Yuki Takada-Takatori

Doshisha Women's College of Liberal Arts, Kioto, Kyōto, Japan

Are you Yuki Takada-Takatori?

Claim your profile

Publications (31)78.8 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The herbicide paraquat is an environmental factor that may be involved in the etiology of Parkinson disease. Systemic exposure of mice to paraquat causes a selective loss of dopaminergic neurons in the substantia nigra pars compacta, although paraquat is not selectively incorporated in dopaminergic neurons. Here, we report a contribution of endogenous dopamine to paraquat-induced dopaminergic cell death. Exposure of PC12 cells to paraquat (50 μM) caused delayed toxicity from 36 h onward. A decline in intracellular dopamine content achieved by inhibiting tyrosine hydroxylase (TH), an enzyme for dopamine synthesis, conferred resistance to paraquat toxicity on dopaminergic cells. Paraquat increased the levels of cytosolic and vesicular dopamine, accompanied by transiently increased TH activity. Quinone derived from cytosolic dopamine conjugates with cysteine residues in functional proteins to form quinoproteins. Formation of quinoprotein was transiently increased early during exposure to paraquat. Furthermore, pretreatment with ascorbic acid, which suppressed the elevations of intracellular dopamine and quinoprotein, almost completely prevented paraquat toxicity. These results suggest that the elevation of cytosolic dopamine induced by paraquat participates in the vulnerability of dopaminergic cells to delayed toxicity through the formation of quinoproteins.
    Toxicological Sciences 04/2014; · 4.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Curcumin, a polyphenolic compound has several pharmacological activities, such as anticancer, anti-inflammatory and antioxidant effects. However, curcumin shows poor oral bioavailability. The purpose of this study was to investigate the protective effects of highly bioavailable curcumin, Theracurmin(®), and curcumin, against sodium nitroprusside (SNP)-induced oxidative damage in mice brain. Intrastriatal microinjection of Theracurmin(®) or curcumin with SNP significantly protected against SNP-induced brain damage and motor dysfunction. Oral administration of Theracurmin(®) (1 and 3 g kg(-1), containing 100 and 300 mg kg(-1) curcumin, respectively) significantly protected against SNP-induced brain damage and motor dysfunction. However, oral administration of 300 mg kg(-1) curcumin did not protect against motor dysfunction induced by SNP. These results suggest that curcumin and Theracurmin(®) have protective effects against SNP-induced oxidative damage. Moreover, oral administration of Theracurmin(®), had more potency in protecting against brain damage, suggesting a higher bioavailability of Theracurmin(®) following oral administration.
    Food & function. 03/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Axonal degeneration of dopaminergic neurons is one of the pathological features in the early stages of Parkinson disease. Promotion of axonal outgrowth of the remaining dopaminergic neurons leads to the recovery of the nigrostriatal pathway. Staurosporine (STS), a wide-spectrum kinase inhibitor, induces neurite outgrowth in various cell types, although its mechanism of action remains elusive. In this study, we analyzed which protein kinase is involved in STS-induced neurite outgrowth. We have previously established the method to measure the length of dopaminergic neurites that extend from a mesencephalic cell region, which is formed on a coverslip by an isolation wall. By means of this method, we clarified that STS treatment causes dopaminergic axonal outgrowth in mesencephalic primary cultures. Among the specific protein kinase inhibitors we tested, compound C (C.C), an AMP-activated protein kinase (AMPK) inhibitor, promoted dopaminergic neurite outgrowth. STS as well as C.C elevated the phosphorylation level of 70-kDa ribosomal protein S6 kinase, a downstream target of mammalian target of rapamycin (mTOR) signaling pathway. The STS- and C.C-induced dopaminergic neurite outgrowth was suppressed by rapamycin, an mTOR inhibitor. Furthermore, the application of C.C rescued 1-methyl-4-phenylpyridinium ion (MPP(+))-induced dopaminergic neurite degeneration. These results suggest that STS induces dopaminergic axonal outgrowth through mTOR signaling pathway activation as a consequence of AMPK inhibition.
