Motoaki Seki

Yokohama City University, Yokohama, Kanagawa, Japan

Are you Motoaki Seki?

Claim your profile

Publications (202)1093.28 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Jasmonate (JA) and ethylene (ET) are two major plant hormones that synergistically regulate plant development and tolerance to necrotrophic fungi. Both JA and ET induce the expression of several pathogenesis-related genes, while blocking either signaling pathway abolishes the induction of these genes by JA and ET alone or in combination. However, the molecular basis of JA/ET coaction and signaling interdependency is largely unknown. Here, we report that two Arabidopsis ET-stabilized transcription factors (EIN3 and EIL1) integrate ET and JA signaling in the regulation of gene expression, root development, and necrotrophic pathogen defense. Further studies reveal that JA enhances the transcriptional activity of EIN3/EIL1 by removal of JA-Zim domain (JAZ) proteins, which physically interact with and repress EIN3/EIL1. In addition, we find that JAZ proteins recruit an RPD3-type histone deacetylase (HDA6) as a corepressor that modulates histone acetylation, represses EIN3/EIL1-dependent transcription, and inhibits JA signaling. Our studies identify EIN3/EIL1 as a key integration node whose activation requires both JA and ET signaling, and illustrate transcriptional derepression as a common mechanism to integrate diverse signaling pathways in the regulation of plant development and defense.
    Proceedings of the National Academy of Sciences 07/2011; 108(30):12539-44. DOI:10.1073/pnas.1103959108 · 9.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The 26S proteasome plays fundamental roles in the degradation of short-lived regulatory proteins, thereby controlling diverse cellular processes. In Arabidopsis, the essential RPT2 subunit is encoded by two highly homologous genes: RPT2a and RPT2b. Currently, only RPT2a has been reported to regulate various developmental processes, including the maintenance of the root apical meristem (RAM), although the roles of RPT2a in the RAM are still obscure. Here, we analyzed the cell type-specific requirement for RPT2a. When RPT2a was expressed locally in the rpt2a mutant, pleiotropic defects in the RAM, such as cell death and distorted cellular organization, were rescued differently, suggesting that RPT2a regulates various specific activities, which converge to maintain the RAM. On the other hand, the homologous RPT2b was also expressed in meristems, and the expression of RPT2b protein under the control of the RPT2a promoter complemented the rpt2a RAM defects, although the rpt2b mutant showed no obvious defect in all developmental aspects we examined. These results show that RPT2b might work in the RAM, but is dispensable for RAM maintenance in the presence of RPT2a. In contrast, the rpt2a rpt2b double mutant was lethal in male and female gametophytes, suggesting that RPT2a and RPT2b are redundantly required for gametogenesis. Furthermore, we showed that similar meristematic and gametophytic defects were caused by mutations in other subunit genes, RPT5a and RPT5b, suggesting that proper activity of the proteasome, not an RPT2-specific function, is required. Taken together, our results suggest that RPT2a and RPT2b contribute differently to the proteasome activity required for each developmental context.
