Steven Keiles

Ambry Genetics, Aliso Viejo, California, United States

Are you Steven Keiles?

Claim your profile

Publications (19)58.09 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Although prenatal/preconception carrier screening recommendations for individuals of Ashkenazi Jewish descent (AJs) were published by ACMG (2008) and ACOG (2009), scientific advances have led to widely varied screening panels. Mutation carrier frequencies are sometimes based on small, homogeneous AJ populations. This study sought to update the state of AJ screening for the obstetrician by assessing laboratory screening panel compositions as well as assessing literature and laboratory carrier frequencies for common AJ mutations.
    Prenatal Diagnosis 07/2014; · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer is the most commonly diagnosed cancer in women, with 10% of disease attributed to hereditary factors. Although BRCA1 and BRCA2 account for a high percentage of hereditary cases, there are more than 25 susceptibility genes that differentially impact the risk for breast cancer. Traditionally, germline testing for breast cancer was performed by Sanger dideoxy terminator sequencing in a reflexive manner, beginning with BRCA1 and BRCA2. The introduction of next-generation sequencing (NGS) has enabled the simultaneous testing of all genes implicated in breast cancer resulting in diagnostic labs offering large, comprehensive gene panels. However, some physicians prefer to only test for those genes in which established surveillance and treatment protocol exists. The NGS based BRCAplus test utilizes a custom tiled PCR based target enrichment design and bioinformatics pipeline coupled with array comparative genomic hybridization (aCGH) to identify mutations in the six high-risk genes: BRCA1, BRCA2, PTEN, TP53, CDH1, and STK11. Validation of the assay with 250 previously characterized samples resulted in 100% detection of 3,025 known variants and analytical specificity of 99.99%. Analysis of the clinical performance of the first 3,000 BRCAplus samples referred for testing revealed an average coverage greater than 9,000X per target base pair resulting in excellent specificity and the sensitivity to detect low level mosaicism and allele-drop out. The unique design of the assay enabled the detection of pathogenic mutations missed by previous testing. With the abundance of NGS diagnostic tests being released, it is essential that clinicians understand the advantages and limitations of different test designs.
    PLoS ONE 05/2014; 9(5):e97408. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose:The aim of this study was to determine the clinical and molecular characteristics of 2,079 patients who underwent hereditary cancer multigene panel testing.Methods:Panels included comprehensive analysis of 14-22 cancer susceptibility genes (BRCA1 and BRCA2 not included), depending on the panel ordered (BreastNext, OvaNext, ColoNext, or CancerNext). Next-generation sequencing and deletion/duplication analyses were performed for all genes except EPCAM (deletion/duplication analysis only). Clinical histories of ColoNext patients harboring mutations in genes with well-established diagnostic criteria were assessed to determine whether diagnostic/testing criteria were met.Results:Positive rates were defined as the proportion of patients with a pathogenic mutation/likely pathogenic variant(s) and were as follows: 7.4% for BreastNext, 7.2% for OvaNext, 9.2% for ColoNext, and 9.6% for CancerNext. Inconclusive results were found in 19.8% of BreastNext, 25.6% of OvaNext, 15.1% of ColoNext, and 23.5% of CancerNext tests. Based on information submitted by clinicians, 30% of ColoNext patients with mutations in genes with well-established diagnostic criteria did not meet corresponding criteria.Conclusion:Our data point to an important role for targeted multigene panels in diagnosing hereditary cancer predisposition, particularly for patients with clinical histories spanning several possible diagnoses and for patients with suspicious clinical histories not meeting diagnostic criteria for a specific hereditary cancer syndrome.Genet Med advance online publication 24 April 2014Genetics in Medicine (2014); doi:10.1038/gim.2014.40.
    Genetics in medicine: official journal of the American College of Medical Genetics 04/2014; · 3.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To provide practice recommendations for genetic counselors whose clients are considering cystic fibrosis (CF) carrier testing or seeking information regarding CF molecular test results. The goals of these recommendations are to: 1) Provide updated information about the natural history, diagnosis, and treatment of CF and related conditions. 2) Supplement genetic counselors' knowledge and understanding of the available carrier screening and diagnostic testing options. 3) Describe the current state of genotype/phenotype correlations for CFTR mutations and an approach to interpreting both novel and previously described variants. 4) Provide a framework for genetic counselors to assist clients' decision-making regarding CF carrier testing, prenatal diagnosis, and pregnancy management. Disclaimer The practice guidelines of the National Society of Genetic Counselors (NSGC) are developed by members of the NSGC to assist genetic counselors and other health care providers in making decisions about appropriate management of genetic concerns; including access to and/or delivery of services. Each practice guideline focuses on a clinical or practice-based issue, and is the result of a review and analysis of current professional literature believed to be reliable. As such, information and recommendations within the NSGC practice guidelines reflect the current scientific and clinical knowledge at the time of publication, are only current as of their publication date, and are subject to change without notice as advances emerge.In addition, variations in practice, which take into account the needs of the individual patient and the resources and limitations unique to the institution or type of practice, may warrant approaches, treatments and/or procedures that differ from the recommendations outlined in this guideline. Therefore, these recommendations should not be construed as dictating an exclusive course of management, nor does the use of such recommendations guarantee a particular outcome. Genetic counseling practice guidelines are never intended to displace a health care provider's best medical judgment based on the clinical circumstances of a particular patient or patient population.Practice guidelines are published by NSGC for educational and informational purposes only, and NSGC does not "approve" or "endorse" any specific methods, practices, or sources of information.
