John Danesh

University of Cambridge, Cambridge, England, United Kingdom

Are you John Danesh?

Claim your profile

Publications (190)3678.82 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Indian Asians, who make up a quarter of the world's population, are at high risk of developing type 2 diabetes. We investigated whether DNA methylation is associated with future type 2 diabetes incidence in Indian Asians and whether differences in methylation patterns between Indian Asians and Europeans are associated with, and could be used to predict, differences in the magnitude of risk of developing type 2 diabetes. We did a nested case-control study of DNA methylation in Indian Asians and Europeans with incident type 2 diabetes who were identified from the 8-year follow-up of 25 372 participants in the London Life Sciences Prospective Population (LOLIPOP) study. Patients were recruited between May 1, 2002, and Sept 12, 2008. We did epigenome-wide association analysis using samples from Indian Asians with incident type 2 diabetes and age-matched and sex-matched Indian Asian controls, followed by replication testing of top-ranking signals in Europeans. For both discovery and replication, DNA methylation was measured in the baseline blood sample, which was collected before the onset of type 2 diabetes. Epigenome-wide significance was set at p<1 × 10(-7). We compared methylation levels between Indian Asian and European controls without type 2 diabetes at baseline to estimate the potential contribution of DNA methylation to increased risk of future type 2 diabetes incidence among Indian Asians. 1608 (11·9%) of 13 535 Indian Asians and 306 (4·3%) of 7066 Europeans developed type 2 diabetes over a mean of 8·5 years (SD 1·8) of follow-up. The age-adjusted and sex-adjusted incidence of type 2 diabetes was 3·1 times (95% CI 2·8-3·6; p<0·0001) higher among Indian Asians than among Europeans, and remained 2·5 times (2·1-2·9; p<0·0001) higher after adjustment for adiposity, physical activity, family history of type 2 diabetes, and baseline glycaemic measures. The mean absolute difference in methylation level between type 2 diabetes cases and controls ranged from 0·5% (SD 0·1) to 1·1% (0·2). Methylation markers at five loci were associated with future type 2 diabetes incidence; the relative risk per 1% increase in methylation was 1·09 (95% CI 1·07-1·11; p=1·3 × 10(-17)) for ABCG1, 0·94 (0·92-0·95; p=4·2 × 10(-11)) for PHOSPHO1, 0·94 (0·92-0·96; p=1·4 × 10(-9)) for SOCS3, 1·07 (1·04-1·09; p=2·1 × 10(-10)) for SREBF1, and 0·92 (0·90-0·94; p=1·2 × 10(-17)) for TXNIP. A methylation score combining results for the five loci was associated with future type 2 diabetes incidence (relative risk quartile 4 vs quartile 1 3·51, 95% CI 2·79-4·42; p=1·3 × 10(-26)), and was independent of established risk factors. Methylation score was higher among Indian Asians than Europeans (p=1 × 10(-34)). DNA methylation might provide new insights into the pathways underlying type 2 diabetes and offer new opportunities for risk stratification and prevention of type 2 diabetes among Indian Asians. The European Union, the UK National Institute for Health Research, the Wellcome Trust, the UK Medical Research Council, Action on Hearing Loss, the UK Biotechnology and Biological Sciences Research Council, the Oak Foundation, the Economic and Social Research Council, Helmholtz Zentrum Munchen, the German Research Center for Environmental Health, the German Federal Ministry of Education and Research, the German Center for Diabetes Research, the Munich Center for Health Sciences, the Ministry of Science and Research of the State of North Rhine-Westphalia, and the German Federal Ministry of Health. Copyright © 2015 Elsevier Ltd. All rights reserved.