    Neuropharmacology 09/2013; · 4.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serofendic acid is a low-molecular-weight compound extracted from fetal calf serum. We previously reported that intracerebroventricular administration of serofendic acid prevents cerebral ischemia-reperfusion injury. However, the effect of peripheral administration of serofendic acid on cerebral ischemia-reperfusion injury has not been examined. In the present study, we investigated the effect of intravenous administration of serofendic acid against cerebral ischemia-reperfusion injury using transient middle cerebral artery occlusion model rats. Serofendic acid (10mg/kg) administrated three times, including 30 minutes before the onset of ischemia, just after the onset of ischemia and just before reperfusion reduced the infarct volume and improved the neurological dysfunction induced by ischemia-reperfusion without affecting regional cerebral blood flow or physiological parameters. However, there were no protective effects when serofendic acid (30mg/kg) was only administered once at 30min before the onset of ischemia, just after the onset of ischemia, or just before reperfusion. Our results reveal the importance of maintaining the blood concentration of serofendic acid for preventing cerebral ischemia-reperfusion injury.
    Brain research 08/2013; · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating lines of evidence showed that luteolin, a polyphenolic compound, has potent neuroprotective effects. The purpose of this study was to examine whether luteolin can protect against sodium nitroprusside (SNP)-induced oxidative damage in mouse brain. Intrastriatal co-injection of luteolin (3 - 30 nmol) with SNP (10 nmol) dose-dependently protected against brain damage and motor dysfunction. Oral administrations of luteolin (600 - 1200 mg/kg) dose-dependently protected against brain damage and motor dysfunction induced by striatal injection of SNP. Furthermore, luteolin (30 - 100 μM) concentration dependently protected against Fe(2+)-induced lipid peroxidation in mouse brain homogenate. Luteolin (1 - 100 μg/ml) showed potent DPPH radical scavenging ability, when compared with ascorbic acid and glutathione. Finally, a ferrozine assay showed that luteolin (30 - 100 μg/ml) has Fe(2+)-chelating ability, but this was weaker than that of ethylenediaminetetraacetic acid. These results suggest that intrastriatal or oral administration of luteolin protected mice brain from SNP-induced oxidative damage by scavenging and chelating effects.
    Journal of Pharmacological Sciences 05/2013; · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Curcumin, a polyphenolic compound extracted from Curcuma longa, has several pharmacological activities such as anticancer, anti-inflammatory, and antioxidant effects. The purpose of this study was to investigate the protective effects of curcumin and THERACURMIN, a highly bioavailable curcumin, against sodium nitroprusside (SNP)-induced oxidative damage in primary striatal cell culture. THERACURMIN as well as curcumin significantly prevented SNP-induced cytotoxicity. To elucidate the cytoprotective effects of curcumin and THERACURMIN, we measured the intracellular glutathione level in striatal cells. Curcumin and THERACURMIN significantly elevated the glutathione level, which was decreased by treatment with SNP. Moreover, curcumin showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging ability. Finally, a ferrozine assay showed that curcumin (10-100 µg/mL) has potent Fe(2+)-chelating ability. These results suggest that curcumin and THERACURMIN exert potent protective effects against SNP-induced cytotoxicity by free radical-scavenging and iron-chelating activities.
    Biological & Pharmaceutical Bulletin 01/2013; 36(8):1356-62. · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sodium nitroprusside (SNP) is widely used as a potent vasodilator and a nitric oxide (NO) donor, whereas the cytotoxicity of SNP has been well documented. SNP releases several potentially toxic products such as cyanide anion, NO, and iron. We investigated the mechanisms of cell death and motor dysfunction induced by microinjection of SNP in mice to establish a brain oxidative stress model and then examined the anti-oxidant activity of glutathione. Intrastriatal microinjection of SNP (1 - 10 nmol) induced brain damage and motor dysfunction in a dose-dependent manner when the effects were evaluated with behavioral tests and TTC staining. NOC-18 (10 nmol), another NO donor, and KCN (10 nmol) did not cause motor dysfunction. However, FeCl(2) (10 nmol) caused motor dysfunction. In addition, simultaneous injection of SNP and deferoxamine (10 nmol), an iron-chelating agent, prevented SNP-induced brain damage and motor dysfunction, suggesting a role of iron-related radicals in SNP-toxicity. Moreover, reduced glutathione (1 - 10 nmol), a natural anti-oxidant substance, dose-dependently prevented motor dysfunction induced by SNP-toxicity. Finally, deferoxamine and glutathione (10 nmol) significantly protected against brain damage and motor dysfunction induced by FeCl(2) toxicity. These results suggest that cell death induced by injection of SNP is caused by iron-related radical reactions, but not by NO and cyanide anion.
