Mathias Viard

NCI-Frederick, Maryland, United States

Are you Mathias Viard?

Claim your profile

Publications (45)216.11 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipid conjugated peptides have advanced the understanding of membrane protein functions and the roles of lipids in the membrane milieu. These lipo-peptides modulate various biological systems such as viral fusion. A single function has been suggested for the lipid, which is binding to the membrane, thus elevating the peptide's local concentration at the target site. Here, we challenged this argument by exploring in-depth the antiviral mechanism of lipo-peptides, which are comprised of sphinganine, the lipid backbone of dihydrosphingomyelin (DHSM), and an HIV-1 envelope derived peptide. Surprisingly, we discovered a partnership between the lipid and the peptide that impaired early membrane fusion events by reducing CD4 receptor lateral diffusion and HIV-1 fusion peptide mediated lipid mixing. Moreover, only the joint function of sphinganine and its conjugate peptide disrupted HIV-1 fusion protein assembly and folding at the later fusion steps. Via imaging techniques we revealed for the first time the direct localization of these lipo-peptides to the virus-cell and cell-cell contact sites. Overall, the findings may be implicative to lipid-protein interactions in various biological systems and may help uncover DHSM's role that is elevated in HIV-1 and its target cell membranes.
    Biochemical Journal 04/2014; 461:213-222. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Conspectus The use of RNAs as scaffolds for biomedical applications has several advantages compared with other existing nanomaterials. These include (i) programmability, (ii) precise control over folding and self-assembly, (iii) natural functionalities as exemplified by ribozymes, riboswitches, RNAi, editing, splicing, and inherent translation and transcription control mechanisms, (iv) biocompatibility, (v) relatively low immune response, and (vi) relatively low cost and ease of production. We have tapped into several of these properties and functionalities to construct RNA-based functional nanoparticles (RNA NPs). In several cases, the structural core and the functional components of the NPs are inherent in the same construct. This permits control over the spatial disposition of the components, intracellular availability, and precise stoichiometry. To enable the generation of RNA NPs, a pipeline is being developed. On one end, it encompasses the rational design and various computational schemes that promote design of the RNA-based nanoconstructs, ultimately producing a set of sequences consisting of RNA or RNA-DNA hybrids, which can assemble into the designed construct. On the other end of the pipeline is an experimental component, which takes the produced sequences and uses them to initialize and characterize their proper assembly and then test the resulting RNA NPs for their function and delivery in cell culture and animal models. An important aspect of this pipeline is the feedback that constantly occurs between the computational and the experimental parts, which synergizes the refinement of both the algorithmic methodologies and the experimental protocols. The utility of this approach is depicted by the several examples described in this Account (nanocubes, nanorings, and RNA-DNA hybrids). Of particular interest, from the computational viewpoint, is that in most cases, first a three-dimensional representation of the assembly is produced, and only then are algorithms applied to generate the sequences that will assemble into the designated three-dimensional construct. This is opposite to the usual practice of predicting RNA structures from a given sequence, that is, the RNA folding problem. To be considered is the generation of sequences that upon assembly have the proper intra- or interstrand interactions (or both). Of particular interest from the experimental point of view is the determination and characterization of the proper thermodynamic, kinetic, functionality, and delivery protocols. Assembly of RNA NPs from individual single-stranded RNAs can be accomplished by one-pot techniques under the proper thermal and buffer conditions or, potentially more interestingly, by the use of various RNA polymerases that can promote the formation of RNA NPs cotransciptionally from specifically designed DNA templates. Also of importance is the delivery of the RNA NPs to the cells of interest in vitro or in vivo. Nonmodified RNAs rapidly degrade in blood serum and have difficulties crossing biological membranes due to their negative charge. These problems can be overcome by using, for example, polycationic lipid-based carriers. Our work involves the use of bolaamphiphiles, which are amphipathic compounds with positively charged hydrophilic head groups at each end connected by a hydrophobic chain. We have correlated results from molecular dynamics computations with various experiments to understand the characteristics of such delivery agents.
    Accounts of Chemical Research 04/2014; · 20.83 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Control over the simultaneous delivery of different functionalities and their synchronized intracellular activation can greatly benefit the fields of RNA and DNA biomedical nanotechnologies and allow for the production of nanoparticles and various switching devices with controllable functions. We present a system of multiple split functionalities embedded in the cognate pairs of RNA-DNA hybrids which are programmed to recognize each other, re-associate and form a DNA duplex while also releasing the split RNA fragments which upon association regain their original functions. Simultaneous activation of three different functionalities (RNAi, Förster resonance energy transfer and RNA aptamer) confirmed by multiple in vitro and cell culture experiments prove the concept. To automate the design process, a novel computational tool that differentiates between the thermodynamic stabilities of RNA-RNA, RNA-DNA and DNA-DNA duplexes was developed. Moreover, here we demonstrate that besides being easily produced by annealing synthetic RNAs and DNAs, the individual hybrids carrying longer RNAs can be produced by RNA polymerase II-dependent transcription of single-stranded DNA templates.