    Plant and Cell Physiology 07/2011; 52(9):1628-40. DOI:10.1093/pcp/pcr093 · 4.93 Impact Factor
  • Yukio Kurihara · Motoaki Seki ·
    [Show abstract] [Hide abstract]
    ABSTRACT: During the past 10 years, a number of new findings have been made in RNA-mediated gene regulation and in regulation mechanisms of the RNAs using some advanced high-throughput technologies in the model plant, Arabidopsis thaliana. One of them is a genome-wide tiling array that allows us to receive the information of strand-specific transcriptome of not only protein-coding mRNAs but also long non coding transcripts. This chapter introduces several findings on plant nonsense-mediated decay (NMD), a well-known RNA regulatory machinery, and also summarizes the results of genome-wide analyses of RNA regulatory networks through NMD and NMD-related decay pathways, some of which have already been examined using the microarrays such as the tiling array. Their analyses revealed that unnecessary RNA species including long non coding junk RNAs are downregulated by the RNA decay machineries such as NMD. This chapter will help understand the existence of the transcriptional hidden layer and how genome-wide transcriptome is being constructed in plants. KeywordsNMD-Tiling array-RNA decay
    Non Coding RNAs in Plants, 07/2011: pages 79-89;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein phosphorylation is one of the main process in the signal transduction pathway. In recent years, there has been increasing attention to plant phosphorylation signaling and many laboratories are trying to elucidate pathways using various approaches. Although more than 1000 protein kinase (PK) genes have been annotated in the Arabidopsis genome, biochemical characterization of those PKs is limited. In this work, we demonstrate high-throughput profiling of serine/threonine autophosphorylation activity by a combination of the 759N-terminal biotinylated proteins library, produced using a wheat germ cell-free protein production system, and a commercially available luminescence system. Luminescent analysis revealed that 179 of the 759 PKs had autophosphorylation activity. From these 179 PKs, 67 of the most active PKs were analyzed to determine their function using the PlantP database. This analysis revealed that 35 (53%) of the proteins were classified as non-transmembrane protein kinases, and 15 (23%) were receptor-like protein kinases. Additionally, PKs from Group 4.4-MAP3K, Group 1.6, Group 4.5-MAPK/CDC/CK2/GSK kinases and Group 1.10-receptor like cytoplasmic kinases contained the highest percentage of autophosphorylated activity. Next, to get a better overview of the annotated 67 PKs, we used the gene ontology annotation search on the TAIR website to classify the 67 PKs into functional category. As a result, some of these PKs may be involved in phospho-signaling pathways such as signal transduction, stress response, and the regulation of cell division. Information from this study may shed light on many unknown plant PKs. This study will be a basis for understanding the function of PKs in phosphorylation network for future research.
    Phytochemistry 07/2011; 72(10):1136-44. DOI:10.1016/j.phytochem.2011.02.029 · 2.55 Impact Factor
  • Source
    Masanori Okamoto · Motoaki Seki ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Advanced transcriptome analyses have revealed the existence of various RNA species. In our previous study, a large number of non-protein-coding RNAs including antisense transcripts were identified using an Arabidopsis tiling array. Most of the antisense transcripts exhibited co-expression with sense transcripts during stress treatments or seed imbibition. Here, we report that antisense transcripts exhibit differential expression patterns to sense transcripts in distinct developmental tissues. In addition, RNA ligase-mediated RACE analysis identified the existence of 5'-capped and -uncapped antisense transcripts. These observations provide additional insight into antisense transcripts.
    Plant signaling & behavior 05/2011; 6(5):691-3. DOI:10.4161/psb.6.5.14976
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heterochromatin silencing is pivotal for genome stability in eukaryotes. In Arabidopsis, a plant-specific mechanism called RNA-directed DNA methylation (RdDM) is involved in heterochromatin silencing. Histone deacetylase HDA6 has been identified as a component of such machineries; however, its endogenous targets and the silencing mechanisms have not been analyzed globally. In this study, we investigated the silencing mechanism mediated by HDA6. Genome-wide transcript profiling revealed that the loci silenced by HDA6 carried sequences corresponding to the RDR2-dependent 24-nt siRNAs, however their transcript levels were mostly unaffected in the rdr2 mutant. Strikingly, we observed significant overlap of genes silenced by HDA6 to those by the CG DNA methyltransferase MET1. Furthermore, regardless of dependence on RdDM pathway, HDA6 deficiency resulted in loss of heterochromatic epigenetic marks and aberrant enrichment for euchromatic marks at HDA6 direct targets, along with ectopic expression of these loci. Acetylation levels increased significantly in the hda6 mutant at all of the lysine residues in the H3 and H4 N-tails, except H4K16. Interestingly, we observed two different CG methylation statuses in the hda6 mutant. CG methylation was sustained in the hda6 mutant at some HDA6 target loci that were surrounded by flanking DNA-methylated regions. In contrast, complete loss of CG methylation occurred in the hda6 mutant at the HDA6 target loci that were isolated from flanking DNA methylation. Regardless of CG methylation status, CHG and CHH methylation were lost and transcriptional derepression occurred in the hda6 mutant. Furthermore, we show that HDA6 binds only to its target loci, not the flanking methylated DNA, indicating the profound target specificity of HDA6. We propose that HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1, possibly recruiting MET1 to specific loci, thus forming the foundation of silent chromatin structure for subsequent non-CG methylation.