    Journal of Pharmacological Sciences 09/2012; 120(2):105-11. · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway is a cellular defense system against oxidative stress. Activation of this pathway increases expression of antioxidant enzymes. Epidemiological studies have demonstrated that the consumption of fruits and vegetables is associated with reduced risk of contracting a variety of human diseases. The aim of this study is to find Nrf2-ARE activators in dietary fruits and vegetables. We first attempted to compare the potency of ARE activation in six fruit and six vegetables extracts. Green perilla (Perilla frutescens var. crispa f. viridis) extract exhibited high ARE activity. We isolated the active fraction from green perilla extract through bioactivity-guided fractionation. Based on nuclear magnetic resonance and mass spectrometric analysis, the active ingredient responsible for the ARE activity was identified as 2',3'-dihydroxy-4',6'-dimethoxychalcone (DDC). DDC induced the expression of antioxidant enzymes, such as γ-glutamylcysteine synthetase (γ-GCS), NAD(P)H: quinone oxidoreductase-1 (NQO1), and heme oxygenase-1. DDC inhibited the formation of intracellular reactive oxygen species and the cytotoxicity induced by 6-hydroxydopamine. Inhibition of the p38 mitogen-activated protein kinase pathway abolished ARE activation, the induction of γ-GCS and NQO1, and the cytoprotective effect brought about by DDC. Thus, this study demonstrated that DDC contained in green perilla enhanced cellular resistance to oxidative damage through activation of the Nrf2-ARE pathway.
    Free Radical Biology & Medicine 06/2012; 53(4):669-79. · 5.27 Impact Factor
  • Takeshi Fujii, Yuki Takada-Takatori, Koichiro Kawashima
    [Show abstract] [Hide abstract]
    ABSTRACT: AIMS: Muscarinic and nicotinic acetylcholine (ACh) receptors are expressed in immune cells. ACh synthesized by choline acetyltransferase (ChAT) and released in T cells binds to these receptors. Furthermore, we have recently demonstrated the involvement of mediatophore, a homooligomer of a 16-kDa proteolipid subunit of vacuolar H(+)-ATPase, in ACh release from T cells. In this study, we investigated the effects of phorbol 12-myristate 13-acetate (PMA), dibutyryl cAMP (dbcAMP) and FK506, an immunosuppressant calcineurin inhibitor, on lymphocytic cholinergic activity in T cells. MAIN METHODS: We determined the content and release of ACh in human leukemic T cell line MOLT-3 cells using a sensitive and specific radioimmunoassay for ACh. In addition, expression of ChAT mRNA and ChAT activity were investigated using reverse-transcription-polymerase chain reaction and Fonnum method, respectively. KEY FINDINGS: Phytohemagglutinin (PHA), a T-cell activator, up-regulated ChAT mRNA expression, synthesis and release of ACh. PMA, a protein kinase C (PKC) activator, and dbcAMP, a protein kinase A (PKA) activator, also increased ChAT activity and ACh synthesis by up-regulating ChAT gene expression. FK506 inhibited PHA-induced up-regulation of ChAT mRNA expression, suggesting the involvement of calcineurin-mediated pathways in ChAT gene transcription. SIGNIFICANCE: Activation of PKC and PKA up-regulates ACh synthesis in T cells, and immunological activation triggers ChAT gene transcription through calcineurin-mediated pathways.
