Motoaki Seki

Yokohama City University, Yokohama, Kanagawa, Japan

Are you Motoaki Seki?

Claim your profile

Publications (195)1123.31 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many multicellular organisms have remarkable capability to regenerate new organs after wounding. As a first step of organ regeneration, adult somatic cells often dedifferentiate to reacquire cell proliferation potential, but mechanisms underlying this process remain unknown in plants. Here we show that an AP2/ERF transcription factor, WOUND INDUCED DEDIFFERENTIATION 1 (WIND1), is involved in the control of cell dedifferentiation in Arabidopsis. WIND1 is rapidly induced at the wound site, and it promotes cell dedifferentiation and subsequent cell proliferation to form a mass of pluripotent cells termed callus. We further demonstrate that ectopic overexpression of WIND1 is sufficient to establish and maintain the dedifferentiated status of somatic cells without exogenous auxin and cytokinin, two plant hormones that are normally required for cell dedifferentiation. In vivo imaging of a synthetic cytokinin reporter reveals that wounding upregulates the B-type ARABIDOPSIS RESPONSE REGULATOR (ARR)-mediated cytokinin response and that WIND1 acts via the ARR-dependent signaling pathway to promote cell dedifferentiation. This study provides novel molecular insights into how plants control cell dedifferentiation in response to wounding.
    Current biology: CB 03/2011; 21(6):508-14. DOI:10.1016/j.cub.2011.02.020 · 9.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many plants exhibit altered gene expression patterns in response to low nonfreezing temperatures and an increase in freezing tolerance in a phenomenon known as cold acclimation. Here we show, for the first time, that the histone deacetylase gene HDA6 is required for cold acclimation and freezing tolerance in Arabidopsis. HDA6 is transcriptionally upregulated during long-term cold treatment. Cold-treated hda6 mutants showed reduced freezing tolerance compared with the cold-treated wild-type plants. Freezing-caused electrolyte leakage increased in the cold-treated hda6 mutant. In contrast, the non-cold-treated hda6 mutants showed no significant difference in survivability and electrolyte leakage compared to wild-type plants. Transcriptome analysis identified the genes that showed aberrant expression in the hda6 mutant after cold acclimation. We conclude that HDA6 plays a critical role in regulating cold acclimation process that confers freezing resistance on Arabidopsis.
    Biochemical and Biophysical Research Communications 02/2011; 406(3):414-9. DOI:10.1016/j.bbrc.2011.02.058 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in technologies for observing high-resolution genomic activities, such as whole-genome tiling arrays and high-throughput sequencers, provide detailed information for understanding genome functions. However, the functions of 50% of known Arabidopsis thaliana genes remain unknown or are annotated only on the basis of static analyses such as protein motifs or similarities. In this paper, we describe dynamic structure-based dynamic expression (DSDE) analysis, which sequentially predicts both structural and functional features of transcripts. We show that DSDE analysis inferred gene functions 12% more precisely than static structure-based dynamic expression (SSDE) analysis or conventional co-expression analysis based on previously determined gene structures of A. thaliana. This result suggests that more precise structural information than the fixed conventional annotated structures is crucial for co-expression analysis in systems biology of transcriptional regulation and dynamics. Our DSDE method, ARabidopsis Tiling-Array-based Detection of Exons version 2 and over-representation analysis (ARTADE2-ORA), precisely predicts each gene structure by combining two statistical analyses: a probe-wise co-expression analysis of multiple transcriptome measurements and a Markov model analysis of genome sequences. ARTADE2-ORA successfully identified the true functions of about 90% of functionally annotated genes, inferred the functions of 98% of functionally unknown genes and predicted 1,489 new gene structures and functions. We developed a database ARTADE2DB that integrates not only the information predicted by ARTADE2-ORA but also annotations and other functional information, such as phenotypes and literature citations, and is expected to contribute to the study of the functional genomics of A. thaliana. URL:
