V A Stepanov

Tomsk State University, Tomsk, Tomsk, Russia

Are you V A Stepanov?

Claim your profile

Publications (88)95.14 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Preeclampsia is one of the most severe gestational complications which is one of the leading causes of maternal and perinatal morbidity and mortality. A growth in the incidence of severe and combined forms of the pathology has been observed in recent years. According to modern concepts, inadequate cytotrophoblast invasion into the spiral arteries of the uterus and development of the ischemia-reperfusion syndrome in the placental tissue play the leading role in the development of preeclampsia, which is characterized by multipleorgan failure. In this regard, our work was aimed at studying the patterns of placental tissue transcriptome that are specific to females with PE and with physiological pregnancy, as well as identifying the potential promising biomarkers and molecular mechanisms of this pathology. We have identified 63 genes whose expression proved to differ significantly in the placental tissue of females with PE and with physiological pregnancy. A cluster of differentially expressed genes (DEG) whose expression level is increased in patients with preeclampsia includes not only the known candidate genes that have been identified in many other genome-wide studies (e.g., LEP, BHLHB2, SIGLEC6, RDH13, BCL6), but also new genes (ANKRD37, SYDE1, CYBA, ITGB2, etc.), which can be considered as new biological markers of preeclampsia and are of further interest. The results of a functional annotation of DEG show that the development of preeclampsia may be related to a stress response, immune processes, the regulation of cell-cell interactions, intracellular signaling cascades, etc. In addition, the features of the differential gene expression depending on preeclampsia severity were revealed. We have found evidence of the important role of the molecular mechanisms responsible for the failure of immunological tolerance and initiation of the pro-inflammatory cascade in the development of severe preeclampsia. The results obtained elaborate the concept of the pathophysiology of preeclampsia and contain the information necessary to work out measures for targeted therapy of this disease. ;
    Acta naturae. 04/2014; 6(2):71-83.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The structure of the Buryat gene pool has been studied based on the composition and frequency of Y-chromosome haplogroups in eight geographically distant populations. Eleven haplogroups have been found in the Buryat gene pool, two of which are the most frequent (N1c1 and C3d). The greatest difference in haplogroup frequencies was fixed between western and eastern Buryat samples. The evaluation of genetic diversity based on haplogroup frequencies revealed that it has low values in most of the samples. The evaluation of the genetic differentiation of the examined samples using an analysis of molecular variance (AMOVA) shows that the Buryat gene pool is highly differentiated by haplotype frequencies. Phylogenetic analysis within haplogroups N1c1 and C3d revealed a strong founder effect, i.e., reduced diversity and starlike phylogeny of the median network of haplotypes that form specific subclusters. The results of a phylogenetic analysis of the haplogroups identified common genetic components for Buryats and Mongols.
    Russian Journal of Genetics 01/2014; 50(2). · 0.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autosomal gene pools of 27 populations representing 12 ethnic groups of Siberia, Central Asia, and the Far East have been characterized for the first time using a set of eight polymorphic Alu insertions. The results of our analysis indicate a significant level of genetic diversity in populations of northern Eurasian and the considerable differentiation of their gene pool. It was shown that the frequency of the Alu (−) allele at the CD4 locus was inversely related to the magnitude of the Mongoloid component of the gene pool: the lowest and highest frequencies of the CD4 Alu deletion were recorded in Eskimos (0.012) and in Russians and Ukrainians (0.35), respectively. A gene flow analysis showed that Caucasoid populations (Russians, Tajiks, and Uzbeks), as well as Turkic ethnic groups of southern Siberia (Altaians and Tuvans), Khanty, and Mansi populations, in contrast to ethnic groups of eastern Siberia and the Far East, have been recipients of a considerable gene flow. A correlation analysis showed that genetic distances determined using polymorphic Alu insertions were correlated with the anthropological characteristics of the populations studied.