    Nucleic Acids Research 11/2013; · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Split-protein systems, an approach that relies on fragmentation of proteins with their further conditional re-association to form functional complexes, are increasingly used for various biomedical applications. This approach offers tight control of protein functions and improved detection sensitivity. Here we report a similar technique based on a pair of RNA–DNA hybrids that can be used generally for triggering different split functionalities. Individually, each hybrid is inactive but when two cognate hybrids re-associate, different functionalities are triggered inside mammalian cells. As a proof of concept, this work mainly focuses on the activation of RNA interference. However, the release of other functionalities (such as resonance energy transfer and RNA aptamer) is also shown. Furthermore, in vivo studies demonstrate a significant uptake of the hybrids by tumours together with specific gene silencing. This split-functionality approach presents a new route in the development of ‘smart’ nucleic acid-based nanoparticles and switches for various biomedical applications.
    Nature Nanotechnology 03/2013; 8:296-304. · 31.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human apolipoprotein-B mRNA-editing catalytic polypeptide-like 3G (A3G) is a cytidine deaminase that restricts retroviruses, endogenous retro-elements and DNA viruses. A3G plays a key role in the anti-HIV-1 innate cellular immunity. The HIV-1 Vif protein counteracts A3G mainly by leading A3G towards the proteosomal machinery and by direct inhibition of its enzymatic activity. Both activities involve direct interaction between Vif and A3G. Disrupting the interaction between A3G and Vif may rescue A3G antiviral activity and inhibit HIV-1 propagation. Here, mapping the interaction sites between A3G and Vif by peptide array screening revealed distinct regions in Vif important for A3G binding, including the N-terminal domain (NTD), C-terminal domain (CTD) and residues 83-99. The Vif-binding sites in A3G included 12 different peptides that showed strong binding to either full-length Vif, Vif CTD or both. Sequence similarity was found between Vif-binding peptides from the A3G CTD and NTD. A3G peptides were synthesized and tested for their ability to counteract Vif action. A3G 211-225 inhibited HIV-1 replication in cell culture and impaired Vif dependent A3G degradation. In vivo co-localization of full-length Vif with A3G 211-225 was demonstrated by use of FRET. This peptide has the potential to serve as an anti-HIV-1 lead compound. Our results suggest a complex interaction between Vif and A3G that is mediated by discontinuous binding regions with different affinities.
    Bioorganic & medicinal chemistry 03/2013; · 2.82 Impact Factor
  • Biophysical Journal 01/2013; 104(2):350-. · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Specific small interfering RNAs (siRNAs) designed to silence different oncogenic pathways can be used for cancer therapy. However, non-modified naked siRNAs have short half-lives in blood serum and encounter difficulties in crossing biological membranes due to their negative charge. These obstacles can be overcome by using siRNAs complexed with bolaamphiphiles, consisting of two positively charged head groups that flank an internal hydrophobic chain. Bolaamphiphiles have relatively low toxicities, long persistence in the blood stream, and most importantly, in aqueous conditions can form poly-cationic micelles thus, becoming amenable to association with siRNAs. Herein, two different bolaamphiphiles with acetylcholine head groups attached to an alkyl chain in two distinct configurations are compared for their abilities to complex with siRNAs and deliver them into cells inducing gene silencing. Our explicit solvent molecular dynamics (MD) simulations showed that bolaamphiphiles associate with siRNAs due to electrostatic, hydrogen bonding, and hydrophobic interactions. These in silico studies are supported by various in vitro and in cell culture experimental techniques as well as by some in vivo studies. Results demonstrate that depending on the application, the extent of siRNA chemical protection, delivery efficiency, and further intracellular release can be varied by simply changing the type of bolaamphiphile used.Molecular Therapy-Nucleic Acids (2013) 2, e80; doi:10.1038/mtna.2013.5; published online 19 March 2013.