    Plant and Cell Physiology 02/2011; 52(2):254-64. DOI:10.1093/pcp/pcq202 · 4.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using the full-length cDNA overexpressor (FOX) gene-hunting system, we have generated 130 Arabidopsis FOX-superroot lines in bird's-foot trefoil (Lotus corniculatus) for the systematic functional analysis of genes expressed in roots and for the selection of induced mutants with interesting root growth characteristics. We used the Arabidopsis-FOX Agrobacterium library (constructed by ligating pBIG2113SF) for the Agrobacterium-mediated transformation of superroots (SR) and the subsequent selection of gain-of-function mutants with ectopically expressed Arabidopsis genes. The original superroot culture of L. corniculatus is a unique host system displaying fast root growth in vitro, allowing continuous root cloning, direct somatic embryogenesis and mass regeneration of plants under entirely hormone-free culture conditions. Several of the Arabidopsis FOX-superroot lines show interesting deviations from normal growth and morphology of roots from SR-plants, such as differences in pigmentation, growth rate, length or diameter. Some of these mutations are of potential agricultural interest. Genomic PCR analysis revealed that 100 (76.9%) out of the 130 transgenic lines showed the amplification of single fragments. Sequence analysis of the PCR fragments from these 100 lines identified full-length cDNA in 74 of them. Forty-three out of 74 full-length cDNA carried known genes. The Arabidopsis FOX-superroot lines of L. corniculatus, produced in this study, expand the FOX hunting system and provide a new tool for the genetic analysis and control of root growth in a leguminous forage plant.
    Journal of plant physiology 01/2011; 168(2):181-7. DOI:10.1016/j.jplph.2010.10.003 · 2.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thellungiella halophila (also known as T. salsuginea) is a model halophyte with a small size, short life cycle, and small genome. Thellungiella genes exhibit a high degree of sequence identity with Arabidopsis genes (90% at the cDNA level). We previously generated a full-length enriched cDNA library of T. halophila from various tissues and from whole plants treated with salinity, chilling, freezing stress, or ABA. We determined the DNA sequences of 20 000 cDNAs at both the 5'- and 3' ends, and identified 9569 distinct genes. Here, we completely sequenced 1047 Thellungiella full-length cDNAs representing abiotic-stress-related genes, transcription factor genes, and protein phosphatase 2C genes. The predicted coding sequences, 5'-UTRs, and 3'-UTRs were compared with those of orthologous genes from Arabidopsis for length, sequence similarity, and structure. The 5'-UTR sequences of Thellungiella and Arabidopsis orthologs shared a significant level of similarity, although the motifs were rearranged. While examining the stress-related Thellungiella coding sequences, we found a short splicing variant of T. halophila salt overly sensitive 1 (ThSOS1), designated ThSOS1S. ThSOS1S contains the transmembrane domain of ThSOS1 but lacks the C-terminal hydrophilic region. The expression level of ThSOS1S under normal growth conditions was higher than that of ThSOS1. We also compared the expression levels of Na+-transport-system genes between Thellungiella and Arabidopsis by using full-length cDNAs from each species as probes. Several genes that play essential roles in Na+ excretion, compartmentation, and diffusion (SOS1, SOS2, NHX1, and HKT1) were expressed at higher levels in Thellungiella than in Arabidopsis. The full-length cDNA sequences obtained in this study will be essential for the ongoing annotation of the Thellungiella genome, especially for further improvement of gene prediction. Moreover, they will enable us to find splicing variants such as ThSOS1S (AB562331).