    Journal of Genetic Counseling 09/2013; · 1.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: The digestive enzyme chymotrypsin C (CTRC) protects against pancreatitis by promoting degradation of trypsinogen, thereby curtailing potentially harmful trypsinogen activation. Loss-of-function variants in CTRC increase the risk for chronic pancreatitis. The aim of the present study was to perform comprehensive functional analysis of all missense CTRC variants identified to date. DESIGN: We investigated secretion, activity and degradation of 27 published and five novel CTRC mutants. We also assessed the effect of five mutants on endoplasmic reticulum (ER) stress. RESULTS: None of the mutants exhibited a gain of function, such as increased secretion or activity. By contrast, 11 mutants showed marked loss of function, three mutants had moderate functional defects, whereas 18 mutants were functionally similar to wild-type CTRC. The functional deficiencies observed were diminished secretion, impaired catalytic activity and degradation by trypsin. Mutants with a secretion defect caused ER stress that was proportional to the loss in secretion. ER stress was not associated with loss-of-function phenotypes related to catalytic defect or proteolytic instability. CONCLUSIONS: Pathogenic CTRC variants cause loss of function by three distinct but mutually non-exclusive mechanisms that affect secretion, activity and proteolytic stability. ER stress may be induced by a subset of CTRC mutants, but does not represent a common pathological mechanism of CTRC variants. This phenotypic dataset should aid in the classification of the clinical relevance of CTRC variants identified in patients with chronic pancreatitis.
    Gut 09/2012; · 10.73 Impact Factor
  • Pancreas 03/2012; 41(2):329-30. · 2.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biochemical testing of hexosaminidase A (HexA) enzyme activity has been available for decades and has the ability to detect almost all Tay-Sachs disease (TSD) carriers, irrespective of ethnic background. This is increasingly important, as the gene pool of those who identify as Ashkenazi Jewish is diversifying. Here we describe the analysis of a cohort of 4,325 individuals arising from large carrier screening programs and tested by the serum and/or platelet HexA enzyme assays and by targeted DNA mutation analysis. Our results continue to support the platelet assay as a highly effective method for TSD carrier screening, with a low inconclusive rate and the ability to detect possible disease-causing mutation carriers that would have been missed by targeted DNA mutation analysis. Sequence analysis performed on one such platelet assay carrier, who had one non-Ashkenazi Jewish parent, identified the amino acid change Thr259Ala (A775G). Based on crystallographic modeling, this change is predicted to be deleterious, as threonine 259 is positioned proximal to the HexA alpha subunit active site and helps to stabilize key residues therein. Accordingly, if individuals are screened for TSD in broad-based programs by targeted molecular testing alone, they must be made aware that there is a more sensitive and inexpensive test available that can identify additional carriers. Alternatively, the enzyme assays can be offered as a first tier test, especially when screening individuals of mixed or non-Jewish ancestry.
    JIMD reports. 01/2012; 6:1-6.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined the relation between the number of (TG) repeats at the (IVS8)-(TG)m(T)5 locus of the CFTR gene with neonatal serum immunoreactive trypsinogen (IRT) and sweat chloride (SC) concentrations in hypertrypsinogenemic infants with genotype ΔF508-9T/5T identified by California cystic fibrosis newborn screening. SC and IRT distributions increased with increasing (TG) repeats.
    Journal of cystic fibrosis: official journal of the European Cystic Fibrosis Society 12/2011; 11(3):257-60. · 3.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spinal muscular atrophy is the most common fatal hereditary disease among newborns and infants. There is as yet no effective treatment. Although a carrier test is available, currently there is disagreement among professional medical societies who proffer standards of care as to whether or not carrier screening for spinal muscular atrophy should be offered as part of routine reproductive care. This leaves health care providers without clear guidance. In fall 2009, a meeting was held by National Institutes of Health to examine the scientific basis for spinal muscular atrophy carrier screening and to consider the issues that accompany such screening. In this article, the meeting participants summarize the discussions and conclude that pan-ethnic carrier screening for spinal muscular atrophy is technically feasible and that the specific study of implementing a spinal muscular atrophy carrier screening program raises broader issues about determining the scope and specifics of carrier screening in general.