    Life sciences 04/2012; · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immunological stimulation of T cells by phytohemagglutinin (PHA) enhances the synthesis and release of acetylcholine (ACh), suggesting a role for the lymphocytic cholinergic system in the regulation of immune function. In the present study, we used two human leukemic T cell lines as models to investigate whether mediatophore, a homooligomer of a 16-kDa subunit homologous to the proteolipid subunit c of vacuolar H(+)-ATPase (V-ATPase), is involved in mediating ACh release from T cells. Immunohistochemical analysis revealed the presence of mediatophore in the cytoplasm and on the plasma membrane of both T cell lines. Mediatophore gene expression was up-regulated by immunological T cell activation by PHA. Transfection of anti-mediatophore small interference RNA down-regulated mediatophore gene expression and significantly reduced ACh release. These results suggest that T cells express mediatophore, which then plays a key role in mediating ACh release, and that mediatophore expression is regulated by immunological stimulation.
    Journal of neuroimmunology 03/2012; 244(1-2):16-22. · 2.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress plays pivotal roles in aging, neurodegenerative disease, and pathological conditions such as ischemia. We investigated the effect of sulforaphane and 6-(methysulfinyl) hexyl isothiocyanate (6-HITC), a naturally occurring isothiocyanate, on oxidative stress-induced cytotoxicity using primary neuronal cultures of rat striatum. Pretreatment with sulforaphane and 6-HITC significantly protected against H(2)O(2)- and paraquat-induced cytotoxicity in a concentration-dependent manner. Sulforaphane and 6-HITC induced the translocation of nuclear factor E2-related factor 2 (Nrf2) into the nucleus and increased the expression of γ-glutamylcysteine synthetase (γ-GCS), a rate-limiting enzyme in glutathione synthesis, and the intracellular glutathione content. Treatment with reduced glutathione (GSH) and N-acetyl-L-cysteine, a substance for glutathione synthesis, significantly prevented the cytotoxicity induced by H(2)O(2) and paraquat. Moreover, exposure to L-buthionine-sulfoximine, an irreversible inhibitor of γ-GCS, suppressed the protective effects of sulforaphane and 6-HITC. In contrast, sulforaphane and 6-HITC increased heme oxygenase-1 (HO-1) expression in neurons. However, zinc-protophorphyrin IX, a competitive inhibitor of HO-1, did not influence the protective effects of sulforaphane and 6-HITC. These results suggest that sulforaphane and 6-HITC prevent oxidative stress-induced cytotoxicity in rat striatal cultures by raising the intracellular glutathione content via an increase in γ-GCS expression induced by the activation of the Nrf2-antioxidant response element pathway.
    Journal of Pharmacological Sciences 02/2011; 115(3):320-8. · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Repairing the nigrostriatal pathway is expected to become a future treatment strategy for Parkinson disease. Our aim is to establish an in vitro model for the quantitative analysis of the nigrostriatal projections of dopaminergic neurons using primary dissociated neruons. To form the mesencephalic cell region, mesencephalic cells derived from rat embryos were plated within an isolation wall, which was removed after cell adhesion to the coverslip. After incubation for 11 days, the dopaminergic neurites extending to the outside of the mesencephalic cell region were mainly axons. Treatment with glial cell line-derived neurotrophic factor for 11 days significantly promoted the outgrowth of dopaminergic axons from the mesencephalic cell region in a concentration-dependent manner. When striatal cells were plated outside the mesencephalic cell region, dopaminergic neurites were remarkably extended to the striatal cell region. Moreover, immunocytochemistry for tyrosine hydroxylase and synaptophysin revealed that dopaminergic axons formed synapses with striatal neurons. By contrast, spinal cells did not increase dopaminergic neurite outgrowth. These results indicate that the present method is valuable for evaluating nigrostriatal projections in vitro.
    Journal of neuroscience methods 09/2010; 192(1):83-9. · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aripiprazole, a dopamine D(2) receptor partial agonist, is used to treat schizophrenia. Although aripiprazole has been reported to protect non-dopaminergic neurons, its effect on dopaminergic neurons has yet to be investigated. In the present study, we examined whether aripiprazole protected dopaminergic neurons against glutamate-induced cytotoxicity in rat mesencephalic cultures. Pretreatment with aripiprazole protected dopaminergic neurons in a concentration-dependent manner. The neuroprotective effect was not attenuated by sulpiride, a dopamine D(2) receptor antagonist, suggesting that the effect is independent of dopamine D(2) receptors. Aripiprazole reduced intracellular dopamine content in a concentration-dependent manner. In addition, its neuroprotective effect was partially inhibited when dopamine was added. These results suggest that aripiprazole protects dopaminergic neurons against glutamate cytotoxicity partly by reducing intracellular dopamine content.