    PLoS Genetics 04/2011; 7(4):e1002055. DOI:10.1371/journal.pgen.1002055 · 7.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abscisic acid (ABA) catabolism is important for regulating endogenous ABA levels. To date, most effort has focused on catabolism of ABA to phaseic acid (PA), which is generated spontaneously after 8'-hydroxylation of ABA by cytochrome P450s in the CYP707A subfamily. Neophaseic acid (neoPA) is another well-documented ABA catabolite that is produced via ABA 9'-hydroxylation, but the 9'-hydroxylase has not yet been defined. Here, we show that endogenous neoPA levels are reduced in loss-of-function mutants defective in CYP707A genes. In addition, in planta levels of both neoPA and PA are reduced after treatment of plants with uniconazole-P, a P450 inhibitor. These lines of evidence suggest that CYP707A genes also encode the 9'-hydroxylase required for neoPA synthesis. To test this, in vitro enzyme assays using microsomal fractions from CYP707A-expressing yeast strains were conducted and these showed that all four Arabidopsis CYP707As are 9'-hydroxylases, although this activity is minor. Collectively, our results demonstrate that ABA 9'-hydroxylation is catalyzed by CYP707As as a side reaction.
    Phytochemistry 03/2011; 72(8):717-22. DOI:10.1016/j.phytochem.2011.02.004 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many multicellular organisms have remarkable capability to regenerate new organs after wounding. As a first step of organ regeneration, adult somatic cells often dedifferentiate to reacquire cell proliferation potential, but mechanisms underlying this process remain unknown in plants. Here we show that an AP2/ERF transcription factor, WOUND INDUCED DEDIFFERENTIATION 1 (WIND1), is involved in the control of cell dedifferentiation in Arabidopsis. WIND1 is rapidly induced at the wound site, and it promotes cell dedifferentiation and subsequent cell proliferation to form a mass of pluripotent cells termed callus. We further demonstrate that ectopic overexpression of WIND1 is sufficient to establish and maintain the dedifferentiated status of somatic cells without exogenous auxin and cytokinin, two plant hormones that are normally required for cell dedifferentiation. In vivo imaging of a synthetic cytokinin reporter reveals that wounding upregulates the B-type ARABIDOPSIS RESPONSE REGULATOR (ARR)-mediated cytokinin response and that WIND1 acts via the ARR-dependent signaling pathway to promote cell dedifferentiation. This study provides novel molecular insights into how plants control cell dedifferentiation in response to wounding.
    Current biology: CB 03/2011; 21(6):508-14. DOI:10.1016/j.cub.2011.02.020 · 9.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many plants exhibit altered gene expression patterns in response to low nonfreezing temperatures and an increase in freezing tolerance in a phenomenon known as cold acclimation. Here we show, for the first time, that the histone deacetylase gene HDA6 is required for cold acclimation and freezing tolerance in Arabidopsis. HDA6 is transcriptionally upregulated during long-term cold treatment. Cold-treated hda6 mutants showed reduced freezing tolerance compared with the cold-treated wild-type plants. Freezing-caused electrolyte leakage increased in the cold-treated hda6 mutant. In contrast, the non-cold-treated hda6 mutants showed no significant difference in survivability and electrolyte leakage compared to wild-type plants. Transcriptome analysis identified the genes that showed aberrant expression in the hda6 mutant after cold acclimation. We conclude that HDA6 plays a critical role in regulating cold acclimation process that confers freezing resistance on Arabidopsis.
