Yoav Barak

Weizmann Institute of Science, Israel

Are you Yoav Barak?

Claim your profile

Publications (37)126.82 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Interactions between cohesin and dockerin modules play a crucial role in the assembly of multi-enzyme cellulosome complexes. While intra-species cohesin and dockerin modules bind in general with high affinity but indiscriminately, cross-species binding is rare. Here, we combined ELISA-based experiments with Rosetta-based computational design to evaluate the contribution of distinct residues at the Clostridium thermocellum (Ct) cohesin- dockerin interface to binding affinity, specificity and promiscuity. We found that single mutations can show distinct and significant effects on binding affinity and specificity. In particular, mutations at cohesin position N37 show dramatic variability in their effect on dockerin binding affinity and specificity: The N37A mutant binds promiscuously both to cognate (Ct) as well as to non-cognate C. cellulolyticum (Cc) dockerin. N37L in turn switches binding specificity: compared to the wild-type Ct cohesin, this mutant shows significantly increased preference for Cc dockerin, combined with strongly reduced binding to its cognate Ct dockerin. The observation that a single mutation can overcome the naturally observed specificity barrier provides insights into the evolutionary dynamics of this system that allows rapid modulation of binding specificity within a high-affinity background. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 04/2015; DOI:10.1074/jbc.M115.651208 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellulosomes are large multicomponent cellulose-degrading assemblies found on the surfaces of cellulolytic microorganisms. Often containing hundreds of components, the self-assembly of cellulosomes is mediated by the ultra-high-affinity cohesin–dockerin interaction, which allows them to adopt the complex architectures necessary for degrading recalcitrant cellulose. Better understanding of how the cellulosome assembles and functions and what kinds of structures it adopts will further effort to develop industrial applications of cellulosome components, including their use in bioenergy production. Ruminococcus flavefaciens is a well-studied anaerobic cellulolytic bacteria found in the intestinal tracts of ruminants and other herbivores. Key to cellulosomal self-assembly in this bacterium is the dockerin ScaADoc, found on the non-catalytic structural subunit scaffoldin ScaA, which is responsible for assembling arrays of cellulose-degrading enzymes. This work expands on previous efforts by conducting a series of binding studies on ScaADoc constructs that contain mutations in their cohesin recognition interface, in order to identify which residues play important roles in binding. Molecular dynamics simulations were employed to gain insight into the structural basis for our findings. A specific residue pair in the first helix of ScaADoc, as well as a glutamate near the C-terminus, was identified to be essential for cohesin binding. By advancing our understanding of the cohesin binding of ScaADoc, this study serves as a foundation for future work to more fully understand the structural basis of cellulosome assembly in R. flavefaciens. Copyright © 2015 John Wiley & Sons, Ltd.
    Journal of Molecular Recognition 01/2015; DOI:10.1002/jmr.2380 · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellulosic waste represents a significant and underutilized carbon source for the biofuel industry. Owing to the recalcitrance of crystalline cellulose to enzymatic degradation, it is necessary to design economical methods of liberating the fermentable sugars required for bioethanol production. One route towards unlocking the potential of cellulosic waste lies in a highly complex class of molecular machines, the cellulosomes. Secreted mainly by anaerobic bacteria, cellulosomes are structurally diverse, cell surface-bound protein assemblies that can contain dozens of catalytic components. The key feature of the cellulosome is its modularity, facilitated by the ultra-high affinity cohesin-dockerin interaction. Due to the enormous number of cohesin and dockerin modules found in a typical cellulolytic organism, a major bottleneck in understanding the biology of cellulosomics is the purification of each cohesin- and dockerin-containing component, prior to analyses of their interaction. As opposed to previous approaches, the present study utilized proteins contained in unpurified whole-cell extracts. This strategy was made possible due to an experimental design that allowed for the relevant proteins to be "purified" via targeted affinity interactions as a function of the binding assay. The approach thus represents a new strategy, appropriate for future medium- to high-throughput screening of whole genomes, to determine the interactions between cohesins and dockerins. We have selected the cellulosome of Acetivibrio cellulolyticus for this work due to its exceptionally complex cellulosome systems and intriguing diversity of its cellulosomal modular components. Containing 41 cohesins and 143 dockerins, A. cellulolyticus has one of the largest number of potential cohesin-dockerin interactions of any organism, and contains unusual and novel cellulosomal features. We have surveyed a representative library of cohesin and dockerin modules spanning the cellulosome's total cohesin and dockerin sequence diversity, emphasizing the testing of unusual and previously-unknown protein modules. The screen revealed several novel cell-bound cellulosome architectures, thus expanding on those previously known, as well as soluble cellulose systems that are not bound to the bacterial cell surface. This study sets the stage for screening the entire complement of cellulosomal components from A. cellulolyticus and other organisms with large cellulosome systems. The knowledge gained by such efforts brings us closer to understanding the exceptional catalytic abilities of cellulosomes and will allow the use of novel cellulosomal components in artificial assemblies and in enzyme cocktails for sustainable energy-related research programs.