    Molecular Biology 01/2014; 48(1). · 0.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The gene-pool structure of Tuvinians was examined in terms of the composition and frequency of Y-chromosome haplogroups in five geographically distanct populations. In the Tuvinian gene pool, a total of 22 haplogroups were identified with six of these, which were the most frequent (C3c, C3*, N1b, N1c1, Q1a3, and R1a1a). It was demonstrated that eastern regions of Tuva were most different from the other regions in haplotype frequencies. The evaluation of genetic diversity based on the frequencies of biallelic haplogroups and YSTR haplotypes revealed very high diversity values for all samples. In general, the genetic diversity values identified in Tuvinians were the highest for the indigenous ethnic groups of Siberia. The evaluation of the genetic differentiation of the samples examined using the analysis of molecular variance (AMOVA) showed that the gene pool of Tuvinians was relatively poorly differentiated with respect to haplogroup frequencies. Phylogenetic analysis within haplogroup N1b revealed strong founder effect, i.e., reduced diversity and star-like phylogeny of the median network of haplotypes, which formed a separate subcluster exclusive to Tuvinians. It was demonstrated that, in Tuvinians, haplogroup N1c1 was the most heterogeneous in haplotype profile and consisted of three different haplotype clusters, demonstrating considerable differences of western population from the rest of the Tuva populations. Phylogenetic analysis of haplogroups revealed common components for Tuvinians, Khakasses, Altaians, and Mongols.
    Russian Journal of Genetics 01/2013; 49(12). · 0.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Moldova has a rich historical and cultural heritage, which may be reflected in the current genetic makeup of its population. To date, no comprehensive studies exist about the population genetic structure of modern Moldavians. To bridge this gap with respect to paternal lineages, we analyzed 37 binary and 17 multiallelic (STRs) polymorphisms on the non-recombining portion of the Y chromosome in 125 Moldavian males. In addition, 53 Ukrainians from eastern Moldova and 54 Romanians from the neighboring eastern Romania were typed using the same set of markers. In Moldavians, 19 Y chromosome haplogroups were identified, the most common being I-M423 (20.8%), R-M17* (17.6%), R-M458 (12.8%), E-v13 (8.8%), R-M269* and R-M412* (both 7.2%). In Romanians, 14 haplogroups were found including I-M423 (40.7%), R-M17* (16.7%), R-M405 (7.4%), E-v13 and R-M412* (both 5.6%). In Ukrainians, 13 haplogroups were identified including R-M17 (34.0%), I-M423 (20.8%), R-M269* (9.4%), N-M178, R-M458 and R-M73 (each 5.7%). Our results show that a significant majority of the Moldavian paternal gene pool belongs to eastern/central European and Balkan/eastern Mediterranean Y lineages. Phylogenetic and AMOVA analyses based on Y-STR loci also revealed that Moldavians are close to both eastern/central European and Balkan-Carpathian populations. The data correlate well with historical accounts and geographical location of the region and thus allow to hypothesize that extant Moldavian paternal genetic lineages arose from extensive recent admixture between genetically autochthonous populations of the Balkan-Carpathian zone and neighboring Slavic groups.
    PLoS ONE 01/2013; 8(1):e53731. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The structure of the haplotypes and linkage disequilibrium (LD) of the methylenetetrahydrofolate reductase gene (MTHFR) in 9 population groups from Northern Eurasia and populations of the international HapMap project was investigated in the present study. The data suggest that the architecture of LD in the human genome is largely determined by the evolutionary history of populations; however, the results of phylogenetic and haplotype analyses seems to suggest that in fact there may be a common "old" mechanism for the formation of certain patterns of LD. Variability in the structure of LD and the level of diversity of MTHFRhaplotypes cause a certain set of tagSNPs with an established prognostic significance for each population. In our opinion, the results obtained in the present study are of considerable interest for understanding multiple genetic phenomena: namely, the association of interpopulation differences in the patterns of LD with structures possessing a genetic susceptibility to complex diseases, and the functional significance of the pleiotropicMTHFR gene effect. Summarizing the results of this study, a conclusion can be made that the genetic variability analysis with emphasis on the structure of LD in human populations is a powerful tool that can make a significant contribution to such areas of biomedical science as human evolutionary biology, functional genomics, genetics of complex diseases, and pharmacogenomics.
