Gabriel Bricard

Albert Einstein College of Medicine, New York City, NY, United States

Are you Gabriel Bricard?

Claim your profile

Publications (23)102.04 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Structural variants of α-galactosylceramide (αGC) that activate invariant natural killer T cells (iNKT cells) are being developed as potential immunomodulatory agents for a variety of applications. Identification of specific forms of these glycolipids that bias responses to favor production of proinflammatory vs anti-inflammatory cytokines is central to current efforts, but this goal has been hampered by the lack of in vitro screening assays that reliably predict the in vivo biological activity of these compounds. Here we describe a fluorescence-based assay to identify functionally distinct αGC analogues. Our assay is based on recent findings showing that presentation of glycolipid antigens by CD1d molecules localized to plasma membrane detergent-resistant microdomains (lipid rafts) is correlated with induction of interferon-γ secretion and Th1-biased cytokine responses. Using an assay that measures lipid raft residency of CD1d molecules loaded with αGC, we screened a library of ∼200 synthetic αGC analogues and identified 19 agonists with potential Th1-biasing activity. Analysis of a subset of these novel candidate Th1 type agonists in vivo in mice confirmed their ability to induce systemic cytokine responses consistent with a Th1 type bias. These results demonstrate the predictive value of this novel in vitro assay for assessing the in vivo functionality of glycolipid agonists and provide the basis for a relatively simple high-throughput assay for identification and functional classification of iNKT cell activating glycolipids.
    Journal of the American Chemical Society 03/2011; 133(14):5198-201. · 10.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD1d-restricted invariant natural killer T (iNKT) cells have diverse immune stimulatory/regulatory activities through their ability to release cytokines and to kill or transactivate other cells. Activation of iNKT cells can protect against multiple diseases in mice but clinical trials in humans have had limited impact. Clinical studies to date have targeted polyclonal mixtures of iNKT cells and we proposed that their subset compositions will influence therapeutic outcomes. We sorted and expanded iNKT cells from healthy donors and compared the phenotypes, cytotoxic activities and cytokine profiles of the CD4(+), CD8α(+) and CD4(-)CD8α(-) double-negative (DN) subsets. CD4(+) iNKT cells expanded more readily than CD8α(+) and DN iNKT cells upon mitogen stimulation. CD8α(+) and DN iNKT cells most frequently expressed CD56, CD161 and NKG2D and most potently killed CD1d(+) cell lines and primary leukemia cells. All iNKT subsets released Th1 (IFN-γ and TNF-α) and Th2 (IL-4, IL-5 and IL-13) cytokines. Relative amounts followed a CD8α>DN>CD4 pattern for Th1 and CD4>DN>CD8α for Th2. All iNKT subsets could simultaneously produce IFN-γ and IL-4, but single-positivity for IFN-γ or IL-4 was strikingly rare in CD4(+) and CD8α(+) fractions, respectively. Only CD4(+) iNKT cells produced IL-9 and IL-10; DN cells released IL-17; and none produced IL-22. All iNKT subsets upregulated CD40L upon glycolipid stimulation and induced IL-10 and IL-12 secretion by dendritic cells. Thus, subset composition of iNKT cells is a major determinant of function. Use of enriched CD8α(+), DN or CD4(+) iNKT cells may optimally harness the immunoregulatory properties of iNKT cells for treatment of disease.
    PLoS ONE 01/2011; 6(12):e28648. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alpha-glucosyl ceramides 4 and 5 have been synthesised and evaluated for their ability to stimulate the activation and expansion of human iNKT cells. The key challenge in the synthesis of both target molecules was the stereoselective synthesis of the alpha-glycosidic linkage. Of the methods examined, glycosylation using per-TMS-protected glucosyl iodide 16 was completely alpha-selective and provided gram quantities of amine 11, from which alpha-glucosyl ceramides 4 and 5 were obtained by N-acylation. alpha-GlcCer 4, containing a C24 saturated acyl chain, stimulated a marked proliferation and expansion of human circulating iNKT cells in short-term cultures. alpha-GlcCer 5, which contains a C20 11,14-cis-diene acyl chain (C20:2), induced extremely similar levels of iNKT cell activation and expansion.