    Molecular therapy. Nucleic acids. 01/2013; 2:e80.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently reported on the physical characteristics of photo-triggerable liposomes containing dipalmitoylphosphatidylcholine (DPPC), and 1,2-bis (tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) carrying a photo agent as their payload. When exposed to a low-intensity 514 nm wavelength (continuous-wave) laser light, these liposomes were observed to release entrapped calcein green (Cal-G; Ex/Em 490/517 nm) but not calcein blue (Cal-B; Ex/Em 360/460 nm). In this study, we have investigated the mechanism for the 514 nm laser-triggered release of the Cal-G payload using several scavengers that are known specifically to inhibit either type I or type II photoreaction pathways. Liposomes containing DPPC:DC8,9PC: distearoylphosphatidylethanolamine (DSPE)-polyethylene glycol (PEG)-2000 (86:10:04 mole ratio) were loaded either with fluorescent (calcein) or nonfluorescent ((3)H-inulin) aqueous markers. In addition, a non-photo-triggerable formulation (1-palmitoyl-2-oleoyl phosphatidylcholine [POPC]:DC8,9PC:DSPE-PEG2000) was also studied with the same payloads. The 514 nm wavelength laser exposure on photo-triggerable liposomes resulted in the release of Cal-G but not that of Cal-B or (3)H-inulin, suggesting an involvement of a photoactivated state of Cal-G due to the 514 nm laser exposure. Upon 514 nm laser exposures, substantial hydrogen peroxide (H2O2, ≈100 μM) levels were detected from only the Cal-G loaded photo-triggerable liposomes but not from Cal-B-loaded liposomes (≤10 μM H2O2). The Cal-G release from photo-triggerable liposomes was found to be significantly inhibited by ascorbic acid (AA), resulting in a 70%-80% reduction in Cal-G release. The extent of AA-mediated inhibition of Cal-G release from the liposomes also correlated with the consumption of AA. No AA consumption was detected in the 514 nm laserexposed Cal B-loaded liposomes, thus confirming a role of photoactivation of Cal-G in liposome destabilization. Inclusion of 100 mM K3Fe(CN)6 (a blocker of electron transfer) in the liposomes substantially inhibited Cal-G release, whereas inclusion of 10 mM sodium azide (a blocker of singlet oxygen of type II photoreaction) in the liposomes failed to block 514 nm laser-triggered Cal-G release. Taken together, we conclude that low-intensity 514 nm laser-triggered release of Cal-G from photo-triggerable liposomes involves the type I photoreaction pathway.
    International Journal of Nanomedicine 01/2013; 8:2575-87. · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: HIV entry involves binding of trimeric viral envelope glycoprotein (Env) gp120/gp41 to cell surface receptors, which triggers conformational changes in Env that drive the membrane fusion reaction. The conformational landscape that the lipids and Env navigate en route to fusion has been examined by biophysical measurements on the microscale, whereas electron tomography, X-ray and NMR have provided insights into the process on the nano and atomic scales. However, the coupling between the lipid and protein pathways that give rise to fusion has not been resolved. Here we discuss the known and unknown about the overall HIV Env mediated fusion process.
    Journal of Biological Chemistry 10/2012; · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the structural organization of lipids in the cell and viral membranes is essential for elucidating mechanisms of viral fusion that lead to entry of enveloped viruses into their host cells. The HIV lipidome shows a remarkable enrichment in dihydrosphingomyelin, an unusual sphingolipid formed by a dihydrosphingosine backbone. Here we investigated the ability of dihydrosphingosine to incorporate into the site of membrane fusion mediated by the HIV envelope (Env) protein. Dihydrosphingosine as well as cholesterol, fatty acid, and tocopherol was conjugated to highly conserved, short HIV-1 Env-derived peptides with no antiviral activity otherwise. We showed that dihydrosphingosine exclusively endowed nanomolar antiviral activity to the peptides (IC(50) as low as 120 nM) in HIV-1 infection on TZM-bl cells and on Jurkat T cells, as well as in the cell-cell fusion assay. These sphingopeptides were active against enfuvirtide-resistant and wild-type CXCR4 and CCR5 tropic HIV strains. The anti-HIV activity was determined by both the peptides and their dihydrosphingosine conjugate. Moreover, their mode of action involved accumulation in the cells and viruses and binding to membranes enriched in sphingomyelin and cholesterol. The data suggest that sphingopeptides are recruited to the HIV membrane fusion site and provide a general concept in developing inhibitors of sphingolipid-mediated biological systems.-Ashkenazi, A., Viard, M., Unger, L., Blumenthal, R., Shai, Y. Sphingopeptides: dihydrosphingosine-based fusion inhibitors against wild-type and enfuvirtide-resistant HIV-1.