    Acta naturae. 01/2012; 4(1):53-69.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Seventeen population groups within the Russian Federation were characterized for the first time using a panel of 15 genetic markers that are used for DNA identification and in forensic medical examinations. The degree of polymorphism and population diversity of microsatellite loci within the Power Plex system (Promega) in Russian populations; the distribution of alleles and genotypes within the populations of six cities and 11 ethnic groups of the Russian Federation; the levels of intra- and interpopulation genetic differentiation of population; genetic relations between populations; and the identification and forensic medical characteristics of the system of markers under study were determined. Significant differences were revealed between the Russian populations and the U.S. reference base that was used recently in the forensic medical examination of the RF. A database of the allelic frequencies of 15 microsatellite loci that are used for DNA identification and forensic medical examination was created; the database has the potential of becoming the reference for performing forensic medical examinations in Russia. The spatial organization of genetic diversity over the panel of the STR markers that are used for DNA identification was revealed. It represents the general regularities of geographical clusterization of human populations over various types of genetic markers. The necessity to take into account a population's genetic structure during forensic medical examinations and DNA identification of criminal suspects was substantiated.
    Acta naturae. 04/2011; 3(2):56-67.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The structure of Khakass gene pool has been investigated: compositions and frequencies of Y-chromosome haplogroups were described in seven population samples of two basic subethnic groups--Sagays and Kachins from three territorially distanced regions of Khakassia Republic. Eight haplogroups: C3, E, N*, N1b, N1c, R1a1a and R1b1b1 have been determined in Khakass gene pool. Significant differences between Sagays and Kachins were shown in haplogroup spectra and a level of genetic diversity in haplogroups and YSTR-haplotypes. Kachin samples are characterized by a low value of gene diversity, whereas the level of Sagay diversity is similar to that of other South-Siberian ethnoses. Sagay samples from Askizsky region are very similar to each other just as two Kachin samples from Shirinsky region, while Sagay samples from Tashtypsky region greatly differ from each other. A great portion of intergroup differences was determined among different ethnic groups, which testifies to significant genetic differentiation of native populations in Khakassia. Khakass gene pool is greatly differentiated both in haplogroup frequencies and in YSTR-haplotypes within N1b haplogroup. Frequencies and molecular phylogenesis of YSTR-haplotypes were revealed within N1b, N1c and R1a1 haplogroups of Y-chromosome. We carried out comparative analysis of the data obtained. The results of factor, cluster and dispersion analyses are evidence of structuredness of Khakass gene pool according to territorial-subethnic principle.
    Molekuliarnaia biologiia 01/2011; 45(3):446-58.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The structure of Khakass gene pool has been investigated: Y-chromosome haplogroup compositions and frequencies were described in seven population samples of two basic subethnic groups, Sagai and Kachins, from three geographically separated regions of the Khakass Republic. Eight haplogroups were detected in the Khakass gene pool: C3, E, N*, N1b, N1c, R1a1a, and R1b1b1. The haplogroup spectra and the genetic diversity by haplogroups and YSTR haplotypes differed significantly between Sagai and Kachins. Kachins had a low level of gene diversity, whereas the diversity of Sagai was similar to that of other South-Siberian ethnic groups. Sagai samples from the Askizskii district were very similar to each other, and so were two Kachin samples from the Shirinskii district, while Sagai samples from the Tashtypskii district differed considerably from each other. The contribution of intergroup differences among ethnic groups was high, indicating significant genetic differentiation among native populations in Khakassia. The Khakass gene pool was strongly differentiated both by haplogroup frequencies and by YSTR haplotypes within the N1b haplogroup. The frequencies of YSTR haplotypes within the chromosome Y haplogroups N1b, N1c, and R1a1 were determined and their molecular phylogeny was investigated. Factor and cluster analysis, as well as AMOVA, suggest that the Khakass gene pool is structured by territory and subethnic groups. KeywordsKhakass gene pool–genetic differentiation–Y-chromosome haplogroups–YSTR-haplotypes–territorial subdivision
    Molecular Biology 01/2011; 45(3):404-416. · 0.64 Impact Factor
  • Source
    V A Stepanov
    [Show abstract] [Hide abstract]
    ABSTRACT: This review discusses the progress of ethnic genetics, the genetics of common diseases, and the concepts of personalized medicine. We show the relationship between the structure of genetic diversity in human populations and the varying frequencies of Mendelian and multifactor diseases. We also examine the population basis of pharmacogenetics and evaluate the effectiveness of pharmacotherapy, along with a review of new achievements and prospects in personalized genomics.