    06/2015; DOI:10.1016/S2213-8587(15)00127-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: During recent decades, Bangladesh has experienced a rapid epidemiological transition from communicable to non-communicable diseases. Coronary heart disease (CHD), with myocardial infarction (MI) as its main manifestation, is a major cause of death in the country. However, there is limited reliable evidence about its determinants in this population. The Bangladesh Risk of Acute Vascular Events (BRAVE) study is an epidemiological bioresource established to examine environmental, genetic, lifestyle and biochemical determinants of CHD among the Bangladeshi population. By early 2015, the ongoing BRAVE study had recruited over 5000 confirmed first-ever MI cases, and over 5000 controls "frequency-matched" by age and sex. For each participant, information has been recorded on demographic factors, lifestyle, socioeconomic, clinical, and anthropometric characteristics. A 12-lead electrocardiogram has been recorded. Biological samples have been collected and stored, including extracted DNA, plasma, serum and whole blood. Additionally, for the 3000 cases and 3000 controls initially recruited, genotyping has been done using the CardioMetabochip+ and the Exome+ arrays. The mean age (standard deviation) of MI cases is 53 (10) years, with 88 % of cases being male and 46 % aged 50 years or younger. The median interval between reported onset of symptoms and hospital admission is 5 h. Initial analyses indicate that Bangladeshis are genetically distinct from major non-South Asian ethnicities, as well as distinct from other South Asian ethnicities. The BRAVE study is well-placed to serve as a powerful resource to investigate current and future hypotheses relating to environmental, biochemical and genetic causes of CHD in an important but under-studied South Asian population.
    European Journal of Epidemiology 05/2015; DOI:10.1007/s10654-015-0037-2 · 5.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear. Methods We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested the association between a change in genetically determined height of 1 SD (6.5 cm) with the risk of CAD in 65,066 cases and 128,383 controls. Using individual-level genotype data from 18,249 persons, we also examined the risk of CAD associated with the presence of various numbers of height-associated alleles. To identify putative mechanisms, we analyzed whether genetically determined height was associated with known cardiovascular risk factors and performed a pathway analysis of the height-associated genes. Results We observed a relative increase of 13.5% (95% confidence interval [CI], 5.4 to 22.1; P<0.001) in the risk of CAD per 1-SD decrease in genetically determined height. There was a graded relationship between the presence of an increased number of height-raising variants and a reduced risk of CAD (odds ratio for height quar-tile 4 versus quartile 1, 0.74; 95% CI, 0.68 to 0.84; P<0.001). Of the 12 risk factors that we studied, we observed significant associations only with levels of low-density lipoprotein cholesterol and triglycerides (accounting for approximately 30% of the association). We identified several overlapping pathways involving genes associated with both development and atherosclerosis. Conclusions There is a primary association between a genetically determined shorter height and an increased risk of CAD, a link that is partly explained by the association between shorter height and an adverse lipid profile. Shared biologic processes that determine achieved height and the development of atherosclerosis may explain some of the association. (Funded by the British Heart Foundation and others.).
    New England Journal of Medicine 04/2015; DOI:10.1056/NEJMoa1404881 · 54.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background To investigate potential cardiovascular and other eff ects of long-term pharmacological interleukin 1 (IL-1) inhibition, we studied genetic variants that produce inhibition of IL-1, a master regulator of infl ammation.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cathie Sudlow and colleagues describe the UK Biobank, a large population-based prospective study, established to allow investigation of the genetic and non-genetic determinants of the diseases of middle and old age.
    PLoS Medicine 03/2015; 12(3):e1001779. DOI:10.1371/journal.pmed.1001779 · 14.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis
    Nature 02/2015; 518(7538). DOI:10.1038/nature14177 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 x 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
    Nature 02/2015; 518(7538-7538):187-96. DOI:10.1038/nature14132 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance. When MI occurs early in life, genetic inheritance is a major component to risk. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families, whereas common variants at more than 45 loci have been associated with MI risk in the population. Here we evaluate how rare mutations contribute to early-onset MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (≤50 years in males and ≤60 years in females) along with MI-free controls. We identified two genes in which rare coding-sequence mutations were more frequent in MI cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare non-synonymous mutations were at 4.2-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). Approximately 2% of early MI cases harbour a rare, damaging mutation in LDLR; this estimate is similar to one made more than 40 years ago using an analysis of total cholesterol16. Among controls, about 1 in 217 carried an LDLR coding-sequence mutation and had plasma LDL cholesterol > 190 mg dl−1. At apolipoprotein A-V (APOA5), carriers of rare non-synonymous mutations were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol, whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding-sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase15, 17 and apolipoprotein C-III. Combined, these observations suggest that, as well as LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.
