subjects with FASD and 71 nonexposed controls were included in this study. The structural magnetic resonance imaging data of these subjects was collected at 3 sites (Los Angeles and San Diego, California, and Cape Town, South Africa) and analyzed using classical parcellation schemes, as well as more refined surface-based geometrical modeling methods, to identify callosal morphological alterations in FASD at high spatial resolution. Reductions in callosal thickness and area, specifically in the anterior third and the splenium, were observed in FASD compared with nonexposed controls. In addition, reduced CC thickness and area significantly correlated with reduced palpebral fissure length. Consistent with previous reports, findings suggest an adverse effect of prenatal alcohol exposure on callosal growth and further indicate that fiber pathways connecting frontal and parieto-occipital regions in each hemisphere may be particularly affected. Significant associations between callosal and facial dysmorphology provide evidence for a concurrent insult to midline facial and brain structural development in FASD.
    Alcoholism Clinical and Experimental Research 12/2011; 36(5):798-806. · 3.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence from structural brain imaging studies on individuals with fetal alcohol spectrum disorder (FASD) has supported links between prenatal alcohol exposure and brain morphological deficits. Although global and regional volumetric reductions appear relatively robust, the effects of alcohol exposure on cortical thickness and relationships with facial dysmorphology are not yet known. The structural magnetic resonance imaging data from 69 children and adolescents with FASD and 58 nonexposed controls collected from 3 sites were examined using FreeSurfer to detect cortical thickness changes across the entire brain in FASD and their associations with facial dysmorphology. Controlling for brain size, subjects with FASD showed significantly thicker cortices than controls in several frontal, temporal, and parietal regions. Analyses conducted within site further revealed prominent group differences in left inferior frontal cortex within all 3 sites. In addition, increased inferior frontal thickness was significantly correlated with reduced palpebral fissure length. Consistent with previous reports, findings of this study are supportive of regional increases in cortical thickness serving as a biomarker for disrupted brain development in FASD. Furthermore, the significant associations between thickness and dysmorphic measures suggest that the severity of brain anomalies may be reflected by that of the face.
    Cerebral Cortex 07/2011; 22(5):1170-9. · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Individuals with heavy prenatal alcohol exposure can experience significant deficits in cognitive and psychosocial functioning and alterations in brain structure that persist into adulthood. In this report, data from 99 participants collected across three sites (Los Angeles and San Diego, California, and Cape Town, South Africa) were analyzed to examine relationships between brain structure, neurocognitive function, facial morphology, and maternal reports of quantities of alcohol consumption during the first trimester. Across study sites, we found highly significant volume reductions in the FASD group for all of the brain regions evaluated. After correcting for scan location, age, and total brain volume, these differences remained significant in some regions of the basal ganglia and diencephalon. In alcohol-exposed subjects, we found that smaller palpebral fissures were significantly associated with reduced volumes in the ventral diencephalon bilaterally, that greater dysmorphology of the philtrum predicted smaller volumes in basal ganglia and diencephalic structures, and that lower IQ scores were associated with both smaller basal ganglia volumes and greater facial dysmorphology. In subjects from South Africa, we found a significant negative correlation between intracranial volume and total number of drinks per week in the first trimester. These results corroborate previous reports that prenatal alcohol exposure is particularly toxic to basal ganglia and diencephalic structures. We extend previous findings by illustrating relationships between specific measures of facial dysmorphology and the volumes of particular subcortical structures, and for the first time show that continuous measures of maternal alcohol consumption during the first trimester relates to overall brain volume reduction.
    Human Brain Mapping 03/2011; 33(4):920-37. · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic resonance imaging (MRI) techniques, such as magnetic resonance microscopy (MRM), diffusion tensor imaging (DTI), and magnetic resonance spectroscopy (MRS), have recently been applied to the study of both normal and abnormal structure and neurochemistry in small animals. Herein, findings from studies in which these methods have been used for the examination of animal models of Fetal Alcohol Spectrum Disorder (FASD) are discussed. Emphasis is placed on results of imaging studies in fetal and postnatal mice that have highlighted the developmental stage dependency of prenatal ethanol exposure-induced CNS defects. Consideration is also given to the promise of methodological advances to allow in vivo studies of aberrant brain and behavior relationships in model animals and to the translational nature of this work.