    Acta naturae. 10/2010; 2(4):15-30.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Allele frequencies for 15 STRs (CSF1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, FGA, Penta D, Penta E, THO1, TPOX, and vWA) in the PowerPlex 16 System (Promega Corporation) were assessed in 386 individuals from five Russian urban populations. No significant between-population differences in frequencies and molecular variance of 15 microsatellites were revealed. For all 15 loci, the combined matching probability is 3.19 x 10(-18) and the power of exclusion is 99.99989%.
    Legal Medicine 09/2010; 12(5):256-8. · 1.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in three genes PSEN1, PSEN2, and APP are known to be a cause of familial forms of Alzheimer’s disease (AD). APOE gene polymorphism is a strong risk genetic factor for AD. We have evaluated allele and genotype frequency distribution of rs11136000 polymorphism in the clusterin (CLU) gene (or apolipoprotein J, APOJ) in the samples from three Russian populations and in AD patients. Genome-wide association studies in samples from several European populations have recently revealed the highly significant association of CLU gene with AD (p = 8.5 × 10−10). We found no differences in allele and genotype frequencies of rs11136000 between the populations from the Moscow, Ural, and Siberia regions. The allele frequencies are close to those in European populations. The genetic association analysis in cohort of AD patients and normal individuals (>500 individuals in each group) revealed no significant association of the rs11136000 polymorphism in CLU gene with Alzheimer’s disease in Russian populations. Although our results showed that the CLU gene polymorphism rs11136000 is likely not a major genetic factor for the common form of Alzheimer’s disease, the data do not rule out the possibility of a modest effect of CLU and interaction between CLU and APOE genotypes in etiology of Alzheimer’s disease. Key wordsAlzheimer’s disease-association analysis-polymorphism-apolipoprotein J (APOJ)-clusterin (CLU)
    Molecular Biology 01/2010; 44(4):546-551. · 0.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The structure of gene pool of the Siberian aboriginal population has been described based on the data on polymorphism of ZFX gene located on X-chromosome. In ten populations under study 49 haplotypes have been determined, three of which are presented with high frequency. Comparing the obtained results with the available data from HapMap project unique "African" haplotypes were revealed, which occurred in Yoruba population with the frequency of 3-7% and were not found in other populations. A coefficient of genetic differentiation of the Siberian ethnic groups under study amounted to 0.0486. Correlation analysis involving Mantel test did not reveal any significant correlations between a matrix of genetic distances and the matrices of geographic, linguistic and anthropological differences, where a maximum coefficient was obtained at the comparison with the anthropological matrix. Phylogenetic analysis proved strong isolation of African population from the other investigated ethnic groups. The Siberian populations were subdivided into two separate clusters: the first one included Yakuts, Buryats and Kets, while the second cluster included Altaians, Tuvinians and Khanty. A principal component analysis enabled to combine the investigated populations in three groups, which clearly differed by a degree of manifestation of Caucasoid and Mongoloid components. The first group included Europe inhabitants and one of Khanty populations, the second one--populations of South Siberia and China inhabitants. Mongoloid populations of East Siberia, the Japanese and Kets were combined in the third group. The results of barrier analysis revealed similar structure of genetic differentiation in the Siberian population. Linkage disequilibrium structure was obtained for six ethnic groups of Siberia. A unified linkage block by ten SNP of ZFX gene was found in five of the presented ethnic groups (excluding Ket population).
    Molekuliarnaia biologiia 01/2010; 44(5):804-15.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We propose a novel universal methodology, Short Oligonucleotide Tandem Ligation Assay (SOTLA), for SNP genotyping. SOTLA is based on using a tandem of short oligonucleotide (TSO) probes consisting of three fragments: the core oligonucleotide and two flanking oligomers, one of which is immobilized onto a solid support and another one contains the biotin label. TSO is self-associated on a complementary DNA template, forms the complex containing two nicks, which are efficiently ligated with DNA ligase giving biotinylated oligonucleotide covalently bound to polymer beads. No ligation of TSO on an imperfect DNA template bearing the base substitution in the core binding site is occurred. We used SOTLA for the highly selective SNP analysis in different DNA fragments of human Y chromosome. Comparison of SOTLA results with those of PCR-RFLP and allele-specific PCR techniques demonstrates that SOTLA ensures the univocal reliable SNP analysis in different PCR fragments varying in length and base composition. The fundamental difference between SOTLA and well known OLA approaches while using T4 DNA ligase is that the accuracy of SNP analysis in OLA is ensured only by the specificity of ligase while that in SOTLA is provided by the specificity of both ligation and hybridization of TSO probes.
