Noriko Kaji

Tohoku University, Sendai, Kagoshima-ken, Japan

Are you Noriko Kaji?

Claim your profile

Publications (4)18.61 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cofilin regulates actin filament dynamics by stimulating actin filament disassembly and plays a critical role in cytokinesis and chemotactic migration. Aip1 (actin-interacting protein 1), also called WDR1 (WD-repeat protein 1), is a highly conserved WD-repeat protein in eukaryotes and promotes cofilin-mediated actin filament disassembly in vitro; however, little is known about the mechanisms by which Aip1 functions in cytokinesis and cell migration in mammalian cells. In the present study, we investigated the roles of Aip1 in cytokinesis and chemotactic migration of human cells by silencing the expression of Aip1 using siRNA (small interfering RNA). Knockdown of Aip1 in HeLa cells increased the percentage of multinucleate cells; this effect was reversed by expression of an active form of cofilin. In Aip1-knockdown cells, the cleavage furrow ingressed normally from anaphase to early telophase; however, an excessive accumulation of actin filaments was observed on the contractile ring in late telophase. These results suggest that Aip1 plays a crucial role in the completion of cytokinesis by promoting cofilin-mediated actin filament disassembly in telophase. We have also shown that Aip1 knockdown significantly suppressed chemokine-induced chemotactic migration of Jurkat T-lymphoma cells, and this was blocked by expression of an active form of cofilin. Whereas control cells mostly formed a single lamellipodium in response to chemokine stimulation, Aip1 knockdown cells abnormally exhibited multiple protrusions around the cells before and after cell stimulation. This indicates that Aip1 plays an important role in directional cell migration by restricting the stimulus-induced membrane protrusion to one direction via promoting cofilin activity.
    Biochemical Journal 06/2008; 414(2):261-70. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The interaction of astral microtubules with cortical actin networks is essential for the correct orientation of the mitotic spindle; however, little is known about how the cortical actin organization is regulated during mitosis. LIM kinase-1 (LIMK1) regulates actin dynamics by phosphorylating and inactivating cofilin, an actin-depolymerizing protein. LIMK1 activity increases during mitosis. Here we show that mitotic LIMK1 activation is critical for accurate spindle orientation in mammalian cells. Knockdown of LIMK1 suppressed a mitosis-specific increase in cofilin phosphorylation and caused unusual cofilin localization in the cell cortex in metaphase, instability of cortical actin organization and astral microtubules, irregular rotation and misorientation of the spindle, and a delay in anaphase onset. Similar results were obtained by treating the cells with a LIMK1 in hibitor peptide or latrunculin A or by overexpressing a non-phosphorylatable cofilin(S3A) mutant. Furthermore, localization of LGN (a protein containing the repetitive Leu-Gly-Asn tripeptide motifs), an important regulator of spindle orientation, in the crescent-shaped cortical regions was perturbed in LIMK1 knockdown cells. Our results suggest that LIMK1-mediated cofilin phosphorylation is required for accurate spindle orientation by stabilizing cortical actin networks during mitosis.
    Journal of Biological Chemistry 03/2008; 283(8):4983-92. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During cytokinesis the actomyosin-based contractile ring is formed at the equator, constricted, and then disassembled prior to cell abscission. Cofilin stimulates actin filament disassembly and is implicated in the regulation of contractile ring dynamics. However, little is known about the mechanism controlling cofilin activity during cytokinesis. Cofilin is inactivated by phosphorylation on Ser-3 by LIM-kinase-1 (LIMK1) and is reactivated by a protein phosphatase Slingshot-1 (SSH1). Here we show that the phosphatase activity of SSH1 decreases in the early stages of mitosis and is elevated in telophase and cytokinesis in HeLa cells, a time course correlating with that of cofilin dephosphorylation. SSH1 co-localizes with F-actin and accumulates onto the cleavage furrow and the midbody. Expression of a phosphatase-inactive SSH1 induces aberrant accumulation of F-actin and phospho-cofilin near the midbody in the final stage of cytokinesis and frequently leads to the regression of the cleavage furrow and the formation of multinucleate cells. Co-expression of cofilin rescued the inhibitory effect of phosphatase-inactive SSH1 on cytokinesis. These results suggest that SSH1 plays a critical role in cytokinesis by dephosphorylating and reactivating cofilin in later stages of mitosis.
    Journal of Biological Chemistry 09/2003; 278(35):33450-5. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Actin filament dynamics play a critical role in mitosis and cytokinesis. LIM motif-containing protein kinase 1 (LIMK1) regulates actin reorganization by phosphorylating and inactivating cofilin, an actin-depolymerizing and -severing protein. To examine the role of LIMK1 and cofilin during the cell cycle, we measured cell cycle-associated changes in the kinase activity of LIMK1 and in the level of cofilin phosphorylation. Using synchronized HeLa cells, we found that LIMK1 became hyperphosphorylated and activated in prometaphase and metaphase, then gradually returned to the basal level as cells entered into telophase and cytokinesis. Although Rho-associated kinase and p21-activated protein kinase phosphorylate and activate LIMK1, they are not likely to be involved in mitosis-specific activation and phosphorylation of LIMK1. Immunoblot and immunofluorescence analyses using an anti-phosphocofilin-specific antibody revealed that the level of cofilin phosphorylation, similar to levels of LIMK1 activity, increased during prometaphase and metaphase then gradually declined in telophase and cytokinesis. Ectopic expression of LIMK1 increased the level of cofilin phosphorylation throughout the cell cycle and induced the formation of multinucleate cells. These results suggest that LIMK1 is involved principally in control of mitosis-specific cofilin phosphorylation and that dephosphorylation and reactivation of cofilin at later stages of mitosis play a critical role in cytokinesis of mammalian cells.
    Journal of Biological Chemistry 07/2002; 277(24):22093-102. · 4.65 Impact Factor

Publication Stats

141 Citations
18.61 Total Impact Points

Institutions

  • 2002–2008
    • Tohoku University
      • • Department of Biomolecular Sciences
      • • Graduate School of Life Sciences
      Sendai, Kagoshima-ken, Japan