    The FASEB Journal 08/2012; · 5.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antigen-presenting cells (APCs) act as vehicles that transfer HIV to their target CD4(+) cells through an intercellular junction, termed the virologic synapse. The molecules that are involved in this process remain largely unidentified. In this study, we used photoaffinity labeling and a proteomic approach to identify new proteins that facilitate HIV-1 transfer. We identified ectopic mitochondrial ATP synthase as a factor that mediates HIV-1 transfer between APCs and CD4(+) target cells. Monoclonal antibodies against the β-subunit of ATP synthase inhibited APC-mediated transfer of multiple strains HIV-1 to CD4(+) target cells. Likewise, the specific inhibitors of ATPase, citreoviridin and IF1, completely blocked APC-mediated transfer of HIV-1 at the APC-target cell interaction step. Confocal fluorescent microscopy showed localization of extracellular ATP synthase at junctions between APC and CD4(+) target cells. We conclude that ectopic ATP synthase could be an accessible molecular target for inhibiting HIV-1 proliferation in vivo.
    Blood 07/2012; 120(6):1246-53. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been previously shown that enveloped viruses can be inactivated using aryl azides, such as 1-iodo-5-azidonaphthalene (INA), plus UVA irradiation with preservation of surface epitopes in the inactivated virus preparations. Prolonged UVA irradiation in the presence of INA results in ROS-species formation, which in turn results in detergent resistant viral protein fractions. Herein, we characterize the applicability of this technique to inactivate influenza. It is shown that influenza virus + INA (100 micromolar) + UVA irradiation for 30 minutes results in a significant (p < 0.05) increase in pelletablehemagglutinin after Triton X-100 treatment followed by ultracentrifugation. Additionally, characterization of the virus suspension by immunogold labeling in cryo-EM, and viral pellet characterization via immunoprecipitation with a neutralizing antibody, shows preservation of neutralization epitopes after this treatment. These orthogonally inactivated viral preparations with detergent resistant fractions are being explored as a novel route for safe, effective inactivated vaccines generated from a variety of enveloped viruses.
    Virology Journal 03/2012; 9:72. · 2.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fusion of the human immunodeficiency virus (HIV) with target cells is mediated by the gp41 subunit of the envelope protein. Mutation and deletion studies within the transmembrane domain (TMD) of intact gp41 influenced its fusion activity. In addition, current models suggest that the TMD is in proximity with the fusion peptide (FP) at the late fusion stages, but there are no direct experimental data to support this hypothesis. Here, we investigated the TMD focusing on two regions: the N-terminal containing the GxxxG motif and the C-terminal containing the GLRI motif, which is conserved among the TMDs of HIV and the T-cell receptor. Studies utilizing the ToxR expression system combined with synthetic peptides and their fluorescent analogues derived from TMD revealed that the GxxxG motif is important for TMD self-association, whereas the C-terminal region is for its heteroassociation with FP. Functionally, all three TMD peptides induced lipid mixing that was enhanced significantly upon mixing with FP. Furthermore, the TMD peptides inhibited virus-cell fusion apparently through their interaction with their endogenous counterparts. Notably, the R2E mutant (in the GLRI) was significantly less potent than the two others. Overall, our findings provide experimental evidence that HIV-1 TMD contributes to membrane assembly and function of the HIV-1 envelope. Owing to similarities between functional domains within viruses, these findings suggest that the TMDs and FPs may contribute similarly in other viruses as well.
    Biochemistry 03/2012; 51(13):2867-78. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV gp41 is a metastable protein whose native conformation is maintained in the form of a heterodimer with gp120. The non-covalently associated gp41/gp120 complex forms a trimer on the virus surface. As gp120 engages with HIV's receptor, CD4, and coreceptor, CXCR4 or CCR5, gp41 undergoes several conformational changes resulting in fusion between the viral and cellular membranes. Several lipophilic and amphiphilic domains have been shown to be critical in that process. While the obvious function of gp41 in viral entry is well-established its role in cellular membrane fusion and the link with pathogenesis are only now beginning to appear. Recent targeting of gp41 via fusion inhibitors has revealed an important role of this protein not only in viral entry but also in bystander apoptosis and HIV pathogenesis. Studies by our group and others have shown that the phenomenon of gp41-mediated hemifusion initiates apoptosis in bystander cells and correlates with virus pathogenesis. More interestingly, recent clinical evidence suggests that gp41 mutants arising after Enfuvirtide therapy are associated with CD4 cell increase and immunological benefits. This has in turn been correlated to a decrease in bystander apoptosis in our in vitro as well as in vivo assays. Although a great deal of work has been done to unravel HIV-1 gp41-mediated fusion mechanisms, the factors that regulate gp41-mediated fusion versus hemifusion and the mechanism by which hemifusion initiates bystander apoptosis are not fully understood. Further insight into these issues will open new avenues for drug development making gp41 a critical anti-HIV target both for neutralization and virus attenuation.