    Nature 12/2014; advance online publication. DOI:10.1038/nature13917 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Ezetimibe lowers plasma levels of low-density lipoprotein (LDL) cholesterol by inhibiting the activity of the Niemann-Pick C1-like 1 (NPC1L1) protein. However, whether such inhibition reduces the risk of coronary heart disease is not known. Human mutations that inactivate a gene encoding a drug target can mimic the action of an inhibitory drug and thus can be used to infer potential effects of that drug. METHODS: We sequenced the exons of NPC1L1 in 7364 patients with coronary heart disease and in 14,728 controls without such disease who were of European, African, or South Asian ancestry. We identified carriers of inactivating mutations (nonsense, splice-site, or frameshift mutations). In addition, we genotyped a specific inactivating mutation (p.Arg406X) in 22,590 patients with coronary heart disease and in 68,412 controls. We tested the association between the presence of an inactivating mutation and both plasma lipid levels and the risk of coronary heart disease. RESULTS: With sequencing, we identified 15 distinct NPC1L1 inactivating mutations; approximately 1 in every 650 persons was a heterozygous carrier for 1 of these mutations. Heterozygous carriers of NPC1L1 inactivating mutations had a mean LDL cholesterol level that was 12 mg per deciliter (0.31 mmol per liter) lower than that in noncarriers (P=0.04). Carrier status was associated with a relative reduction of 53% in the risk of coronary heart disease (odds ratio for carriers, 0.47; 95% confidence interval, 0.25 to 0.87; P=0.008). In total, only 11 of 29,954 patients with coronary heart disease had an inactivating mutation (carrier frequency, 0.04%) in contrast to 71 of 83,140 controls (carrier frequency, 0.09%). CONCLUSIONS: Naturally occurring mutations that disrupt NPC1L1 function were found to be associated with reduced plasma LDL cholesterol levels and a reduced risk of coronary heart disease. (Funded by the National Institutes of Health and others.).
    New England Journal of Medicine 11/2014; 371(22):2072-82. DOI:10.1056/NEJMoa1405386 · 54.42 Impact Factor
  • Source
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to 91 462 coffee consumers of European ancestry with top single-nucleotide polymorphisms (SNPs) followed-up in ~30 062 and 7964 coffee consumers of European and African-American ancestry, respectively. Studies from both stages were combined in a trans-ethnic meta-analysis. Confirmed loci were examined for putative functional and biological relevance. Eight loci, including six novel loci, met GW significance (log10Bayes factor (BF)>5.64) with per-allele effect sizes of 0.03-0.14 cups per day. Six are located in or near genes potentially involved in pharmacokinetics (ABCG2, AHR, POR and CYP1A2) and pharmacodynamics (BDNF and SLC6A4) of caffeine. Two map to GCKR and MLXIPL genes related to metabolic traits but lacking known roles in coffee consumption. Enhancer and promoter histone marks populate the regions of many confirmed loci and several potential regulatory SNPs are highly correlated with the lead SNP of each. SNP alleles near GCKR, MLXIPL, BDNF and CYP1A2 that were associated with higher coffee consumption have previously been associated with smoking initiation, higher adiposity and fasting insulin and glucose but lower blood pressure and favorable lipid, inflammatory and liver enzyme profiles (P<5 × 10(-8)).Our genetic findings among European and African-American adults reinforce the role of caffeine in mediating habitual coffee consumption and may point to molecular mechanisms underlying inter-individual variability in pharmacological and health effects of coffee.Molecular Psychiatry advance online publication, 7 October 2014; doi:10.1038/mp.2014.107.