    01/2014; 2:e636. DOI:10.7717/peerj.636
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Select cellulolytic bacteria produce multi-enzymatic cellulosome complexes that bind to the plant cell wall and catalyze its efficient degradation. The multi-modular interconnecting cellulosomal subunits comprise dockerin-containing enzymes that bind cohesively to cohesin-containing scaffoldins. The organization of the modules into functional polypeptides is achieved by intermodular linkers of different lengths and composition, which provide flexibility to the complex and determine its overall architecture. Using a synthetic biology approach, we systematically investigated the spatial organization of the scaffoldin subunit and its effect on cellulose hydrolysis by designing a combinatorial library of recombinant trivalent designer scaffoldins, which contain a carbohydrate-binding module (CBM) and 3 divergent cohesin modules. The positions of the individual modules were shuffled into 24 different arrangements of chimaeric scaffoldins. This basic set was further extended into three sub-sets for each arrangement with intermodular linkers ranging from zero (no linkers), 5 (short linkers) and native linkers of 27-35 amino acids (long linkers). Of the 72 possible scaffoldins, 56 were successfully cloned and 45 of them expressed, representing 14 full sets of chimaeric scaffoldins. The resultant 42-component scaffoldin library was used to assemble designer cellulosomes, comprising three model C. thermocellum cellulases. Activities were examined using Avicel as a pure microcrystalline cellulose substrate and pretreated cellulose-enriched wheat straw as a model substrate derived from a native source. All scaffoldin combinations yielded active trivalent designer cellulosome assemblies on both substrates that exceeded the levels of the free enzyme systems. A preferred modular arrangement for the trivalent designer scaffoldin was not observed for the three enzymes used in this study, indicating that they could be integrated at any position in the designer cellulosome without significant effect on cellulose-degrading activity. Designer cellulosomes assembled with the long-linker scaffoldins achieved higher levels of activity, compared to those assembled with short-and no-linker scaffoldins. The results demonstrate the robustness of the cellulosome system. Long intermodular scaffoldin linkers are preferable, thus leading to enhanced degradation of cellulosic substrates, presumably due to the increased flexibility and spatial positioning of the attached enzymes in the complex. These findings provide a general basis for improved designer cellulosome systems as a platform for bioethanol production.
    Biotechnology for Biofuels 12/2013; 6(1):182. DOI:10.1186/1754-6834-6-182 · 6.22 Impact Factor
  • Biophysical Journal 01/2013; 104(2):19a. DOI:10.1016/j.bpj.2012.11.135 · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cellulosome is a large extracellular multi-enzyme complex that facilitates the efficient hydrolysis and degradation of crystalline cellulosic substrates. During the course of our studies on the cellulosome of the rumen bacterium Ruminococcus flavefaciens, we focused on the critical ScaA dockerin (ScaADoc), the unique dockerin that incorporates the primary enzyme-integrating ScaA scaffoldin into the cohesin-bearing ScaB adaptor scaffoldin. In the absence of a high-resolution structure of the ScaADoc module, we generated a computational model, and, upon its analysis, we were surprised to discover a putative stacking interaction between an N-terminal Trp and a C-terminal Pro, which we termed intramolecular clasp. In order to verify the existence of such an interaction, these residues were mutated to alanine. Circular dichroism spectroscopy, intrinsic tryptophan and ANS fluorescence, and NMR spectroscopy indicated that mutation of these residues has a destabilizing effect on the functional integrity of the Ca(2+)-bound form of ScaADoc. Analysis of recently determined dockerin structures from other species revealed the presence of other well-defined intramolecular clasps, which consist of different types of interactions between selected residues at the dockerin termini. We propose that this thematic interaction may represent a major distinctive structural feature of the dockerin module.