    BMC Plant Biology 11/2010; 10:261. DOI:10.1186/1471-2229-10-261 · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We show here that transgenic Arabidopsis plants that expressed chimeric repressors derived from the AtMYB102, ANAC047, HRS1, ZAT6 and AtERF5 transcription factors were tolerant to treatment with 400 mm NaCl, which was lethal to wild-type plants. The transgenic plants grew well, without any apparent differences from the wild-type plants under normal growth condition. The transgenic lines expressing the AtMYB102, ANAC047 and HRS1 chimeric repressors germinated in the presence of 225 mm NaCl, while those expressing the ZAT6 and AtERF5 did not. However, the latter lines were tolerant to osmotic stress and germinated in the presence of 600 mm mannitol, suggesting a link between responses to salt and osmotic stress. Expression of the AtMYB102, ANAC047, ZAT6 and AtERF5 genes was induced by salt treatment, while that of HRS1 was repressed. HRS1 has transcriptional repressive activity and appears to suppress the expression of factors that negatively regulate salt tolerance. Microarray analysis revealed that the levels of expression of DREB1A, DREB2B and several genes for ZAT transcription factors rose 10- to 100-fold in the AtMYB102 chimeric repressor line under both normal and stress conditions. Elevated expression of DREB- and ZAT- related genes might be involved in the salt tolerance of the AtMYB102 chimeric repressor line. Transgenic rice plants expressing chimeric repressors derived from Os02g0325600 and Os03g0327800, rice homologues of HRS1 and ANAC047, were tolerant to salinity stress demonstrated by suppression of growth inhibition and ion leakages. Expression of a chimeric repressor provides an effective strategy for enhancing tolerance of plants to abiotic stress.
    Plant Biotechnology Journal 11/2010; 9(7):736-46. DOI:10.1111/j.1467-7652.2010.00578.x · 5.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coordination of the maintenance of the undifferentiated fate of cells in the shoot meristem and the promotion of cellular differentiation in plant organs is essential for the development of plant shoots. CINCINNATA-like (CIN-like) TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) transcription factors are involved in this coordination via the negative regulation of CUP-SHAPED COTYLEDON (CUC) genes, which regulate the formation of shoot meristems and the specification of organ boundaries. However, the molecular mechanism of the action of CIN-like TCPs is poorly understood. We show here that TCP3, a model of CIN-like TCPs of Arabidopsis thaliana, directly activates the expression of genes for miR164, ASYMMETRIC LEAVES1 (AS1), INDOLE-3-ACETIC ACID3/SHORT HYPOCOTYL2 (IAA3/SHY2), and SMALL AUXIN UP RNA (SAUR) proteins. Gain of function of these genes suppressed the formation of shoot meristems and resulted in the fusion of cotyledons, whereas their loss of function induced ectopic expression of CUC genes in leaves. Our results indicate that miR164, AS1, IAA3/SHY2, and SAUR partially but cooperatively suppress the expression of CUC genes. Since CIN-like TCP genes were revealed to act dose dependently in the differentiation of leaves, we propose that evolutionarily diverse CIN-like TCPs have important roles in the signaling pathways that generate different leaf forms, without having any lethal effects on shoots.
    The Plant Cell 11/2010; 22(11):3574-88. DOI:10.1105/tpc.110.075598 · 9.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plants must respond and adapt to abiotic stresses to survive in various environmental conditions. Plants have acquired various stress tolerance mechanisms, which are different processes involving physiological and biochemical changes that result in adaptive or morphological changes. Recent advances in genome-wide analyses have revealed complex regulatory networks that control global gene expression, protein modification, and metabolite composition. Genetic regulation and epigenetic regulation, including changes in nucleosome distribution, histone modification, DNA methylation, and npcRNAs (non-protein-coding RNA) play important roles in abiotic stress gene networks. Transcriptomics, metabolomics, bioinformatics, and high-through-put DNA sequencing have enabled active analyses of regulatory networks that control abiotic stress responses. Such analyses have markedly increased our understanding of global plant systems in responses and adaptation to stress conditions.