    Molecular Psychiatry 10/2014; DOI:10.1038/mp.2014.107 · 15.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated approximately 2,000, approximately 3,700 and approximately 9,500 SNPs explained approximately 21%, approximately 24% and approximately 29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/beta-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
    Nature Genetics 10/2014; DOI:10.1038/ng.3097 · 29.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Ageing populations may demand more blood transfusions, but the blood supply could be limited by difficulties in attracting and retaining a decreasing pool of younger donors. One approach to increase blood supply is to collect blood more frequently from existing donors. If more donations could be safely collected in this manner at marginal cost, then it would be of considerable benefit to blood services. National Health Service (NHS) Blood and Transplant in England currently allows men to donate up to every 12 weeks and women to donate up to every 16 weeks. In contrast, some other European countries allow donations as frequently as every 8 weeks for men and every 10 weeks for women. The primary aim of the INTERVAL trial is to determine whether donation intervals can be safely and acceptably decreased to optimise blood supply whilst maintaining the health of donors. Methods INTERVAL is a randomised trial of whole blood donors enrolled from all 25 static centres of NHS Blood and Transplant. Recruitment of about 50,000 male and female donors started in June 2012 and was completed in June 2014. Men have been randomly assigned to standard 12-week versus 10-week versus 8-week inter-donation intervals, while women have been assigned to standard 16-week versus 14-week versus 12-week inter-donation intervals. Sex-specific comparisons will be made by intention-to-treat analysis of outcomes assessed after two years of intervention. The primary outcome is the number of blood donations made. A key secondary outcome is donor quality of life, assessed using the Short Form Health Survey. Additional secondary endpoints include the number of 'deferrals' due to low haemoglobin (and other factors), iron status, cognitive function, physical activity, and donor attitudes. A comprehensive health economic analysis will be undertaken. Discussion The INTERVAL trial should yield novel information about the effect of inter-donation intervals on blood supply, acceptability, and donors' physical and mental well-being. The study will generate scientific evidence to help formulate blood collection policies in England and elsewhere.
    Trials 09/2014; 15:363. DOI:10.1186/1745-6215-15-363 · 2.12 Impact Factor
  • Annals of internal medicine 09/2014; 161(6):458-459. DOI:10.7326/L14-5018-11 · 16.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to 91 462 coffee consumers of European ancestry with top single-nucleotide polymorphisms (SNPs) followed-up in ~ 30 062 and 7964 coffee consumers of European and African-American ancestry, respectively. Studies from both stages were combined in a trans-ethnic meta-analysis. Confirmed loci were examined for putative functional and biological relevance. Eight loci, including six novel loci, met GW significance (log10Bayes factor (BF)45.64) with per-allele effect sizes of 0.03–0.14 cups per day. Six are located in or near genes potentially involved in pharmacokinetics (ABCG2, AHR, POR and CYP1A2) and pharmacodynamics (BDNF and SLC6A4) of caffeine. Two map to GCKR and MLXIPL genes related to metabolic traits but lacking known roles in coffee consumption. Enhancer and promoter histone marks populate the regions of many confirmed loci and several potential regulatory SNPs are highly correlated with the lead SNP of each. SNP alleles near GCKR, MLXIPL, BDNF and CYP1A2 that were associated with higher coffee consumption have previously been associated with smoking initiation, higher adiposity and fasting insulin and glucose but lower blood pressure and favorable lipid, inflammatory and liver enzyme profiles (Po5×10− 8).Our genetic findings among European and African-American adults reinforce the role of caffeine in mediating habitual coffee consumption and may point to molecular mechanisms underlying inter-individual variability in pharmacological and health effects of coffee.
    Molecular Psychiatry 07/2014; · 15.15 Impact Factor
  • The Lancet 06/2014; 383(9934):2042–2043. DOI:10.1016/S0140-6736(14)60991-0 · 45.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The value of measuring levels of glycated hemoglobin (HbA1c) for the prediction of first cardiovascular events is uncertain. To determine whether adding information on HbA1c values to conventional cardiovascular risk factors is associated with improvement in prediction of cardiovascular disease (CVD) risk. Analysis of individual-participant data available from 73 prospective studies involving 294,998 participants without a known history of diabetes mellitus or CVD at the baseline assessment. Measures of risk discrimination for CVD outcomes (eg, C-index) and reclassification (eg, net reclassification improvement) of participants across predicted 10-year risk categories of low (<5%), intermediate (5% to <7.5%), and high (≥7.5%) risk. During a median follow-up of 9.9 (interquartile range, 7.6-13.2) years, 20,840 incident fatal and nonfatal CVD outcomes (13,237 coronary heart disease and 7603 stroke outcomes) were recorded. In analyses adjusted for several conventional cardiovascular risk factors, there was an approximately J-shaped association between HbA1c values and CVD risk. The association between HbA1c values and CVD risk changed only slightly after adjustment for total cholesterol and triglyceride concentrations or estimated glomerular filtration rate, but this association attenuated somewhat after adjustment for concentrations of high-density lipoprotein cholesterol and C-reactive protein. The C-index for a CVD risk prediction model containing conventional cardiovascular risk factors alone was 0.7434 (95% CI, 0.7350 to 0.7517). The addition of information on HbA1c was associated with a C-index change of 0.0018 (0.0003 to 0.0033) and a net reclassification improvement of 0.42 (-0.63 to 1.48) for the categories of predicted 10-year CVD risk. The improvement provided by HbA1c assessment in prediction of CVD risk was equal to or better than estimated improvements for measurement of fasting, random, or postload plasma glucose levels. In a study of individuals without known CVD or diabetes, additional assessment of HbA1c values in the context of CVD risk assessment provided little incremental benefit for prediction of CVD risk.