    01/2013; 3:398-405. DOI:10.1016/j.fob.2013.09.006
  • Source
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellulose-degrading enzyme systems are of significant interest from both a scientific and technological perspective due to the diversity of cellulase families, their unique assembly and substrate binding mechanisms, and their potential applications in several key industrial sectors, notably cellulose hydrolysis for second-generation biofuel production. Particularly fascinating are cellulosomes, the multimodular extracellular complexes produced by numerous anaerobic bacteria. Using single-molecule force spectroscopy, we analyzed the mechanical stability of the intermolecular interfaces between the cohesin and the dockerin modules responsible for self-assembly of the cellulosomal components into the multienzyme complex. The observed cohesin-dockerin rupture forces (>120 pN) are among the highest reported for a receptor-ligand system to date. Using an atomic force microscope protocol that quantified single-molecule binding activity, we observed force-induced dissociation of calcium ions from the duplicated loop-helix F-hand motif located within the dockerin module, which in the presence of EDTA resulted in loss of affinity to the cohesin partner. A cohesin amino acid mutation (D39A) that eliminated hydrogen bonding with the dockerin's critically conserved serine residues reduced the observed rupture forces. Consequently, no calcium loss occurred and dockerin activity was maintained throughout multiple forced dissociation events. These results offer insights at the single-molecule level into the stability and folding of an exquisite class of high-affinity protein-protein interactions that dictate fabrication and architecture of cellulose-degrading molecular machines.
    Proceedings of the National Academy of Sciences 11/2012; 109(50). DOI:10.1073/pnas.1211929109 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The interaction between the cohesin and dockerin modules serves to attach cellulolytic enzymes (carrying dockerins) to non-catalytic scaffoldin units (carrying multiple cohesins) in cellulosome, a multienzyme plant cell-wall degrading complex. This interaction is species-specific, for example, the enzyme-borne dockerin from Clostridium thermocellum bacteria binds to scaffoldin cohesins from the same bacteria but not to cohesins from Clostridium cellulolyticum and vice versa. We studied the role of interface residues, contributing either to affinity or specificity, by mutating these residues on the cohesin counterpart from C. thermocellum. The high affinity of the cognate interactions makes it difficult to evaluate the effect of these mutations by common methods used for measuring protein-protein interactions, especially when subtle discrimination between the mutants is needed. We described in this article an approach based on indirect enzyme-linked immunosorbent assay (ELISA) that is able to detect differences in binding between the various cohesin mutants, whereas surface plasmon resonance and standard ELISA failed to distinguish between high-affinity interactions. To be able to calculate changes in energy of binding (ΔΔG) and dissociation constants (K(d) ) of mutants relative to wild type, a pre-equilibrium step was added to the standard indirect ELISA procedure. Thus, the cohesin-dockerin interaction under investigation occurs in solution rather than between soluble and immobilized proteins. Unbound dockerins are then detected through their interaction with immobilized cohesins. Because our method allows us to assess the effect of mutations on particularly tenacious protein-protein interactions much more accurately than do other prevalent methods used to measure binding affinity, we therefore suggest this approach as a method of choice for comparing relative binding in high-affinity interactions. Copyright © 2012 John Wiley & Sons, Ltd.
    Journal of Molecular Recognition 11/2012; 25(11):616-22. DOI:10.1002/jmr.2178 · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lignocellulosic biomass, the most abundant polymer on Earth, is typically composed of three major constituents: cellulose, hemicellulose, and lignin. The crystallinity of cellulose, hydrophobicity of lignin, and encapsulation of cellulose by the lignin-hemicellulose matrix are three major factors that contribute to the observed recalcitrance of lignocellulose. By means of designer cellulosome technology, we can overcome the recalcitrant properties of lignocellulosic substrates and thus increase the level of native enzymatic degradation. In this context, we have integrated six dockerin-bearing cellulases and xylanases from the highly cellulolytic bacterium, Thermobifida fusca, into a chimeric scaffoldin engineered to bear a cellulose-binding module and the appropriate matching cohesin modules. The resultant hexavalent designer cellulosome represents the most elaborate artificial enzyme composite yet constructed, and the fully functional complex achieved enhanced levels (up to 1.6-fold) of degradation of untreated wheat straw compared to those of the wild-type free enzymes. The action of these designer cellulosomes on wheat straw was 33 to 42% as efficient as the natural cellulosomes of Clostridium thermocellum. In contrast, the reduction of substrate complexity by chemical or biological pretreatment of the substrate removed the advantage of the designer cellulosomes, as the free enzymes displayed higher levels of activity, indicating that enzyme proximity between these selected enzymes was less significant on pretreated substrates. Pretreatment of the substrate caused an increase in activity for all the systems, and the native cellulosome completely converted the substrate into soluble saccharides.