    Biochemical and Biophysical Research Communications 02/2011; 406(3):414-9. DOI:10.1016/j.bbrc.2011.02.058 · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in technologies for observing high-resolution genomic activities, such as whole-genome tiling arrays and high-throughput sequencers, provide detailed information for understanding genome functions. However, the functions of 50% of known Arabidopsis thaliana genes remain unknown or are annotated only on the basis of static analyses such as protein motifs or similarities. In this paper, we describe dynamic structure-based dynamic expression (DSDE) analysis, which sequentially predicts both structural and functional features of transcripts. We show that DSDE analysis inferred gene functions 12% more precisely than static structure-based dynamic expression (SSDE) analysis or conventional co-expression analysis based on previously determined gene structures of A. thaliana. This result suggests that more precise structural information than the fixed conventional annotated structures is crucial for co-expression analysis in systems biology of transcriptional regulation and dynamics. Our DSDE method, ARabidopsis Tiling-Array-based Detection of Exons version 2 and over-representation analysis (ARTADE2-ORA), precisely predicts each gene structure by combining two statistical analyses: a probe-wise co-expression analysis of multiple transcriptome measurements and a Markov model analysis of genome sequences. ARTADE2-ORA successfully identified the true functions of about 90% of functionally annotated genes, inferred the functions of 98% of functionally unknown genes and predicted 1,489 new gene structures and functions. We developed a database ARTADE2DB that integrates not only the information predicted by ARTADE2-ORA but also annotations and other functional information, such as phenotypes and literature citations, and is expected to contribute to the study of the functional genomics of A. thaliana. URL:
    Plant and Cell Physiology 02/2011; 52(2):254-64. DOI:10.1093/pcp/pcq202 · 4.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using the full-length cDNA overexpressor (FOX) gene-hunting system, we have generated 130 Arabidopsis FOX-superroot lines in bird's-foot trefoil (Lotus corniculatus) for the systematic functional analysis of genes expressed in roots and for the selection of induced mutants with interesting root growth characteristics. We used the Arabidopsis-FOX Agrobacterium library (constructed by ligating pBIG2113SF) for the Agrobacterium-mediated transformation of superroots (SR) and the subsequent selection of gain-of-function mutants with ectopically expressed Arabidopsis genes. The original superroot culture of L. corniculatus is a unique host system displaying fast root growth in vitro, allowing continuous root cloning, direct somatic embryogenesis and mass regeneration of plants under entirely hormone-free culture conditions. Several of the Arabidopsis FOX-superroot lines show interesting deviations from normal growth and morphology of roots from SR-plants, such as differences in pigmentation, growth rate, length or diameter. Some of these mutations are of potential agricultural interest. Genomic PCR analysis revealed that 100 (76.9%) out of the 130 transgenic lines showed the amplification of single fragments. Sequence analysis of the PCR fragments from these 100 lines identified full-length cDNA in 74 of them. Forty-three out of 74 full-length cDNA carried known genes. The Arabidopsis FOX-superroot lines of L. corniculatus, produced in this study, expand the FOX hunting system and provide a new tool for the genetic analysis and control of root growth in a leguminous forage plant.
    Journal of plant physiology 01/2011; 168(2):181-7. DOI:10.1016/j.jplph.2010.10.003 · 2.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thellungiella halophila (also known as T. salsuginea) is a model halophyte with a small size, short life cycle, and small genome. Thellungiella genes exhibit a high degree of sequence identity with Arabidopsis genes (90% at the cDNA level). We previously generated a full-length enriched cDNA library of T. halophila from various tissues and from whole plants treated with salinity, chilling, freezing stress, or ABA. We determined the DNA sequences of 20 000 cDNAs at both the 5'- and 3' ends, and identified 9569 distinct genes. Here, we completely sequenced 1047 Thellungiella full-length cDNAs representing abiotic-stress-related genes, transcription factor genes, and protein phosphatase 2C genes. The predicted coding sequences, 5'-UTRs, and 3'-UTRs were compared with those of orthologous genes from Arabidopsis for length, sequence similarity, and structure. The 5'-UTR sequences of Thellungiella and Arabidopsis orthologs shared a significant level of similarity, although the motifs were rearranged. While examining the stress-related Thellungiella coding sequences, we found a short splicing variant of T. halophila salt overly sensitive 1 (ThSOS1), designated ThSOS1S. ThSOS1S contains the transmembrane domain of ThSOS1 but lacks the C-terminal hydrophilic region. The expression level of ThSOS1S under normal growth conditions was higher than that of ThSOS1. We also compared the expression levels of Na+-transport-system genes between Thellungiella and Arabidopsis by using full-length cDNAs from each species as probes. Several genes that play essential roles in Na+ excretion, compartmentation, and diffusion (SOS1, SOS2, NHX1, and HKT1) were expressed at higher levels in Thellungiella than in Arabidopsis. The full-length cDNA sequences obtained in this study will be essential for the ongoing annotation of the Thellungiella genome, especially for further improvement of gene prediction. Moreover, they will enable us to find splicing variants such as ThSOS1S (AB562331).