    Bioorganic & medicinal chemistry letters 06/2010; 20(12):3475-8. · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several L-fucoglycolipids are associated with diseases such as cancer, cystic fibrosis and rheumatoid arthritis. Activation of iNKT cells is known to lead to the production of cytokines that can help alleviate or exacerbate these conditions. alpha-Galactosyl ceramide (alpha-GalCer) is a known agonist of iNKT cells and it is believed that its fucosyl counterpart might have similar immunogenic properties. We herein report the synthesis of alpha-L-fucosyl ceramide derivatives and describe their biological evaluation. The key challenge in the synthesis of the target molecules involved the stereoselective synthesis of the alpha-glycosidic linkage. Of the methods examined, the per-TMS-protected glycosyl iodide donor was completely alpha-selective, and could be scaled up to provide gram quantities of the azide precursor 11, from which a range of N-acylated alpha-L-fucosyl ceramides were readily obtained and evaluated for ex vivo expansion of human iNKT cells.
    Bioorganic & medicinal chemistry letters 06/2010; 20(11):3223-6. · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: KRN7000 is an important ligand identified for CD1d protein of APC, and KRN7000/CD1d complex can stimulate NKT cells to release a broad range of bioactive cytokines. In an effort to understand the structure-activity relationships, we have carried out syntheses of 26 new KRN7000 analogues incorporating aromatic residues in either or both side chains. Structural variations of the phytosphingosine moiety also include varying stereochemistry at C3 and C4, and 4-deoxy and 3,4-dideoxy versions. Their biological activities are described.
    Bioorganic & medicinal chemistry letters 02/2010; 20(3):814-8. · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD1d-restricted natural killer T cells with invariant T cell receptor α chains (iNKT cells) are a unique lymphocyte subset that responds to recognition of specific lipid and glycolipid antigens. They are conserved between mice and humans and exert various immunoregulatory functions through their rapid secretion of a variety of cytokines and secondary activation of dendritic cells, B cells and NK cells. In the current study, we analyzed the range of functional activation states of human iNKT cells using a library of novel analogs of α-galactosylceramide (αGalCer), the prototypical iNKT cell antigen. Measurement of cytokines secreted by human iNKT cell clones over a wide range of glycolipid concentrations revealed that iNKT cell ligands could be classified into functional groups, correlating with weak versus strong agonistic activity. The findings established a hierarchy for induction of different cytokines, with thresholds for secretion being consistently lowest for IL-13, higher for interferon-γ (IFNγ), and even higher for IL-4. These findings suggested that human iNKT cells can be intrinsically polarized to selective production of IL-13 by maintaining a low level of activation using weak agonists, whereas selective polarization to IL-4 production cannot be achieved through modulating the strength of the activating ligand. In addition, using a newly designed in vitro system to assess the ability of human iNKT cells to transactivate NK cells, we found that robust secondary induction of interferon-γ secretion by NK cells was associated with strong but not weak agonist ligands of iNKT cells. These results indicate that polarization of human iNKT cell responses to Th2-like or anti-inflammatory effects may best be achieved through selective induction of IL-13 and suggest potential discrepancies with findings from mouse models that may be important in designing iNKT cell-based therapies in humans.