    mBio 10/2012; 3(6). DOI:10.1128/mBio.00508-12 · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Microorganisms employ a multiplicity of enzymes to efficiently degrade the composite structure of plant cell wall cellulosic polysaccharides. These remarkable enzyme systems include glycoside hydrolases (cellulases, hemicellulases), polysaccharide lyases, and the carbohydrate esterases. To accomplish this challenging task, several strategies are commonly observed either separately or in combination. These include free enzyme systems, multifunctional enzymes, and multi-enzyme self-assembled designer cellulosome complexes. Results In order to compare these different paradigms, we employed a synthetic biology approach to convert two different cellulases from the free enzymatic system of the well-studied bacterium, Thermobifida fusca, into bifunctional enzymes with different modular architectures. We then examined their performance compared to those of the combined parental free-enzyme and equivalent designer-cellulosome systems. The results showed that the cellulolytic activity displayed by the different architectures of the bifunctional enzymes was somewhat inferior to that of the wild-type free enzyme system. Conclusions The activity exhibited by the designer cellulosome system was equal or superior to that of the free system, presumably reflecting the combined proximity of the enzymes and high flexibility of the designer cellulosome components, thus enabling efficient enzymatic activity of the catalytic modules.
    Biotechnology for Biofuels 10/2012; 5(1):78. DOI:10.1186/1754-6834-5-78 · 6.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: β-Xylosidases are hemicellulases that hydrolyze short xylo-oligosaccharides into xylose units, thus complementing endoxylanase degradation of the hemicellulose component of lignocellulosic substrates. Here, we describe the cloning, characterization, and kinetic analysis of a glycoside hydrolase family 43 β-xylosidase (Xyl43A) from the aerobic cellulolytic bacterium, Thermobifida fusca. Temperature and pH optima of 55-60 °C and 5.5-6, respectively, were determined. The apparent K(m) value was 0.55 mM, using p-nitrophenyl xylopyranoside as substrate, and the catalytic constant (k(cat)) was 6.72 s(-1). T. fusca Xyl43A contains a catalytic module at the N terminus and an ancillary module (termed herein as Module-A) of undefined function at the C terminus. We expressed the two recombinant modules independently in Escherichia coli and examined their remaining catalytic activity and binding properties. The separation of the two Xyl43A modules caused the complete loss of enzymatic activity, whereas potent binding to xylan was fully maintained in the catalytic module and partially in the ancillary Module-A. Nondenaturing gel electrophoresis revealed a specific noncovalent coupling of the two modules, thereby restoring enzymatic activity to 66.7% (relative to the wild-type enzyme). Module-A contributes a phenylalanine residue that functions as an essential part of the active site, and the two juxtaposed modules function as a single functional entity.
    Journal of Biological Chemistry 01/2012; 287(12):9213-21. DOI:10.1074/jbc.M111.314286 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The specificity of cohesin-dockerin interactions is critically important for the assembly of cellulosomal enzymes into the multienzyme cellulolytic complex (cellulosome). In order to investigate the origins of the observed specificity, a variety of selected amino acid positions at the cohesin-dockerin interface can be subjected to mutagenesis, and a library of mutants can be constructed. In this chapter, we describe a protein-protein microarray technique based on the high affinity of a carbohydrate-binding module (CBM), attached to mutant cohesins. Using cellulose-coated glass slides, libraries of mutants can be screened for binding to complementary partners. The advantages of this tool are that crude cell lysate can be used without additional purification, and the microarray can be used for screening both large libraries as initial scanning for "positive" plates, and for small libraries, wherein individual colonies are printed on the slide. Since the time-consuming step of purifying proteins can be circumvented, the approach is also appropriate for providing molecular insight into the multicomponent organization of complex cellulosomes.