    Current opinion in plant biology 04/2010; 13(2):132-8. DOI:10.1016/j.pbi.2009.12.006 · 9.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phytohormone abscisic acid (ABA) plays important roles in the induction and maintenance of seed dormancy. Although application of exogenous ABA inhibits germination, the effects of exogenous ABA on ABA-mediated gene transcription differ from those of endogenous ABA. To understand how endogenous ABA regulates the transcriptomes in seeds, we performed comprehensive expression analyses using whole-genome Affymetrix tiling arrays in two ABA metabolism mutants - an ABA-deficient mutant (aba2) and an ABA over-accumulation mutant (cyp707a1a2a3 triple mutant). Hierarchical clustering and principal components analyses showed that differences in endogenous ABA levels do not influence global expression of stored mRNA in dry seeds. However, the transcriptome after seed imbibition was related to endogenous ABA levels in both types of mutant. Endogenous ABA-regulated genes expressed in imbibed seeds included those encoding key ABA signaling factors and gibberellin-related components. In addition, cohorts of ABA-upregulated genes partially resembled those of dormant genes, whereas ABA-downregulated genes were partially overlapped with after-ripening-regulated genes. Bioinformatic analyses revealed that 6105 novel genes [non-Arabidopsis Genome Initiative (AGI) transcriptional units (TUs)] were expressed from unannotated regions. Interestingly, approximately 97% of non-AGI TUs possibly encoded hypothetical non-protein-coding RNAs, including a large number of antisense RNAs. In dry and imbibed seeds, global expression profiles of non-AGI TUs were similar to those of AGI genes. For both non-AGI TUs and AGI code genes, we identified those that were regulated differently in embryo and endosperm tissues. Our results suggest that transcription in Arabidopsis seeds is more complex and dynamic than previously thought.
    The Plant Journal 04/2010; 62(1):39-51. DOI:10.1111/j.1365-313X.2010.04135.x · 6.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plants respond and adapt to drought, cold, and high-salinity stresses. Stress-inducible gene products function in the stress response and tolerance in plants. Using cDNA microarrays and oligonucleotide microarrays, stress-inducible genes have been identified in various plant species so far. Recently, tiling array technology has become a powerful tool for the whole-genome transcriptome analysis. We applied the Arabidopsis Affymetrix tiling arrays to study the whole-genome transcriptome under drought, cold, and high-salinity stresses and identified a large number of drought, cold, and high-salinity stress-inducible genes and transcriptional units (TUs).
    Methods in molecular biology (Clifton, N.J.) 01/2010; 639:141-55. DOI:10.1007/978-1-60761-702-0_8 · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA-directed modification of histones is essential for the maintenance of heterochromatin in higher eukaryotes. In plants, cytosine methylation is an additional factor regulating inactive chromatin, but the mechanisms regulating the coexistence of cytosine methylation and repressive histone modification remain obscure. In this study, we analysed the mechanism of gene silencing mediated by MORPHEUS' MOLECULE1 (MOM1) of Arabidopsis thaliana. Transcript profiling revealed that the majority of up-regulated loci in mom1 carry sequences related to transposons and homologous to the 24-nt siRNAs accumulated in wild-type plants that are the hallmarks of RNA-directed DNA methylation (RdDM). Analysis of a single-copy gene, SUPPRESSOR OF drm1 drm2 cmt3 (SDC), revealed that mom1 activates SDC with concomitant reduction of di-methylated histone H3 lysine 9 (H3K9me2) at the tandem repeats in the promoter region without changes in siRNA accumulation and cytosine methylation. The reduction of H3K9me2 is not observed in regions flanking the tandem repeats. The results suggest that MOM1 transduces RdDM signals to repressive histone modification in the core region of RdDM.