    PLoS ONE 01/2010; 5(12):e14374. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The attenuated strain of Mycobacterium bovis known as bacille Calmette-Guérin (BCG) has been widely used as a vaccine for prevention of disease by Mycobacterium tuberculosis, but with relatively little evidence of success. Recent studies suggest that the failure of BCG may be due to its retention of immune evasion mechanisms that delay or prevent the priming of robust protective cell-mediated immunity. In this study, we describe an approach to enhance the immunogenicity of BCG by incorporating glycolipid activators of CD1d-restricted NKT cells, a conserved T cell subset with the potential to augment many types of immune responses. A method was developed for stably incorporating two forms of the NKT cell activator alpha-galactosylceramide into live BCG organisms, and the impact of this on stimulation of T cell responses and protective antimycobacterial immunity was evaluated. We found that live BCG containing relatively small amounts of incorporated alpha-galactosylceramide retained the ability to robustly activate NKT cells. Compared with immunization with unmodified BCG, the glycolipid-modified BCG stimulated increased maturation of dendritic cells and markedly augmented the priming of Ag-specific CD8(+) T cells responses. These effects were correlated with improved protective effects of vaccination in mice challenged with virulent M. tuberculosis. These results support the view that mycobacteria possess mechanisms to avoid stimulation of CD8(+) T cell responses and that such responses contribute significantly to protective immunity against these pathogens. Our findings raise the possibility of a simple modification of BCG that could yield a more effective vaccine for control of tuberculosis.
    The Journal of Immunology 09/2009; 183(3):1644-56. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An alpha-galactosyl ceramide (alpha-GalCer) 2 was synthesized and evaluated for its ability to stimulate iNKT-cell proliferation and elicit T-helper cytokines, IL-4 and IFNgamma. Compound 2 combines the acyl chain of the potent, Th2 biasing alpha-GalCer 1 with a sphingoid base of the same length as that found in OCH, which also exhibits Th2 skewing, Such complementation may enhance cytokine bias, which is thought to be important for therapeutic applications of iNKT cell stimulation. Two related alpha-GalCers, 3 and 4, with saturated acyl chains were prepared for comparison.
    Bioorganic & medicinal chemistry letters 08/2009; 19(13):3386-8. · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD1d-restricted natural killer T cells (NKT cells) possess a wide range of effector and regulatory activities that are related to their ability to secrete both T helper 1 (Th1) cell- and Th2 cell-type cytokines. We analyzed presentation of NKT cell activating alpha galactosylceramide (alphaGalCer) analogs that give predominantly Th2 cell-type cytokine responses to determine how ligand structure controls the outcome of NKT cell activation. Using a monoclonal antibody specific for alphaGalCer-CD1d complexes to visualize and quantitate glycolipid presentation, we found that Th2 cell-type cytokine-biasing ligands were characterized by rapid and direct loading of cell-surface CD1d proteins. Complexes formed by association of these Th2 cell-type cytokine-biasing alphaGalCer analogs with CD1d showed a distinctive exclusion from ganglioside-enriched, detergent-resistant plasma membrane microdomains of antigen-presenting cells. These findings help to explain how subtle alterations in glycolipid ligand structure can control the balance of proinflammatory and anti-inflammatory activities of NKT cells.
    Immunity 07/2009; 30(6):888-98. · 19.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Invariant NKT cells (iNKT cells) recognize glycolipid Ags via an invariant TCR alpha-chain and play a central role in various immune responses. Although human CD4(+) and CD4(-) iNKT cell subsets both produce Th1 cytokines, the CD4(+) subset displays an enhanced ability to secrete Th2 cytokines and shows regulatory activity. We performed an ex vivo analysis of blood, liver, and tumor iNKT cells from patients with hepatocellular carcinoma and metastases from uveal melanoma or colon carcinoma. Frequencies of Valpha24/Vbeta11 iNKT cells were increased in tumors, especially in patients with hepatocellular carcinoma. The proportions of CD4(+), double negative, and CD8alpha(+) iNKT cell subsets in the blood of patients were similar to those of healthy donors. However, we consistently found that the proportion of CD4(+) iNKT cells increased gradually from blood to liver to tumor. Furthermore, CD4(+) iNKT cell clones generated from healthy donors were functionally distinct from their CD4(-) counterparts, exhibiting higher Th2 cytokine production and lower cytolytic activity. Thus, in the tumor microenvironment the iNKT cell repertoire is modified by the enrichment of CD4(+) iNKT cells, a subset able to generate Th2 cytokines that can inhibit the expansion of tumor Ag-specific CD8(+) T cells. Because CD4(+) iNKT cells appear inefficient in tumor defense and may even favor tumor growth and recurrence, novel iNKT-targeted therapies should restore CD4(-) iNKT cells at the tumor site and specifically induce Th1 cytokine production from all iNKT cell subsets.