    Methods in enzymology 01/2012; 510:453-63. DOI:10.1016/B978-0-12-415931-0.00024-0 · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the past several years, major progress has been accomplished in the production of "designer cellulosomes," artificial enzymatic complexes that were demonstrated to efficiently degrade crystalline cellulose. This progress is part of a global attempt to promote biomass waste solutions and biofuel production. In designer cellulosomes, each enzyme is equipped with a dockerin module that interacts specifically with one of the cohesin modules of the chimeric scaffoldin. Artificial scaffoldins serve as docking backbones and contain a cellulose-specific carbohydrate-binding module that directs the enzymatic complex to the cellulosic substrate, and one or more cohesin modules from different natural cellulosomal species, each exhibiting a different specificity, that allows the specific incorporation of the desired matching dockerin-bearing enzymes. With natural cellulosomal components, the insertion of the enzymes in the scaffold would presumably be random, and we would not be able to control the contents of the resulting artificial cellulosome. There are an increasing number of papers describing the production of designer cellulosomes either in vitro, ex vivo, or in vivo. These types of studies are particularly intricate, and a number of such publications are less meaningful in the final analysis, as important controls are frequently excluded. In this chapter, we hope to give a complete overview of the methodologies essential for designing and examining cellulosome complexes.
    Methods in enzymology 01/2012; 510:429-52. DOI:10.1016/B978-0-12-415931-0.00023-9 · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cellulosome is a large bacterial extracellular multienzyme complex able to degrade crystalline cellulosic substrates. The complex contains catalytic and noncatalytic subunits, interconnected by high-affinity cohesin-dockerin interactions. In this chapter, we introduce an optimized method for comparative binding among different cohesins or cohesin mutants to the dockerin partner. This assay offers advantages over other methods (such as ELISA, cELIA, SPR, and ITC) for particularly high-affinity binding interactions. In this approach, the high-affinity interaction of interest occurs in the liquid phase during the equilibrated binding step, whereas the interaction with the immobilized phase is used only for detection of the unbound dockerins that remain in the solution phase. Once equilibrium conditions are reached, the change in free energy of binding (ΔΔG(binding)), as well as the affinity constant of mutants, can be estimated against the known affinity constant of the wild-type interaction. In light of the above, we propose this method as a preferred alternative for the relative quantification of high-affinity protein interactions.
    Methods in enzymology 01/2012; 510:417-28. DOI:10.1016/B978-0-12-415931-0.00022-7 · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In nature, the complex composition and structure of the plant cell wall pose a barrier to enzymatic degradation. Nevertheless, some anaerobic bacteria have evolved for this purpose an intriguing, highly efficient multienzyme complex, the cellulosome, which contains numerous cellulases and hemicellulases. The rod-like cellulose component of the plant cell wall is embedded in a colloidal blend of hemicelluloses, a major component of which is xylan. In order to enhance enzymatic degradation of the xylan component of a natural complex substrate (wheat straw) and to study the synergistic action among different xylanases, we have employed a variation of the designer cellulosome approach by fabricating a tetravalent complex that includes the three endoxylanases of Thermobifida fusca (Xyn10A, Xyn10B, and Xyn11A) and an Xyl43A β-xylosidase from the same bacterium. Here, we describe the conversion of Xyn10A and Xyl43A to the cellulosomal mode. The incorporation of the Xyl43A enzyme together with the three endoxylanases into a common designer cellulosome served to enhance the level of reducing sugars produced during wheat straw degradation. The enhanced synergistic action of the four xylanases reflected their immediate juxtaposition in the complex, and these tetravalent xylanolytic designer cellulosomes succeeded in degrading significant (~25%) levels of the total xylan component of the wheat straw substrate. The results suggest that the incorporation of xylanases into cellulosome complexes is advantageous for efficient decomposition of recalcitrant cellulosic substrates—a distinction previously reserved for cellulose-degrading enzymes.
    mBio 10/2011; 2(6). DOI:10.1128/mBio.00233-11 · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellulose, a major component of plant matter, is degraded by a cell surface multiprotein complex called the cellulosome produced by several anaerobic bacteria. This complex coordinates the assembly of different glycoside hydrolases, via a high-affinity Ca(2+)-dependent interaction between the enzyme-borne dockerin and the scaffoldin-borne cohesin modules. In this study, we characterized a new protein affinity tag, ΔDoc, a truncated version (48 residues) of the Clostridium thermocellum Cel48S dockerin. The truncated dockerin tag has a binding affinity (K(A)) of 7.7 × 10(8)M(-1), calculated by a competitive enzyme-linked assay system. In order to examine whether the tag can be used for general application in affinity chromatography, it was fused to a range of target proteins, including Aequorea victoria green fluorescent protein (GFP), C. thermocellum β-glucosidase, Escherichia coli thioesterase/protease I (TEP1), and the antibody-binding ZZ-domain from Staphylococcus aureus protein A. The results of this study significantly extend initial studies performed using the Geobacillus stearothermophilus xylanase T-6 as a model system. In addition, the enzymatic activity of a C. thermocellum β-glucosidase, purified using this approach, was tested and found to be similar to that of a β-glucosidase preparation (without the ΔDoc tag) purified using the standard His-tag. The truncated dockerin derivative functioned as an effective affinity tag through specific interaction with a cognate cohesin, and highly purified target proteins were obtained in a single step directly from crude cell extracts. The relatively inexpensive beaded cellulose-based affinity column was reusable and maintained high capacity after each cycle. This study demonstrates that deletion into the first Ca(2+)-binding loop of the dockerin module results in an efficient and robust affinity tag that can be generally applied for protein purification.