    The EMBO Journal 12/2009; 29(2):352-62. DOI:10.1038/emboj.2009.374 · 10.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plants respond and adapt to drought, cold and high-salinity stress in order to survive. Molecular and genomic studies have revealed that many stress-inducible genes with various functions and signalling factors, such as transcription factors, protein kinases and protein phosphatases, are involved in the stress responses. Recent studies have revealed the coordination of the gene expression and chromatin regulation in response to the environmental stresses. Several histone modifications are dramatically altered on the stress-responsive gene regions under drought stress conditions. Several chromatin-related proteins such as histone modification enzymes, linker histone H1 and components of chromatin remodeling complex influence the gene regulation in the stress responses. This review briefly describes chromatin regulation in response to drought, cold and high-salinity stress.
    Plant Cell and Environment 11/2009; 33(4):604-11. DOI:10.1111/j.1365-3040.2009.02076.x · 5.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plants are able to sense and respond to changes in the balance between carbon (C) and nitrogen (N) metabolite availability, known as the C/N response. During the transition to photoautotrophic growth following germination, growth of seedlings is arrested if a high external C/N ratio is detected. To clarify the mechanisms for C/N sensing and signaling during this transition period, we screened a large collection of FOX transgenic plants, overexpressing full-length cDNAs, for individuals able to continue post-germinative growth under severe C/N stress. One line, cni1-D (carbon/nitrogen insensitive 1-dominant), was shown to have a suppressed sensitivity to C/N conditions at both the physiological and molecular level. The CNI1 cDNA encoded a predicted RING-type ubiquitin ligase previously annotated as ATL31. Overexpression of ATL31 was confirmed to be responsible for the cni1-D phenotype, and a knock-out of this gene resulted in hypersensitivity to C/N conditions during post-germinative growth. The ATL31 protein was confirmed to contain ubiquitin ligase activity using an in vitro assay system. Moreover, removal of this ubiquitin ligase activity from the overexpressed protein resulted in the loss of the mutant phenotype. Taken together, these data demonstrated that CNI1/ATL31 activity is required for the plant C/N response during seedling growth transition.
    The Plant Journal 09/2009; 60(5):852-64. DOI:10.1111/j.1365-313X.2009.04006.x · 6.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We created a protein library consisting of 647 Arabidopsis transcription factors (TFs) using a wheat cell-free system. The quality of proteins in the library was checked by binding assay of bZIP family proteins. Screening of TFs binding to 5'-regulatory regions of FLC and LFY was conducted using the library, and MYB67 and GBF1 were found to be binding factors.
    Bioscience Biotechnology and Biochemistry 08/2009; 73(7):1661-4. DOI:10.1271/bbb.90026 · 1.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plants have evolved intricate mechanisms to respond and adapt to a wide variety of biotic and abiotic stresses in their environment. The Arabidopsis DEAR1 (DREB and EAR motif protein 1; At3g50260) gene encodes a protein containing significant homology to the DREB1/CBF (dehydration-responsive element binding protein 1/C-repeat binding factor) domain and the EAR (ethylene response factor-associated amphiphilic repression) motif. We show here that DEAR1 mRNA accumulates in response to both pathogen infection and cold treatment. Transgenic Arabidopsis overexpressing DEAR1 (DEAR1ox) showed a dwarf phenotype and lesion-like cell death, together with constitutive expression of PR genes and accumulation of salicylic acid. DEAR1ox also showed more limited P. syringae pathogen growth compared to wild-type, consistent with an activated defense phenotype. In addition, transient expression experiments revealed that the DEAR1 protein represses DRE/CRT (dehydration-responsive element/C-repeat)-dependent transcription, which is regulated by low temperature. Furthermore, the induction of DREB1/CBF family genes by cold treatment was suppressed in DEAR1ox, leading to a reduction in freezing tolerance. These results suggest that DEAR1 has an upstream regulatory role in mediating crosstalk between signaling pathways for biotic and abiotic stress responses.