    BMC Plant Biology 11/2010; 10(1):261. DOI:10.1186/1471-2229-10-261 · 3.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We show here that transgenic Arabidopsis plants that expressed chimeric repressors derived from the AtMYB102, ANAC047, HRS1, ZAT6 and AtERF5 transcription factors were tolerant to treatment with 400 mm NaCl, which was lethal to wild-type plants. The transgenic plants grew well, without any apparent differences from the wild-type plants under normal growth condition. The transgenic lines expressing the AtMYB102, ANAC047 and HRS1 chimeric repressors germinated in the presence of 225 mm NaCl, while those expressing the ZAT6 and AtERF5 did not. However, the latter lines were tolerant to osmotic stress and germinated in the presence of 600 mm mannitol, suggesting a link between responses to salt and osmotic stress. Expression of the AtMYB102, ANAC047, ZAT6 and AtERF5 genes was induced by salt treatment, while that of HRS1 was repressed. HRS1 has transcriptional repressive activity and appears to suppress the expression of factors that negatively regulate salt tolerance. Microarray analysis revealed that the levels of expression of DREB1A, DREB2B and several genes for ZAT transcription factors rose 10- to 100-fold in the AtMYB102 chimeric repressor line under both normal and stress conditions. Elevated expression of DREB- and ZAT- related genes might be involved in the salt tolerance of the AtMYB102 chimeric repressor line. Transgenic rice plants expressing chimeric repressors derived from Os02g0325600 and Os03g0327800, rice homologues of HRS1 and ANAC047, were tolerant to salinity stress demonstrated by suppression of growth inhibition and ion leakages. Expression of a chimeric repressor provides an effective strategy for enhancing tolerance of plants to abiotic stress.
    Plant Biotechnology Journal 11/2010; 9(7):736-46. DOI:10.1111/j.1467-7652.2010.00578.x · 5.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coordination of the maintenance of the undifferentiated fate of cells in the shoot meristem and the promotion of cellular differentiation in plant organs is essential for the development of plant shoots. CINCINNATA-like (CIN-like) TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) transcription factors are involved in this coordination via the negative regulation of CUP-SHAPED COTYLEDON (CUC) genes, which regulate the formation of shoot meristems and the specification of organ boundaries. However, the molecular mechanism of the action of CIN-like TCPs is poorly understood. We show here that TCP3, a model of CIN-like TCPs of Arabidopsis thaliana, directly activates the expression of genes for miR164, ASYMMETRIC LEAVES1 (AS1), INDOLE-3-ACETIC ACID3/SHORT HYPOCOTYL2 (IAA3/SHY2), and SMALL AUXIN UP RNA (SAUR) proteins. Gain of function of these genes suppressed the formation of shoot meristems and resulted in the fusion of cotyledons, whereas their loss of function induced ectopic expression of CUC genes in leaves. Our results indicate that miR164, AS1, IAA3/SHY2, and SAUR partially but cooperatively suppress the expression of CUC genes. Since CIN-like TCP genes were revealed to act dose dependently in the differentiation of leaves, we propose that evolutionarily diverse CIN-like TCPs have important roles in the signaling pathways that generate different leaf forms, without having any lethal effects on shoots.