    Journal of Molecular Recognition 11/2010; 23(6):525-35. DOI:10.1002/jmr.1029 · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Designer cellulosomes are precision-engineered multienzyme complexes in which the molecular architecture and enzyme content are exquisitely controlled. This system was used to examine enzyme cooperation for improved synergy among Thermobifida fusca glycoside hydrolases. Two T. fusca cellulases, Cel48A exoglucanase and Cel5A endoglucanase, and two T. fusca xylanases, endoxylanases Xyn10B and Xyn11A, were selected as enzymatic components of a mixed cellulase/xylanase-containing designer cellulosome. The resultant mixed multienzyme complex was fabricated on a single scaffoldin subunit bearing all four enzymes. Conversion of T. fusca enzymes to the cellulosomal mode followed by their subsequent incorporation into a tetravalent cellulosome led to assemblies with enhanced activity (~2.4-fold) on wheat straw as a complex cellulosic substrate. The enhanced synergy was caused by the proximity of the enzymes on the complex compared to the free-enzyme systems. The hydrolytic properties of the tetravalent designer cellulosome were compared with the combined action of two separate divalent cellulase- and xylanase-containing cellulosomes. Significantly, the tetravalent designer cellulosome system exhibited an ~2-fold enhancement in enzymatic activity compared to the activity of the mixture of two distinct divalent scaffoldin-borne enzymes. These results provide additional evidence that close proximity between cellulases and xylanases is key to the observed concerted degradation of the complex cellulosic substrate in which the integrated enzymes complement each other by promoting access to the relevant polysaccharide components of the substrate. The data demonstrate that cooperation among xylanases and cellulases can be augmented by their integration into a single designer cellulosome.
    mBio 10/2010; 1(5). DOI:10.1128/mBio.00285-10 · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellulosomes are efficient cellulose-degradation systems produced by selected anaerobic bacteria. This multi-enzyme complex is assembled from a group of cellulases attached to a protein scaffold termed scaffoldin, mediated by a high-affinity protein-protein interaction between the enzyme-borne dockerin module and the cohesin module of the scaffoldin. The enzymatic complex is attached as a whole to the cellulosic substrate via a cellulose-binding module (CBM) on the scaffoldin subunit. In previous works, we have employed a synthetic biology approach to convert several of the free cellulases of the aerobic bacterium, Thermobifida fusca, into the cellulosomal mode by replacing each of the enzymes' CBM with a dockerin. Here we show that although family six enzymes are not a part of any known cellulosomal system, the two family six enzymes of the T. fusca system (endoglucanase Cel6A and exoglucanase Cel6B) can be converted to work as cellulosomal enzymes. Indeed, the chimaeric dockerin-containing family six endoglucanase worked well as a cellulosomal enzyme, and proved to be more efficient than the parent enzyme when present in designer cellulosomes. In stark contrast, the chimaeric family six exoglucanase was markedly less efficient than the wild-type enzyme when mixed with other T. fusca cellulases, thus indicating its incompatibility with the cellulosomal mode of action.
    Systems and Synthetic Biology 09/2010; 4(3):193-201. DOI:10.1007/s11693-010-9056-1

Publication Stats

614 Citations
126.82 Total Impact Points

Institutions

  • 2004–2015
    • Weizmann Institute of Science
      • Department of Biological Chemistry
      Israel
    • Technion - Israel Institute of Technology
      • Faculty of Biotechnology and Food Engineering
      H̱efa, Haifa District, Israel
  • 2010
    • Hebrew University of Jerusalem
      Yerushalayim, Jerusalem District, Israel
  • 2008–2010
    • Tel Aviv University
      • Department of Molecular Microbiology and Biotechnology
      Tell Afif, Tel Aviv, Israel
  • 2009
    • Cornell University
      • Department of Molecular Biology and Genetics
      Ithaca, New York, United States