    Neuroscience Letters 09/2010; 481(2):78-81. · 2.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The blood coagulation factor thrombin that leaks from ruptured vessels initiates brain tissue damage after intracerebral hemorrhage. We have recently shown that mitogen-activated protein kinases (MAPKs) activated by thrombin exacerbate hemorrhagic brain injury via supporting survival of neuropathic microglia. Here, we investigated whether induction of heme oxygenase (HO)-1 is involved in these events. Zinc protoporphyrin IX (ZnPP IX), a HO-1 inhibitor, attenuated thrombin-induced injury of cortical cells in a concentration-dependent manner (0.3-3 microM) and tended to inhibit shrinkage of the striatal tissue at 0.3 microM. HO-1 expression was induced by thrombin in microglia and astrocytes in both the cortex and the striatum. The increase of HO-1 protein was suppressed by a p38 MAPK inhibitor SB203580, and early activation of p38 MAPK after thrombin treatment was observed in neurons and microglia in the striatum. Notably, concomitant application of a low concentration (0.3 microM) of ZnPP IX with thrombin induced apoptotic cell death in striatal microglia and significantly decreased the number of activated microglia in the striatal region. On the other hand, a carbon monoxide releaser reversed the protective effect of ZnPP IX on thrombin-induced injury of cortical cells. Overall, these results suggest that p38 MAPK-dependent induction of HO-1 supports survival of striatal microglia during thrombin insults. Thrombin-induced cortical injury may be also regulated by the expression of HO-1 and the resultant production of heme degradation products such as carbon monoxide.
    Brain research 08/2010; 1347:170-8. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence suggests that antipsychotics affect dopamine release from dopaminergic neurons, but the precise mechanisms are not fully understood. Besides, there are few studies on the effects of antipsychotics on intracellular dopamine content. In this study, the effects of 8 antipsychotics on dopamine release and intracellular dopamine content in PC12 cells were investigated. Pretreatment with haloperidol, spiperone, pimozide, aripiprazole and risperidone markedly inhibited high potassium-evoked dopamine release. By contrast, pretreatment with chlorpromazine slightly increased high potassium-evoked dopamine release, while pretreatment with sulpiride and olanzapine had no effect. Haloperidol, spiperone, pimozide, chlorpromazine, aripiprazole and olanzapine evoked dopamine release, while sulpiride and risperidone had no effect. In addition, haloperidol, spiperone, pimozide, aripiprazole and risperidone reduced intracellular dopamine content in a concentration-dependent manner. These results suggest that the reduction in high potassium-evoked dopamine release by pretreatment with antipsychotics results from the reduction in vesicular dopamine content. Treatment with the 8 antipsychotics did not affect the expression of total or phosphorylated tyrosine hydroxylase. Instead, haloperidol, spiperone, pimozide and aripiprazole as well as reserpine transiently increased extracellular levels of dopamine metabolites. In addition, haloperidol, spiperone, pimozide, aripiprazole and risperidone reduced vesicular [3H]dopamine transport. These results suggest that the inhibition of vesicular dopamine transport by haloperidol, spiperone, pimozide and aripiprazole results in a reduction in vesicular dopamine content.