    Neuropsychology Review 03/2011; 21(2):167-85. · 6.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alcohol (ethanol) is a teratogen known to affect the developing eyes, face, and brain. Among the ocular defects in fetal alcohol spectrum disorder (FASD) are microphthalmia and optic nerve hypoplasia. Employing zebrafish as an FASD model provides an excellent system to analyze the molecular basis of prenatal ethanol exposure-induced defects because embryos can be exposed to ethanol at defined developmental stages and affected genetic pathways can be examined. We have previously shown that disruption of agrin function in zebrafish embryos produces microphthalmia and optic nerve hypoplasia. Zebrafish embryos were exposed to varying concentrations of ethanol in the absence or presence of morpholino oligonucleotides (MOs) that disrupt agrin function. In situ hybridization was used to analyze ocular gene expression as a consequence of ethanol exposure and agrin knockdown. Morphologic analysis of zebrafish embryos was also conducted. Acute ethanol exposure induces diminished agrin gene expression in zebrafish eyes and, importantly, combined treatment with subthreshold levels of agrin MO and ethanol produces pronounced microphthalmia, markedly reduces agrin gene expression, and perturbs Pax6a and Mbx gene expression. Microphthalmia produced by combined agrin MO and ethanol treatment was rescued by sonic hedgehog (Shh) mRNA overexpression, suggesting that ethanol-mediated disruption of agrin expression results in disrupted Shh function. These studies illustrate the strong potential for using zebrafish as a model to aid in defining the molecular basis for ethanol's teratogenic effects. The results of this work suggest that agrin expression and function may be a target of ethanol exposure during embryogenesis.
    Birth Defects Research Part A Clinical and Molecular Teratology 02/2011; 91(3):129-41. · 2.27 Impact Factor
  • Kathleen K. Sulik
    Neurotoxicology and Teratology 01/2011; 33(4):494. · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The imaging techniques magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and magnetic resonance spectroscopy (MRS) provide valuable tools for studying brain structure and neurochemistry in fetal alcohol spectrum disorders (FASD). Although the application of magnetic resonance-based methodologies to the study of FASD in animal models is in its infancy, it already has provided new clinically relevant insights and holds significant promise to further extend our understanding of alcohol's effects on the developing fetus.
    Alcohol research & health: the journal of the National Institute on Alcohol Abuse and Alcoholism 01/2011; 34(1):99-105. · 0.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The application of magnetic resonance microscopy (MRM) to the study of normal and abnormal prenatal mouse development has facilitated discovery of dysmorphology following prenatal ethanol insult. The current analyses extend this work, providing a regional brain volume-based description of normal brain growth and illustrating the consequences of gestational day (GD) 10 ethanol exposure in the fetal mouse. To assess normal growth, control C57Bl/6J fetuses collected on GD 16, GD 16.5, and GD 17 were scanned using a 9.4-T magnet, resulting in 29-μm isotropic resolution images. For the ethanol teratogenicity studies, C57Bl/6J dams were administered intraperitoneal ethanol (2.9 g/kg) at 10 days, 0 hr, and 10 days, 4 hr, after fertilization, and fetuses were collected for analyses on GD 17. From individual MRM scans, linear measurements and regional brain volumes were determined and compared. In control fetuses, each of the assessed brain regions increased in volume, whereas ventricular volumes decreased between GD 16 and GD 17. Illustrating a global developmental delay, prenatal ethanol exposure resulted in reduced body volumes, crown-rump lengths, and a generalized decrease in regional brain volumes compared with GD 17 controls. However, compared with GD 16.5, morphologically matched controls, ethanol exposure resulted in volume increases in the lateral and third ventricles as well as a disproportionate reduction in cortical volume. The normative data collected in this study facilitate the distinction between GD 10 ethanol-induced developmental delay and frank dysmorphology. This work illustrates the utility of MRM-based analyses for developmental toxicology studies and extends our knowledge of the stage-dependency of ethanol teratogenesis.