    Current topics in medicinal chemistry 10/2011; 11(24):2947-58. · 4.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previously we reported that hydrophobic aryl azides partition into hydrophobic regions of the viral membrane of enveloped viruses and inactivate the virus upon UVA irradiation for 2 min. Prolonged irradiation (15 min) resulted in viral protein aggregation as visualized via Western blot analysis, due to reactive oxygen species (ROS) formation, with preservation of the surface antigenic epitopes. Herein, we demonstrate that these aggregates show detergent resistance and that this property may be useful towards the creation of a novel orthogonal virus inactivation strategy for use in preparing experimental vaccines. When ROS-modified HIV virus preparations were treated with 1% Triton X-100, there was an increase in the percent of viral proteins (gp41, p24) in the viral pellet after ultracentrifugation through sucrose. Transmission electron microscopy (TEM) of these detergent-resistant pellets shows some recognizable virus fragments, and immunoprecipitation studies of the gp41 aggregates suggest the aggregation is covalent in nature, involving short-range interactions.
    Virology 08/2011; 417(1):221-8. · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fusion of human immunodeficiency virus (HIV-1) with target cells is mediated by the gp41 transmembrane envelope protein. The loop region within gp41 contains 2 crucial cysteines that play an unknown role in HIV-cell fusion. On the basis of cell-cell fusion assay, using human T-cell lines [Jurkat E6-1 and Jurkat HXBc2(4)], and virus-cell fusion assay, using fully infectious HIV-1 HXBc2 virus and TZM-bl human cell line, we provide evidence that the oxidation state of the disulfide bond within a loop domain peptide determines its activity. The oxidized (closed) form inhibits fusion, while the reduced (opened) form enhances hemifusion. These opposite activities reach 60% difference in viral fusion. Both forms of the loop domain interact with gp41: the opened form enhances gp41 folding into a bundle, whereas the closed form inhibits this folding. Therefore, the transformation of the cysteines from a reduced to an oxidized state enables the loop to convert from opened to closed conformations, which assists gp41 to fold and induces hemifusion. The significant conservation of the loop region within many envelope proteins suggests a general mechanism, which is exploited by viruses to enhance entry into their host cells.
    The FASEB Journal 03/2011; 25(7):2156-66. · 5.70 Impact Factor
  • Biophysical Journal 01/2011; 100(3). · 3.67 Impact Factor
  • Biophysical Journal 01/2011; 100(3). · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The interactions between the N- and C-terminal heptad repeat (NHR and CHR) regions of the human immunodeficiency virus (HIV-1) glycoprotein gp41 create a structure comprising a 6-helix bundle (SHB). A sequence in the SHB named the "pocket" is crucial for the SHB's stability and for the fusion inhibitory activity of 36-residue NHR peptide N36. We report that a short 27-residue peptide, N27, which lacks the pocket sequence, exhibits potent inhibitory activity in both cell-cell and virus-cell fusion assays when fatty acids were conjugated to its N but not C terminus. Furthermore, mutations in the positions that prevent interaction with the CHR but not with the NHR resulted in a dramatic reduction in N27 activity. These data support a mechanism in which N27 mainly targets the CHR rather than the internal NHR coiled-coil, reveal the N-terminal edge of the endogenous core structure in situ and hence complement our recent findings of the C-terminal edge of the core, and provide a new approach for designing short inhibitors from the NHR region of other lentiviruses due to similarities in their envelope proteins.
    The FASEB Journal 11/2010; 24(11):4196-202. · 5.70 Impact Factor

Publication Stats

828 Citations
216.11 Total Impact Points

Institutions

  • 2005–2013
    • NCI-Frederick
      Maryland, United States
  • 2002–2013
    • National Cancer Institute (USA)
      • • Center for Cancer Research
      • • CCR Nanobiology Program
      Maryland, United States
    • National Institutes of Health
      • • Center for Cancer Research
      • • Laboratory of Experimental Gerontology (LEG)
      Maryland, United States
    • SAIC
      Maryland, United States
  • 2010–2012
    • Weizmann Institute of Science
      • Department of Biological Chemistry
      Israel
  • 2011
    • Texas Tech University Health Sciences Center
      • Department of Biomedical Sciences
      Lubbock, TX, United States
  • 2002–2011
    • Leidos Biomedical Research
      Maryland, United States
  • 2007–2008
    • Cancer Research Institute
      New York City, New York, United States
  • 2003
    • National Eye Institute
      Maryland, United States
  • 2001
    • Université Paris-Sud 11
      Orsay, Île-de-France, France