    Journal of Plant Research 08/2009; 122(6):633-43. DOI:10.1007/s10265-009-0252-6 · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are 20-24 nucleotide endogenous regulatory molecules conserved in higher eukaryotes. In Arabidopsis, miRNAs are produced through step-wise cleavages of primary miRNA precursors (pri-miRNAs) by DICER-LIKE1 (DCL1). This cleavage step is also supported by a double-stranded RNA-binding protein, HYPONASTIC LEAVES1 (HYL1). In many cases, mature miRNA is predominantly incorporated into an endonuclease, ARGONAUTE1 (AGO1), which degrades miRNA-targeted mRNAs. Here, we examined and revealed whole genome transcriptomes in ago1-25 and hyl1-2 mutants using tiling arrays. The data in this paper are valuable for understanding the relationship between the miRNA pathway and its effect on transcriptomes.
    Plant and Cell Physiology 08/2009; 50(9):1715-20. DOI:10.1093/pcp/pcp109 · 4.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular breeding of crops is an efficient way to upgrade plant functions useful to mankind. A key step is forward genetics or positional cloning to identify the genes that confer useful functions. In order to accelerate the whole research process, we have developed an integrated database system powered by an intelligent data-retrieval engine termed PosMed-plus (Positional Medline for plant upgrading science), allowing us to prioritize highly promising candidate genes in a given chromosomal interval(s) of Arabidopsis thaliana and rice, Oryza sativa. By inferentially integrating cross-species information resources including genomes, transcriptomes, proteomes, localizomes, phenomes and literature, the system compares a user's query, such as phenotypic or functional keywords, with the literature associated with the relevant genes located within the interval. By utilizing orthologous and paralogous correspondences, PosMed-plus efficiently integrates cross-species information to facilitate the ranking of rice candidate genes based on evidence from other model species such as Arabidopsis. PosMed-plus is a plant science version of the PosMed system widely used by mammalian researchers, and provides both a powerful integrative search function and a rich integrative display of the integrated databases. PosMed-plus is the first cross-species integrated database that inferentially prioritizes candidate genes for forward genetics approaches in plant science, and will be expanded for wider use in plant upgrading in many species.
    Plant and Cell Physiology 07/2009; 50(7):1249-59. DOI:10.1093/pcp/pcp086 · 4.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our limited understanding of plant promoters does not allow us to recognize any core promoter elements for the majority of plant promoters. To understand the promoter architecture of Arabidopsis, we used the combined approach of in silico detection of novel core promoter elements and large-scale determination of transcription start sites (TSSs). To this end, we developed a novel methodology for TSS identification, using a combination of the cap-trapper and massively parallel signature sequencing methods. This technique, CT-MPSS, allowed us to identify 158 237 Arabidopsis TSS tags corresponding to 38 311 TSS loci, which provides an opportunity for quantitative analysis of plant promoters. The expression characteristics of these promoters were analyzed with respect to core promoter elements detected by our in silico analyses, revealing that Arabidopsis promoters contain two main types of elements with exclusive characteristics, the TATA type and the GA type. The TATA-type promoters tend to be associated with the Y Patch and the Inr motif, and cause high expression with sharp-peak TSS clusters. By contrast, the GA type produces broad-type TSS clusters. Unlike mammalian promoters, plant promoters are not associated with CpG islands. However, plant-specific GA-type promoters share some characteristics with mammalian CpG-type promoters.