    Birth Defects Research Part A Clinical and Molecular Teratology 11/2010; 88(11):953-64. · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The continuing education course on Developmental Neurotoxicity Testing (DNT) was designed to communicate current practices for DNT neuropathology, describe promising innovations in quantitative analysis and noninvasive imaging, and facilitate a discussion among experienced neuropathologists and regulatory scientists regarding suitable DNT practices. Conventional DNT neuropathology endpoints are qualitative histopathology and morphometric endpoints of particularly vulnerable sites (e.g., cerebral, cerebellar, or hippocampal thickness). Novel imaging and stereology measurements hold promise for automated analysis of factors that cannot be effectively examined in routinely processed specimens (e.g., cell numbers, fiber tract integrity). The panel recommended that dedicated DNT neuropathology data sets be acquired on a minimum of 8 sections (for qualitative assessment) or 3 sections (for quantitative linear and stereological analyses) using a small battery of stains to examine neurons and myelin. Where guidelines permit discretion, immersion fixation is acceptable for younger animals (postnatal day 22 or earlier), and peripheral nerves may be embedded in paraffin. Frequent concerns regarding DNT data sets include false-negative outcomes due to processing difficulties (e.g., lack of concordance among sections from different animals) and insensitive analytical endpoints (e.g., qualitative evaluation) as well as false-positive results arising from overinterpretation or misreading by inexperienced pathologists.
    Toxicologic Pathology 11/2010; 39(1):289-93. · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ethanol exposure on gestational day (GD) 7 in the mouse has previously been shown to result in ventromedian forebrain deficits along with facial anomalies characteristic of fetal alcohol syndrome (FAS). To further explore ethanol's teratogenic effect on the ventromedian forebrain in this mouse model, scanning electron microscopic and histological analyses were conducted. For this, time mated C57Bl/6J mice were injected with 2.9g/kg ethanol or saline twice, at a 4h interval, on their 7th day of pregnancy. On GD 12.5, 13 and 17, control and ethanol-exposed specimens were collected and processed for light and scanning electron microscopic analyses. Gross morphological changes present in the forebrains of ethanol-exposed embryos included cerebral hemispheres that were too close in proximity or rostrally united, enlarged foramina of Monro, enlarged or united lateral ventricles, and varying degrees of hippocampal and ventromedian forebrain deficiency. In GD 12.5 control and ethanol-exposed embryos, in situ hybridization employing probes for Nkx2.1 or Fzd8 to distinguish the preoptic area and medial ganglionic eminences (MGEs) from the lateral ganglionic eminences, respectively, confirmed the selective loss of ventromedian tissues. Immunohistochemical labeling of oligodendrocyte progenitors with Olig2, a transcription factor necessary for their specification, and of GABA, an inhibitory neurotransmitter, showed ethanol-induced reductions in both. To investigate later consequences of ventromedian forebrain loss, MGE-derived somatostatin-expressing interneurons in the subpallial region of GD 17 fetal mice were examined, with results showing that the somatostatin-expressing interneurons that were present were dysmorphic in the ethanol-exposed fetuses. The potential functional consequences of this insult are discussed.
    Neurotoxicology and Teratology 11/2010; 33(2):231-9. · 3.18 Impact Factor

Publication Stats

4k Citations
361.62 Total Impact Points

Institutions

  • 1979–2014
    • University of North Carolina at Chapel Hill
      • • Department of Cell Biology and Physiology
      • • Bowles Center for Alcohol Studies
      • • Department of Medicine
      • • School of Dentistry
      North Carolina, United States
  • 2013
    • Harvard Medical School
      • Department of Neurology
      Boston, MA, United States
  • 2011
    • University of California, Los Angeles
      • Department of Neurology
      Los Angeles, CA, United States
  • 2009
    • Duke University
      Durham, North Carolina, United States
  • 1995–1996
    • Duke University Medical Center
      • Division of Endocrinology, Metabolism, and Nutrition
      Durham, NC, United States
  • 1994
    • National Institute of Environmental Health Sciences
      Durham, North Carolina, United States
  • 1990
    • West Virginia University
      • Department of Otolaryngology, Head and Neck Surgery
      Morgantown, WV, United States
    • University of California, San Francisco
      San Francisco, California, United States
  • 1988
    • University of Sydney
      • Discipline of Biomedical Science
      Sydney, New South Wales, Australia