    Molecular Biotechnology 10/2009; 45(1):1-8. · 2.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The gene pool structure of Teleuts was examined and Y-chromosomal haplogroups composition and frequencies were determined. In the gene pool of Teleuts, five haplogroups, C3×M77, N3a, R1b*, R1b3, and R1a1, were identified. Evaluation of the genetic differentiation of the samples examined using analysis of molecular variance (AMOVA) with two marker systems (frequencies of haplogroups and Y-chromosomal microsatellite haplotypes) showed that Bachat Teleuts were equally distant from Southern and Northern Altaians. In Siberian populations, the frequencies and molecular phylogeny of the YSTR haplotypes within Y-chromosomal haplogroup R1a1 were examined. It was demonstrated that Teleuts and Southern Altaians had very close and overlapping profiles of R1a1 haplotypes. Population cluster analysis of the R1a1 YSTR haplotypes showed that Teleuts and Southern Altaians were closer to one another than to all remaining Siberian ethnic groups. Phylogenetic analysis of N3a haplotypes suggested specificity of Teleut haplotypes and their closeness to those of Tomsk Tatars. Teleuts were characterized by extremely high frequency of haplogroup R1b*, distinguished for highly specific profile of YSTR haplotypes and high haplotype diversity. The results of the comparative analysis suggested that the gene pool of Bachat Teleuts was formed on the basis of at least two heterogeneous genetic components, probably associated with ancient Turkic and Samoyedic ethnic components.
    Russian Journal of Genetics 08/2009; 45(8):994-1003. · 0.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial aldehyde dehydrogenase (ALDH2) is one of the most important enzymes in human alcohol metabolism. The oriental ALDH2*504Lys variant functions as a dominant negative, greatly reducing activity in heterozygotes and abolishing activity in homozygotes. This allele is associated with serious disorders such as alcohol liver disease, late onset Alzheimer disease, colorectal cancer, and esophageal cancer, and is best known for protection against alcoholism. Many hundreds of papers in various languages have been published on this variant, providing allele frequency data for many different populations. To develop a highly refined global geographic distribution of ALDH2*504Lys, we have collected new data on 4,091 individuals from 86 population samples and assembled published data on a total of 80,691 individuals from 366 population samples. The allele is essentially absent in all parts of the world except East Asia. The ALDH2*504Lys allele has its highest frequency in Southeast China, and occurs in most areas of China, Japan, Korea, Mongolia, and Indochina with frequencies gradually declining radially from Southeast China. As the indigenous populations in South China have much lower frequencies than the southern Han migrants from Central China, we conclude that ALDH2*504Lys was carried by Han Chinese as they spread throughout East Asia. Esophageal cancer, with its highest incidence in East Asia, may be associated with ALDH2*504Lys because of a toxic effect of increased acetaldehyde in the tissue where ingested ethanol has its highest concentration. While the distributions of esophageal cancer and ALDH2*504Lys do not precisely correlate, that does not disprove the hypothesis. In general the study of fine scale geographic distributions of ALDH2*504Lys and diseases may help in understanding the multiple relationships among genes, diseases, environments, and cultures.