    The Journal of Immunology 05/2009; 182(8):5140-51. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: KRN7000 is an important ligand identified for CD1d protein of APC, and KRN7000/CD1d complex can stimulate NKT cells to release Th1 and Th2 cytokines. In an effort to understand the structure-activity relationships, we have carried out the synthesis of a complete set of the eight KRN7000 stereoisomers, and their biological activities have been examined.
    Bioorganic & medicinal chemistry letters 08/2008; 18(14):3906-9. · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the high prevalence of colon cancer in the world and the great interest in targeted anti-cancer therapy, only few tumor-specific gene products have been identified that could serve as targets for the immunological treatment of colorectal cancers. The aim of our study was therefore to identify frequently expressed colon cancer-specific antigens. We performed a large-scale analysis of genes expressed in normal colon and colon cancer tissues isolated from colorectal cancer patients using massively parallel signal sequencing (MPSS). Candidates were additionally subjected to experimental evaluation by semi-quantitative RT-PCR on a cohort of colorectal cancer patients. From a pool of more than 6000 genes identified unambiguously in the analysis, we found 2124 genes that were selectively expressed in colon cancer tissue and 147 genes that were differentially expressed to a significant degree between normal and cancer cells. Differential expression of many genes was confirmed by RT-PCR on a cohort of patients. Despite the fact that deregulated genes were involved in many different cellular pathways, we found that genes expressed in the extracellular space were significantly over-represented in colorectal cancer. Strikingly, we identified a transcript from a chromosome X-linked member of the human endogenous retrovirus (HERV) H family that was frequently and selectively expressed in colon cancer but not in normal tissues. Our data suggest that this sequence should be considered as a target of immunological interventions against colorectal cancer.
    Cancer immunity: a journal of the Academy of Cancer Immunology 02/2008; 8:11.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic depletion of macrophages in Polyoma Middle T oncoprotein (PyMT)-induced mammary tumors in mice delayed the angiogenic switch and the progression to malignancy. To determine whether vascular endothelial growth factor A (VEGF-A) produced by tumor-associated macrophages regulated the onset of the angiogenic switch, a genetic approach was used to restore expression of VEGF-A into tumors at the benign stages. This stimulated formation of a high-density vessel network and in macrophage-depleted mice, was followed by accelerated tumor progression. The expression of VEGF-A led to a massive infiltration into the tumor of leukocytes that were mostly macrophages. This study suggests that macrophage-produced VEGF regulates malignant progression through stimulating tumor angiogenesis, leukocytic infiltration and tumor cell invasion.
    Molecular oncology 01/2008; 1(3):288-302. · 6.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carcinoembryonic antigen (CEACAM5) is commonly overexpressed in human colon cancer. Several antigenic peptides recognized by cytolytic CD8+ T-cells have been identified and used in colon cancer phase-I vaccination clinical trials. The HLA-A*0201-binding CEA(694-702) peptide was recently isolated from acid eluted MHC-I associated peptides from a human colon tumor cell line. However, the immunogenicity of this peptide in humans remains unknown. We found that the peptide CEA(694-702) binds weakly to HLA-A*0201 molecules and is ineffective at inducing specific CD8+ T-cell responses in healthy donors. Immunogenic-altered peptide ligands with increased affinity for HLA-A*0201 were identified. Importantly, the elicited cytolytic T lymphocyte (CTL) lines and clones cross-reacted with the wild-type CEA(694-702) peptide. Tumor cells expressing CEA were recognized in a peptide and HLA-A*0201 restricted fashion, but high-CEA expression levels appear to be required for CTL recognition. Finally, CEA-specific T-cell precursors could be readily expanded by in vitro stimulation of peripheral blood mononuclear cell (PBMC) from colon cancer patients with altered CEA peptide. However, the CEA-specific CD8+ T-cell clones derived from cancer patients revealed low-functional avidity and impaired tumor-cell recognition. Together, using T-cells to demonstrate the processing and presentation of the peptide CEA694-702, we were able to corroborate its presentation by tumor cells. However, the low avidity of the specific CTLs generated from cancer patients as well as the high-antigen expression levels required for CTL recognition pose serious concerns for the use of CEA694-702 in cancer immunotherapy.