    The Plant Journal 07/2009; 60(2):350-62. DOI:10.1111/j.1365-313X.2009.03958.x · 6.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wheat is an allopolyploid plant that harbors a huge, complex genome. Therefore, accumulation of expressed sequence tags (ESTs) for wheat is becoming particularly important for functional genomics and molecular breeding. We prepared a comprehensive collection of ESTs from the various tissues that develop during the wheat life cycle and from tissues subjected to stress. We also examined their expression profiles in silico. As full-length cDNAs are indispensable to certify the collected ESTs and annotate the genes in the wheat genome, we performed a systematic survey and sequencing of the full-length cDNA clones. This sequence information is a valuable genetic resource for functional genomics and will enable carrying out comparative genomics in cereals. As part of the functional genomics and development of genomic wheat resources, we have generated a collection of full-length cDNAs from common wheat. By grouping the ESTs of recombinant clones randomly selected from the full-length cDNA library, we were able to sequence 6,162 independent clones with high accuracy. About 10% of the clones were wheat-unique genes, without any counterparts within the DNA database. Wheat clones that showed high homology to those of rice were selected in order to investigate their expression patterns in various tissues throughout the wheat life cycle and in response to abiotic-stress treatments. To assess the variability of genes that have evolved differently in wheat and rice, we calculated the substitution rate (Ka/Ks) of the counterparts in wheat and rice. Genes that were preferentially expressed in certain tissues or treatments had higher Ka/Ks values than those in other tissues and treatments, which suggests that the genes with the higher variability expressed in these tissues is under adaptive selection. We have generated a high-quality full-length cDNA resource for common wheat, which is essential for continuation of the ongoing curation and annotation of the wheat genome. The data for each clone's expression in various tissues and stress treatments and its variability in wheat and rice as a result of their diversification are valuable tools for functional genomics in wheat and for comparative genomics in cereals.
    BMC Genomics 07/2009; 10:271. DOI:10.1186/1471-2164-10-271 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternative splicing (AS) is a mechanism by which multiple types of mature mRNAs are generated from a single pre-mature mRNA. In this study, we completely sequenced 1800 full-length cDNAs from Arabidopsis thaliana, which had 5' and/or 3' sequences that were previously found to have AS events or alternative transcription start sites. Unexpectedly, these sequences gave us further evidence of AS, as 601 out of 1800 transcripts showed novel AS events. We focused on the combination patterns of multiple AS events within individual genes. Interestingly, some specific AS event combination patterns tended to appear more frequently than expected. The two most common patterns were: (i) alternative donor-0 approximately 12 times of exon skips-alternative acceptor and (ii) several times ( approximately 8) of retained introns. We also found that multiple AS events in a transcript tend to have the same effects concerning the length of the mature mRNA. Our current results are consistent with our previous observations, which showed changes in AS profiles under different conditions, and suggest the involvement of hypothetical cis- and trans-acting factors in the regulation of AS events.
    DNA Research 06/2009; 16(3):155-64. DOI:10.1093/dnares/dsp009 · 4.98 Impact Factor

Publication Stats

19k Citations
1,123.31 Total Impact Points


  • 2008–2015
    • Yokohama City University
      Yokohama, Kanagawa, Japan
  • 2002–2013
    • RIKEN
      • Plant Genomic Network Research Team
      Вако, Saitama, Japan
  • 2011
    • Salk Institute
      لا هویا, California, United States
  • 2010
    • Kyoto University
      • Graduate School of Biostudies
      Kyoto, Kyoto-fu, Japan
  • 2009
    • Donald Danforth Plant Science Center
      San Luis, Missouri, United States
  • 2007
    • Chiba University
      • Graduate School of Science and Technology
      Chiba-shi, Chiba-ken, Japan
    • Purdue University
      • Center for Plant Environmental Stress Physiology
      West Lafayette, IN, United States
  • 2005
    • Nagahama Institute of Bio-Science and Technology
      Нагахама, Shiga, Japan
  • 1999–2005
    • Japan International Research Center for Agricultural Sciences
      Tsukuba, Ibaraki, Japan
  • 2004
    • Tokyo Gakugei University
      Koganei, Tōkyō, Japan
  • 1997–2004
    • Tsukuba Research Institute
      Edo, Tōkyō, Japan
  • 2003
    • Kobe University
      Kōbe, Hyōgo, Japan
    • Kazusa DNA Research Institute
      Kizarazu, Chiba, Japan
  • 1998–2002
    • Tsukuba Medical Center Hospital
      Tsukuba, Ibaraki, Japan
  • 2001
    • Daiwa House Central Research Laboratory
      Edo, Tōkyō, Japan