    European journal of pharmacology 05/2010; 640(1-3):68-74. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Postmortem studies have shown that heme oxygenase-1 (HO-1) immunoreactivity is increased in patients with Parkinson disease. HO-1 expression is highly upregulated by a variety of stress. Since the proteasome activity is decreased in patients with Parkinson disease, we investigated whether proteasome activity regulates HO-1 content. MG-132, a proteasome inhibitor, increased the amount of HO-1 protein mainly in astrocytes of primary mesencephalic cultures. Quantitative RT-PCR analysis revealed that lactacystin upregulated HO-1 mRNA expression. Proteasome inhibition with MG132 also increased the cytomegalovirus promoter-driven expression of Flag-HO-1 protein and resulted in an accumulation of ubiquitinated Flag-HO-1 in Flag-HO-1-overexpressing PC12 cells. In addition, a cycloheximide chase assay demonstrated that the degradation of Flag-HO-1 protein was slowed by MG-132. Next, the function of HO-1 which was upregulated by proteasome inhibitors was examined. Proteasome inhibitors protected dopaminergic neurons from 6-hydroxydopamine (6-OHDA)-induced toxicity and this neuroprotection was abrogated by co-treatment with zinc protoporphyrin IX, a HO-1 inhibitor. Furthermore, 6-OHDA-induced toxicity was blocked by bilirubin and carbon monoxide, products of the HO-1-catalyzed degradation of heme. These results suggest that mesencephalic HO-1 protein level is regulated by proteasome activity and the elevation by proteasome inhibition affords neuroprotection.
    Journal of Neuroscience Research 02/2010; 88(9):1934-42. · 2.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that chronic donepezil treatment induces nicotinic acetylcholine receptor up-regulation and enhances the sensitivity of the neurons to the neuroprotective effect of donepezil. Further analyses revealed that the nicotinic receptor is involved in this enhancement. In this study, we examined whether nicotinic receptor stimulation is sufficient to make neurons more sensitive to donepezil. We treated primary cultures of rat cortical neurons with nicotine and confirmed that chronic nicotine treatment induced nicotinic receptor up-regulation and made the neurons more sensitive to the neuroprotective effects of donepezil. Analyses with receptor antagonists and kinase inhibitors revealed that the effects of chronic nicotine treatment are mediated by nicotinic receptors and their downstream effectors including phosphatidylinositol 3-kinase. In contrast to chronic donepezil treatment that enhanced the level of nicotine-induced Ca(2+) influx, chronic nicotine treatment did not significantly alter the level of Ca(2+) influx.
    Journal of Pharmacological Sciences 02/2010; 112(3):265-72. · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intracerebral hemorrhage-associated tissue damage is triggered by blood-derived serine proteases such as thrombin. In addition, our previous studies have suggested that mitogen-activated protein (MAP) kinases contribute to intracerebral hemorrhage- and thrombin-induced striatal tissue damage in vivo. Here we addressed the mechanisms of MAP kinase involvement in thrombin cytotoxicity in rat corticostriatal slice culture, focusing on striatal tissue damage. Thrombin induced apoptotic nuclear condensation and fragmentation in striatal cells, which was suppressed by DEVD-CHO, a caspase-3 inhibitor. DEVD-CHO also prevented shrinkage of the striatal tissue induced by thrombin. Phagocytotic activity may be involved in tissue deterioration, because a phagocytosis inhibitor (cytochalasin D) and an inhibitor of phagocytosis of apoptotic cells (O-phospho-L-serine) suppressed shrinkage of the striatal tissue. OX42 immunostaining revealed that apoptosis-like microglial cell death was induced only when thrombin treatment was combined with application of inhibitors of MAP kinase/extracellular signal-regulated kinase kinase (PD98059), p38 MAP kinase (SB203580), or c-Jun N-terminal kinase (SP600125). Thrombin-induced increase in the number of microglia was also prevented by these inhibitors of MAP kinase pathways. We also found that thrombin-induced production of tumor necrosis factor (TNF)-alpha was inhibited by PD98059, SB203580, and SP600125. Finally, thrombin-induced neuronal apoptosis and shrinkage of the striatal tissue were significantly inhibited by anti-TNF-alpha neutralizing antibody. These results suggest that MAP kinases contribute to thrombin-induced striatal damage by supporting survival of activated microglia, which induce neuron death by producing TNF-alpha and cause tissue shrinkage by phagocytosing apoptotic cells.