    The Plant Cell 11/2010; 22(11):3574-88. DOI:10.1105/tpc.110.075598 · 9.34 Impact Factor
  • Kaoru Urano · Yukio Kurihara · Motoaki Seki · Kazuo Shinozaki ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Plants must respond and adapt to abiotic stresses to survive in various environmental conditions. Plants have acquired various stress tolerance mechanisms, which are different processes involving physiological and biochemical changes that result in adaptive or morphological changes. Recent advances in genome-wide analyses have revealed complex regulatory networks that control global gene expression, protein modification, and metabolite composition. Genetic regulation and epigenetic regulation, including changes in nucleosome distribution, histone modification, DNA methylation, and npcRNAs (non-protein-coding RNA) play important roles in abiotic stress gene networks. Transcriptomics, metabolomics, bioinformatics, and high-through-put DNA sequencing have enabled active analyses of regulatory networks that control abiotic stress responses. Such analyses have markedly increased our understanding of global plant systems in responses and adaptation to stress conditions.
    Current opinion in plant biology 04/2010; 13(2):132-8. DOI:10.1016/j.pbi.2009.12.006 · 7.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phytohormone abscisic acid (ABA) plays important roles in the induction and maintenance of seed dormancy. Although application of exogenous ABA inhibits germination, the effects of exogenous ABA on ABA-mediated gene transcription differ from those of endogenous ABA. To understand how endogenous ABA regulates the transcriptomes in seeds, we performed comprehensive expression analyses using whole-genome Affymetrix tiling arrays in two ABA metabolism mutants - an ABA-deficient mutant (aba2) and an ABA over-accumulation mutant (cyp707a1a2a3 triple mutant). Hierarchical clustering and principal components analyses showed that differences in endogenous ABA levels do not influence global expression of stored mRNA in dry seeds. However, the transcriptome after seed imbibition was related to endogenous ABA levels in both types of mutant. Endogenous ABA-regulated genes expressed in imbibed seeds included those encoding key ABA signaling factors and gibberellin-related components. In addition, cohorts of ABA-upregulated genes partially resembled those of dormant genes, whereas ABA-downregulated genes were partially overlapped with after-ripening-regulated genes. Bioinformatic analyses revealed that 6105 novel genes [non-Arabidopsis Genome Initiative (AGI) transcriptional units (TUs)] were expressed from unannotated regions. Interestingly, approximately 97% of non-AGI TUs possibly encoded hypothetical non-protein-coding RNAs, including a large number of antisense RNAs. In dry and imbibed seeds, global expression profiles of non-AGI TUs were similar to those of AGI genes. For both non-AGI TUs and AGI code genes, we identified those that were regulated differently in embryo and endosperm tissues. Our results suggest that transcription in Arabidopsis seeds is more complex and dynamic than previously thought.
    The Plant Journal 04/2010; 62(1):39-51. DOI:10.1111/j.1365-313X.2010.04135.x · 5.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plants respond and adapt to drought, cold, and high-salinity stresses. Stress-inducible gene products function in the stress response and tolerance in plants. Using cDNA microarrays and oligonucleotide microarrays, stress-inducible genes have been identified in various plant species so far. Recently, tiling array technology has become a powerful tool for the whole-genome transcriptome analysis. We applied the Arabidopsis Affymetrix tiling arrays to study the whole-genome transcriptome under drought, cold, and high-salinity stresses and identified a large number of drought, cold, and high-salinity stress-inducible genes and transcriptional units (TUs).
    Methods in molecular biology (Clifton, N.J.) 01/2010; 639:141-55. DOI:10.1007/978-1-60761-702-0_8 · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA-directed modification of histones is essential for the maintenance of heterochromatin in higher eukaryotes. In plants, cytosine methylation is an additional factor regulating inactive chromatin, but the mechanisms regulating the coexistence of cytosine methylation and repressive histone modification remain obscure. In this study, we analysed the mechanism of gene silencing mediated by MORPHEUS' MOLECULE1 (MOM1) of Arabidopsis thaliana. Transcript profiling revealed that the majority of up-regulated loci in mom1 carry sequences related to transposons and homologous to the 24-nt siRNAs accumulated in wild-type plants that are the hallmarks of RNA-directed DNA methylation (RdDM). Analysis of a single-copy gene, SUPPRESSOR OF drm1 drm2 cmt3 (SDC), revealed that mom1 activates SDC with concomitant reduction of di-methylated histone H3 lysine 9 (H3K9me2) at the tandem repeats in the promoter region without changes in siRNA accumulation and cytosine methylation. The reduction of H3K9me2 is not observed in regions flanking the tandem repeats. The results suggest that MOM1 transduces RdDM signals to repressive histone modification in the core region of RdDM.