    Cancer Immunology and Immunotherapy 12/2007; 56(11):1795-805. · 3.64 Impact Factor
  • G Bricard, S A Porcelli
    [Show abstract] [Hide abstract]
    ABSTRACT: It is now well demonstrated that the repertoire of T cells includes not only cells that recognize specific MHC-presented peptide antigens, but also cells that recognize specific self and foreign lipid antigens. This T cell recognition of lipid antigens is mediated by a family of conserved MHC class I-like cell surface glycoproteins known as CD1 molecules. These are specialized antigen-presenting molecules that directly bind a wide variety of lipids and present them for T cell recognition at the surface of antigen-presenting cells. Distinct populations of T cells exist that recognize CD1-presented lipids of microbial, environmental or self origin, and these T cells participate in immune responses associated with infectious, neoplastic, autoimmune and allergic diseases. Here we review the current knowledge of the biology of the CD1 system, including the structure, biosynthesis and trafficking of CD1 molecules, the structures of defined lipid antigens and the types of functional responses mediated by T cells specific for CD1-presented lipids.
    Cellular and Molecular Life Sciences CMLS 08/2007; 64(14):1824-40. · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor-specific gene products, such as cancer/testis (CT) antigens, constitute promising targets for the development of T cell vaccines. Whereas CT antigens are frequently expressed in melanoma, their expression in colorectal cancers (CRC) remains poorly characterized. Here, we have studied the expression of the CT antigens MAGE-A3, MAGE-A4, MAGE-A10, NY-ESO-1 and SSX2 in CRC because of the presence of well-described HLA-A2-restricted epitopes in their sequences. Our analyses of 41 primary CRC and 14 metastatic liver lesions confirmed the low frequency of expression of these CT antigens. No increased expression frequencies were observed in metastatic tumors compared to primary tumors. Histological analyses of CRC samples revealed heterogeneous expression of individual CT antigens. Finally, evidence of a naturally acquired CT antigen-specific CD8(+) T cell response could be demonstrated. These results show that the expression of CT antigens in a subset of CRC patients induces readily detectable T cell responses.
    Cancer Immunology and Immunotherapy 07/2007; 56(6):839-47. · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activated CD8 T cells develop cytotoxicity against autologous cells bearing foreign Ags and self/tumor Ags. However, self-specific cytolysis needs to be kept under control to avoid overwhelming immunopathology. After peptide vaccination of melanoma patients, we studied molecular and functional properties of T cell subsets specific for the self/tumor Ag Melan-A/MART-1. Ex vivo analysis revealed three Ag-specific effector memory (EM) populations, as follows: CD28-negative EM (EM28(-)) T cells strongly expressing granzyme/perforin, and two EM28(+) subsets, one with high and the other with low level expression of these cytotoxic proteins. For further functional characterization, we generated 117 stable CD8 T cell clones by ex vivo flow cytometry-based sorting of these subsets. All EM28(-)-derived clones lysed target cells with high efficacy. In contrast, EM28(+)-derived clones were heterogenous, and could be classified in two groups, one with high and the other with low killing capacity, correlating with granzyme/perforin expression. High and low killer phenotypes remained surprisingly stable for several months. However, strongly increased granzyme expression and cytotoxicity were observed after exposure to IL-12. Thus, the data reveal a newly identified subset of CD28(+) conditional killer T cells. Because CD28 can mediate strong costimulatory signals, tight cytotoxicity control, as shown in this study through IL-12, may be particularly important for subsets of T cells expressing CD28.