    Annals of Human Genetics 06/2009; 73(Pt 3):335-45. · 2.22 Impact Factor
  • Source
    The American Journal of Human Genetics 02/2009; 84(1):89-92; author reply 92-4. · 11.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Gagauzes are a small Turkish-speaking ethnic group living mostly in southern Moldova and northeastern Bulgaria. The origin of the Gagauzes is obscure. They may be descendants of the Turkic nomadic tribes from the Eurasian steppes, as suggested by the "Steppe" hypothesis, or have a complex Anatolian-steppe origin, as postulated by the "Seljuk" or "Anatolian" hypothesis. To distinguish these hypotheses, a sample of 89 Y-chromosomes representing two Gagauz populations from the Republic of Moldova was analyzed for 28 binary and seven STR polymorphisms. In the gene pool of the Gagauzes a total of 15 Y-haplogroups were identified, the most common being I-P37 (20.2%), R-M17 (19.1%), G-M201 (13.5%), R-M269 (12.4%), and E-M78 (11.1%). The present Gagauz populations were compared with other Balkan, Anatolian, and Central Asian populations by means of genetic distances, nonmetric multidimentional scaling and analyses of molecular variance. The analyses showed that Gagauzes belong to the Balkan populations, suggesting that the Gagauz language represents a case of language replacement in southeastern Europe. Interestingly, the detailed study of microsatellite haplotypes revealed some sharing between the Gagauz and Turkish lineages, providing some support of the hypothesis of the "Seljuk origin" of the Gagauzes. The faster evolving microsatellite loci showed that the two Gagauz samples investigated do not represent a homogeneous group. This finding matches the cultural and linguistic heterogeneity of the Gagauzes well, suggesting a crucial role of social factors in shaping the Gagauz Y-chromosome pool and possibly also of effects of genetic drift.
    American Journal of Human Biology 01/2009; 21(3):326-36. · 2.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Investigation of linkage disequilibrium block architecture in human genome is modern, intensely investigated field of molecular genetics. In the present study, genetic differentiation and linkage disequilibrium pattern in the methylenetetrahydrofolate reductase (MTHFR) locus was examined in the populations of Russians, Tuvinians, and Northern and Southern Kyrgyzes. Methylenetetrahydrofolate reductase is the key enzyme of folate cycle, responsible for reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. Decreased enzymatic activity of this protein often caused by certain associations of MTHFR alleles results in the increased plasma homocysteine levels. In the population groups examined, genotype and allele frequencies at five polymorphic MTHFR loci: rs17037397, rs4846052, rs1801133, rs1801131, and rs1537516 were evaluated. Statistically significant genetic differences between the population group of Southern Kyrgyzes and the other groups, as well as between Russians and Tuvinians, were demonstrated. In the MTHFR gene from the population of Southern Kyrgyzes one block was revealed; in the populations of Russians, Tuvinians, and Northern Kyrgyzes two blocks were detected. Thus, the structure of linkage disequilibrium in the MTHFR locus demonstrated population-specific pattern.
    Russian Journal of Genetics 09/2008; 44(10):1224-1232. · 0.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To study the frequency distribution of cytochrome P450 (CYP) functional genetic variants in five Eurasian populations from the territory of Siberia in Russia. Unrelated healthy Tuvinians, Buryats, Altaians, Yakuts and Russians (n = 87-88) were genotyped for CYP2C9*2, CYP2C9*3, CYP2C19*2, CYP2C19*3, CYP3A5*3 and CYP3A5*6. Standard pairwise genetic distances, locus-specific and global Fst statistics were calculated. CYP allele and genotype frequencies demonstrated significant variability. Overall, the degree of between-population variance displayed by CYP SNPs was lower than that recorded from neutral short tandem repeats and Alu-insertion polymorphism, indicating evolutionary conservation of CYP polymorphisms. CYP-based genetic distances were well correlated with the geographic distances across populations (r = 0.822, p = 0.008). Although the tested variants were present in the neighboring, yet secluded, populations at the expected range of frequencies, the observed frequencies were significantly variable across Eurasian populations, indicating potential relevance to clinical decision making.
    Pharmacogenomics 07/2008; 9(7):847-68. · 3.86 Impact Factor

Publication Stats

860 Citations
95.14 Total Impact Points

Institutions

  • 1998–2014
    • Tomsk State University
      Tomsk, Tomsk, Russia
  • 1993–2014
    • Russian Academy of Medical Sciences
      • Research Centre of Medical Genetics (RCMG)
      Moskva, Moscow, Russia
  • 2009–2013
    • Ludwig-Maximilians-University of Munich
      • Department of Biology II
      München, Bavaria, Germany
  • 2005
    • Vavilov Institute of General Genetics
      Moskva, Moscow, Russia
    • Russian Academy of Sciences
      Moskva, Moscow, Russia