    JAMA The Journal of the American Medical Association 03/2014; 311(12):1225-33. DOI:10.1001/jama.2014.1873 · 30.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Guidelines advocate changes in fatty acid consumption to promote cardiovascular health. To summarize evidence about associations between fatty acids and coronary disease. MEDLINE, Science Citation Index, and Cochrane Central Register of Controlled Trials through July 2013. Prospective, observational studies and randomized, controlled trials. Investigators extracted data about study characteristics and assessed study biases. There were 32 observational studies (530 525 participants) of fatty acids from dietary intake; 17 observational studies (25 721 participants) of fatty acid biomarkers; and 27 randomized, controlled trials (103 052 participants) of fatty acid supplementation. In observational studies, relative risks for coronary disease were 1.02 (95% CI, 0.97 to 1.07) for saturated, 0.99 (CI, 0.89 to 1.09) for monounsaturated, 0.93 (CI, 0.84 to 1.02) for long-chain ω-3 polyunsaturated, 1.01 (CI, 0.96 to 1.07) for ω-6 polyunsaturated, and 1.16 (CI, 1.06 to 1.27) for trans fatty acids when the top and bottom thirds of baseline dietary fatty acid intake were compared. Corresponding estimates for circulating fatty acids were 1.06 (CI, 0.86 to 1.30), 1.06 (CI, 0.97 to 1.17), 0.84 (CI, 0.63 to 1.11), 0.94 (CI, 0.84 to 1.06), and 1.05 (CI, 0.76 to 1.44), respectively. There was heterogeneity of the associations among individual circulating fatty acids and coronary disease. In randomized, controlled trials, relative risks for coronary disease were 0.97 (CI, 0.69 to 1.36) for α-linolenic, 0.94 (CI, 0.86 to 1.03) for long-chain ω-3 polyunsaturated, and 0.89 (CI, 0.71 to 1.12) for ω-6 polyunsaturated fatty acid supplementations. Potential biases from preferential publication and selective reporting. Current evidence does not clearly support cardiovascular guidelines that encourage high consumption of polyunsaturated fatty acids and low consumption of total saturated fats. British Heart Foundation, Medical Research Council, Cambridge National Institute for Health Research Biomedical Research Centre, and Gates Cambridge.
    Annals of internal medicine 03/2014; 160(6). DOI:10.7326/M13-1788 · 16.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry.
    Nature Genetics 03/2014; 46(3):234-244. DOI:10.1038/ng.2897 · 29.65 Impact Factor

Publication Stats

19k Citations
3,678.82 Total Impact Points

Institutions

  • 2001–2015
    • University of Cambridge
      • • Department of Public Health and Primary Care
      • • Cardiovascular Epidemiology Unit
      Cambridge, England, United Kingdom
  • 2014
    • Erasmus Universiteit Rotterdam
      Rotterdam, South Holland, Netherlands
  • 2013
    • Harvard Medical School
      • Department of Medicine
      Boston, Massachusetts, United States
  • 2012
    • Massachusetts General Hospital
      • Center for Human Genetic Research
      Boston, MA, United States
    • Wellcome Trust Sanger Institute
      Cambridge, England, United Kingdom
  • 1997–2012
    • University of Oxford
      • Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU)
      Oxford, ENG, United Kingdom
    • University of Leeds
      Leeds, England, United Kingdom
  • 2011
    • The University of Western Ontario
      London, Ontario, Canada
  • 2010
    • Center for Non-Communicable Diseases
      Kurrachee, Sindh, Pakistan
  • 2002
    • University of Glasgow
      • School of Medicine
      Glasgow, SCT, United Kingdom
  • 2000
    • University of Nottingham
      Nottigham, England, United Kingdom
  • 1999
    • University of Southampton
      Southampton, England, United Kingdom