    The Journal of Immunology 04/2007; 178(6):3566-74. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two 60+-membered libraries of alpha-galactosylceramides have been prepared by reactions between activated ester resins and two core, fully deprotected galactosylated sphingoid bases. The libraries were evaluated for their ability to stimulate CD1d-restricted NKT cells, using in vitro stimulation of a murine NKT cell hybridoma line and for their ability to induce the expansion of NKT cells from peripheral blood mononuclear cells (PBMC) of a normal human subject. Our results showed that many compounds constructed on a C18-phytosphingosine base had significant stimulatory activity in both assays. Because no product purification was required, this approach is particularly attractive as a method for rapid synthesis of large libraries of potential immunomodulatory glycosylceramides.
    Journal of Combinatorial Chemistry 01/2007; 9(6):1084-93. · 4.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human CD1d molecules consist of a transmembrane CD1 (cluster of differentiation 1) heavy chain in association with beta(2)-microglobulin (beta(2)m). Assembly occurs in the endoplasmic reticulum (ER) and involves the initial glycan-dependent association of the free heavy chain with calreticulin and calnexin and the thiol oxidoreductase ERp57. Folding and disulfide bond formation within the heavy chain occurs prior to beta(2)m binding. There are four N-linked glycans on the CD1d heavy chain, and we mutated them individually to ascertain their importance for the assembly and function of CD1d-beta(2)m heterodimers. None of the four were indispensable for assembly or the ability to bind alpha-galactosyl ceramide and to present it to human NKT cells. Nor were any required for the CD1d molecule to bind and present alpha-galactosyl ceramide after lysosomal processing of a precursor lipid, galactosyl-(alpha1-2)-galactosyl ceramide. However, one glycan, glycan 2 at Asn-42, proved to be of particular importance for the stability of the CD1d-beta(2)m heterodimer. A mutant CD1d heavy chain lacking glycan 2 assembled with beta(2)m and transported from the ER more rapidly than wild-type CD1d and dissociated more readily from beta(2)m upon exposure to detergents. A mutant expressing only glycan 1 dissociated completely from beta(2)m upon exposure to the detergent Triton X-100, whereas a mutant expressing only glycan 2 at Asn-42 was more stable. In addition, glycan 2 was not processed efficiently to the complex form in mature wild-type CD1d molecules. Modeling the glycans on the published structure indicated that glycan 2 interacts significantly with both the CD1d heavy chain and beta(2)m, which may explain these unusual properties.
    Journal of Biological Chemistry 01/2007; 281(52):40369-78. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer T (NKT) cells are a heterogeneous group of T cells that share properties characteristic of both T cells and NK cells and possess a variety of unusual properties with regard to antigen recognition and function. Many of these cells recognize the non-polymorphic CD1d molecule, an antigen-presenting molecule that binds self- and foreign lipids. The best known subset of CD1d-dependent NKT cells expresses an invariant T cell receptor a (TCR-a) chain. These are referred to as type I or invariant NKT cells (iNKT cells). These cells, which are the main focus of the current review, are conserved between humans and mice. Detailed work in mouse models has implicated iNKT cells in many immunological processes, and related studies in humans suggest important roles in health and disease. By virtue of their ability to produce a variety of immunoregulatory cytokines and to acquire a broad spectrum of effector activities, iNKT cells may both induce or suppress immune reactions in healthy and pathologic settings. We review the role of iNKT cells in the induction of tolerance to solid organ and hematologic transplants and malignancies, as well as their importance in maintaining normal self-tolerance and involvement in autoimmune diseases.
    Transfusion Medicine and Hemotherapy - TRANSFUS MED HEMOTHER. 01/2006; 33(1):18-36.

Publication Stats

396 Citations
102.04 Total Impact Points

Institutions

  • 2007–2011
    • Albert Einstein College of Medicine
      • Department of Microbiology & Immunology
      New York City, NY, United States
    • University Hospital of Lausanne
      Lausanne, Vaud, Switzerland
  • 2010
    • Yeshiva University
      • Department of Microbiology & Immunology
      New York City, New York, United States
  • 2007–2009
    • Ludwig Institute for Cancer Research
      La Jolla, California, United States