    The EMBO Journal 12/2009; 29(2):352-62. DOI:10.1038/emboj.2009.374 · 10.43 Impact Factor
  • Jong-Myong Kim · Taiko K To · Tatsuya Nishioka · Motoaki Seki ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Plants respond and adapt to drought, cold and high-salinity stress in order to survive. Molecular and genomic studies have revealed that many stress-inducible genes with various functions and signalling factors, such as transcription factors, protein kinases and protein phosphatases, are involved in the stress responses. Recent studies have revealed the coordination of the gene expression and chromatin regulation in response to the environmental stresses. Several histone modifications are dramatically altered on the stress-responsive gene regions under drought stress conditions. Several chromatin-related proteins such as histone modification enzymes, linker histone H1 and components of chromatin remodeling complex influence the gene regulation in the stress responses. This review briefly describes chromatin regulation in response to drought, cold and high-salinity stress.
    Plant Cell and Environment 11/2009; 33(4):604-11. DOI:10.1111/j.1365-3040.2009.02076.x · 6.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plants are able to sense and respond to changes in the balance between carbon (C) and nitrogen (N) metabolite availability, known as the C/N response. During the transition to photoautotrophic growth following germination, growth of seedlings is arrested if a high external C/N ratio is detected. To clarify the mechanisms for C/N sensing and signaling during this transition period, we screened a large collection of FOX transgenic plants, overexpressing full-length cDNAs, for individuals able to continue post-germinative growth under severe C/N stress. One line, cni1-D (carbon/nitrogen insensitive 1-dominant), was shown to have a suppressed sensitivity to C/N conditions at both the physiological and molecular level. The CNI1 cDNA encoded a predicted RING-type ubiquitin ligase previously annotated as ATL31. Overexpression of ATL31 was confirmed to be responsible for the cni1-D phenotype, and a knock-out of this gene resulted in hypersensitivity to C/N conditions during post-germinative growth. The ATL31 protein was confirmed to contain ubiquitin ligase activity using an in vitro assay system. Moreover, removal of this ubiquitin ligase activity from the overexpressed protein resulted in the loss of the mutant phenotype. Taken together, these data demonstrated that CNI1/ATL31 activity is required for the plant C/N response during seedling growth transition.
    The Plant Journal 09/2009; 60(5):852-64. DOI:10.1111/j.1365-313X.2009.04006.x · 5.97 Impact Factor

Publication Stats

21k Citations
1,093.28 Total Impact Points


  • 2008-2015
    • Yokohama City University
      Yokohama, Kanagawa, Japan
  • 2003-2015
    • Japan Science and Technology Agency (JST)
      Edo, Tokyo, Japan
  • 2006-2013
    • RIKEN
      • • Plant Genomic Network Research Team
      • • Emergent Functional Polymers Research Team
      Вако, Saitama, Japan
  • 2012
    • Howard Hughes Medical Institute
      Ашбърн, Virginia, United States
  • 2011
    • Salk Institute
      لا هویا, California, United States
  • 2007
    • Chiba University
      • Graduate School of Science and Technology
      Chiba-shi, Chiba-ken, Japan
  • 2005
    • Nagahama Institute of Bio-Science and Technology
      Нагахама, Shiga, Japan
  • 1999-2005
    • Japan International Research Center for Agricultural Sciences
      Tsukuba, Ibaraki, Japan
  • 2004
    • Japan Research Institute
      • Institute of Physical and Chemical Research (RIKEN)
      Yokohama, Kanagawa, Japan
    • Tokyo Gakugei University
      Koganei, Tōkyō, Japan
  • 1998-2002
    • Tsukuba Medical Center Hospital
      Tsukuba, Ibaraki, Japan
  • 1997-1998
    • Tsukuba Research Institute
      Edo, Tōkyō, Japan