    Journal of Neuroscience Research 02/2010; 88(10):2155-64. · 2.97 Impact Factor
  • Akinori Akaike, Yuki Takada-Takatori, Toshiaki Kume, Yasuhiko Izumi
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurotoxicity induced by glutamate and other excitatory amino acids has been implicated in various neurodegenerative disorders including hypoxic ischemic events, trauma, and Alzheimer's and Parkinson's diseases. We examined the roles of nicotinic acetylcholine receptors (nAChRs) in survival of CNS neurons during excitotoxic events. Nicotine as well as other nicotinic receptor agonists protected cortical neurons against glutamate neurotoxicity via alpha4 and alpha7 nAChRs at least partly by inhibiting the process of apoptosis in near-pure neuronal cultures obtained from the cerebral cortex of fetal rats. Donepezil, galanatamine and tacrine, therapeutic acetylcholinesterase (AChE) inhibitors currently being used for treatment of Alzheimer's disease also protected neuronal cells from glutamate neurotoxicity. Protective effects of nicotine and the AChE inhibitors were antagonized by nAChR antagonists. Moreover, nicotine and those AChE inhibitors induced up-regulation of nAChRs. Inhibitors for a non-receptor-type tyrosine kinase, Fyn, and janus-activated kinase 2, suppressed the neuroprotective effect of donepezil and galantamine. Furthermore, a phosphatidylinositol 3-kinase (PI3K) inhibitor also suppressed the neuroprotective effect of the AChE inhibitors. The phosphorylation of Akt, an effector of PI3K, and the expression level of Bcl-2, an anti-apoptotic protein, increased with donepezil and galantamine treatments. These results suggest that nicotine as well as AChE inhibitors, donepezil and galantamine, prevent glutamate neurotoxicity through alpha4 and alpha7 nAChRs and the PI3K-Akt pathway.
    Journal of Molecular Neuroscience 09/2009; 40(1-2):211-6. · 2.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acetylcholine (ACh) is known to be a key neurotransmitter in the central and peripheral nervous systems, but it is also produced in a variety of non-neuronal tissues and cells, including lymphocytes, placenta, amniotic membrane, vascular endothelial cells, keratinocytes, and epithelial cells in the digestive and respiratory tracts. To investigate contribution made by the high-affinity choline transporter (CHT1) to ACh synthesis in both cholinergic neurons and nonneuronal cells, we transfected rat CHT1 cDNA into NIH3T3ChAT cells, a mouse fibroblast line expressing mouse choline acetyltransferase (ChAT), to establish the NIH3T3ChAT 112-1 cell line, which stably expresses both CHT1 and ChAT. NIH3T3ChAT 112-1 cells showed increased binding of the CHT1 inhibitor [(3)H]hemicholinium-3 (HC-3) and greater [(3)H]choline uptake and ACh synthesis than NIH3T3ChAT 103-1 cells, a CHT1-negative control cell line. HC-3 significantly inhibited ACh synthesis in NIH3T3ChAT 112-1 cells but did not affect synthesis in NIH3T3ChAT 103-1 cells. ACh synthesis in NIH3T3ChAT 112-1 cells was also reduced by amiloride, an inhibitor of organic cation transporters (OCTs) involved in low-affinity choline uptake, and by procaine and lidocaine, two local anesthetics that inhibit plasma membrane phospholipid metabolism. These results suggest that CHT1 plays a key role in ACh synthesis in NIH3T3ChAT 112-1 cells and that choline taken up by OCTs or derived from the plasma membrane is also utilized for ACh synthesis in both cholinergic neurons and nonneuronal cholinergic cells, such as lymphocytes.
    Journal of Neuroscience Research 05/2009; 87(13):3024-32. · 2.97 Impact Factor

Publication Stats

319 Citations
78.80 Total Impact Points


  • 2007–2013
    • Doshisha Women's College of Liberal Arts
      Kioto, Kyōto, Japan
  • 2006–2013
    • Kyoto University
      • Department of Pharmacology
      Kyoto, Kyoto-fu, Japan
  • 2010
    • Fukuyama University
      • Faculty of Pharmacy and Pharmaceutical Sciences
      Hukuyama, Hiroshima, Japan
  • 2009
    • Keio University
      • Faculty of Pharmacy
      Tokyo, Tokyo-to, Japan
  • 2007–2008
    • Kyoritsu College of Pharmacy
      • Department of Pharmacology
      Tōkyō, Japan