    Genetics in medicine: official journal of the American College of Medical Genetics 10/2010; 12(10):621-2. · 3.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To report two patients with associated conditions in addition to cystic fibrosis. We reviewed our database and report two patients with cystic fibrosis who had associated conditions. These patients also had novel disease causing CFTR mutations on full gene sequence analysis. We identified 2 patients with novel disease causing cystic fibrosis transmembrane conductance regulator mutations that we report here. A 12-year-old female with cystic fibrosis, diagnosed at 18months, had normal pulmonary function tests and chest X-ray. Her main cystic fibrosis-related health issue was poor growth. Results of cystic fibrosis transmembrane conductance regulator DNA analysis showed deltaF508; L467P; and 7T/9T. She was later diagnosed with Crohn's disease. An 11-year-old male with Rubinstein-Taybi syndrome, diagnosed with cystic fibrosis at 2years of age, had minimal findings on chest X-ray and pancreatic insufficiency. Results of his cystic fibrosis transmembrane conductance regulator DNA analysis showed deltaF508; 4329delCT; and 7T/9T. We report 2 patients with CF who had associated conditions and also had novel disease causing CFTR mutations. Associated conditions may worsen the clinical manifestations of CF and complicate medical management.
    Journal of cystic fibrosis: official journal of the European Cystic Fibrosis Society 07/2010; 9(4):269-71. · 3.19 Impact Factor
  • Steven Keiles
    Journal of Genetic Counseling 03/2009; 18(2):105-8. · 1.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Congenital bilateral absence of the vas deferens is a pathologic condition associated with normal spermatogenesis, azoospermia, and lack of both vasa deferentia. A significant association between mutations in the cystic fibrosis transmembrane conductance regulator gene among men with congenital bilateral absence of the vas deferens has been established. The objective of this study was to determine whether the F508C variant in the cystic fibrosis transmembrane conductance regulator gene has a significant effect on congenital bilateral absence of the vas deferens prevalence, when present in conjunction with a second cystic fibrosis transmembrane conductance regulator disease causing mutation. We compared the frequency of F508C in male subjects submitted for diagnostic testing on suspicion of cystic fibrosis or during cystic fibrosis carrier screening, to men with a clinical diagnosis of congenital bilateral absence of the vas deferens. Although frequencies of F508C did not vary significantly between 850 individuals undergoing cystic fibrosis carrier screening and those submitted for diagnostic testing on suspicion of cystic fibrosis, the frequency of F508C in the congenital bilateral absence of the vas deferens population was significantly higher than expected (chi2 = 6.95, corrected P = 0.0486). We conclude that the F508C variant in cystic fibrosis transmembrane conductance regulator may represent a pathogenic defect and lead to congenital bilateral absence of the vas deferens when combined with a second cystic fibrosis transmembrane conductance regulator mutation.
    Genetics in medicine: official journal of the American College of Medical Genetics 01/2009; 10(12):910-4. · 3.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the United States, approximately 1/3,700 babies is born with cystic fibrosis each year. The >1,300 documented sequence variants pose a challenge for detection of cystic fibrosis through genetic screening. To investigate whether comprehensive characterization of the cystic fibrosis gene is feasible using dried newborn blood specimens, we modified the whole blood Ambry Test: CF and determined its sensitivity by testing DNA from individuals with cystic fibrosis who still had unknown mutations after commercial mutation panel testing. DNA from 42 archived newborn dried blood specimens of affected Hispanic, African-American and Caucasian individuals in California was analyzed by temporal temperature gradient electrophoresis screening and targeted sequencing, and by gross deletion analysis. Excluding two specimens that could not be analyzed due to poor DNA quality, we report a 100% sensitivity and clinical detection rate in the remaining 40 patients. Eighty-three mutations representing 40 different variants were detected, including 8 novel mutations. This study demonstrates the feasibility of temporal temperature gradient electrophoresis-based full sequence analysis and targeted sequencing from DNA in newborn blood specimens. The Ambry Test: CF, as an additional step in cystic fibrosis newborn screening models, can be used to dramatically reduce the number of cystic fibrosis carrier sweat test referrals.
    Genetics in Medicine 10/2006; 8(9):557-62. · 5.56 Impact Factor
  • Steven Keiles, Anja Kammesheidt
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic pancreatitis is a progressive inflammatory disorder leading to irreversible exocrine and/or endocrine impairment. It is well documented that mutations in the cationic trypsinogen (PRSS1) gene can cause hereditary pancreatitis. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) and the serine protease inhibitor Kazal type 1 (SPINK1) genes are also associated with pancreatitis. We analyzed 381 patients with a primary diagnosis of chronic or recurrent pancreatitis using the Ambry Test: Pancreatitis to obtain comprehensive genetic information for the CFTR, SPINK1, and PRSS1 genes. The results identified 32% (122/381) of patients with 166 mutant CFTR alleles, including 12 novel CFTR variants: 4375-20 A>G, F575Y, K598E, L1260P, G194R, F834L, S573C, 2789 + 17 C>T, 621+83 A>G, T164S, 621+25 A>G, and 3500-19 G>A. Of 122 patients with CFTR mutations, 5.5% (21/381) also carried a SPINK1 mutation, and 1.8% (7/381) carried a PRSS1 mutation. In addition, 8.9% (34/381) of all patients had 1 of 11 different SPINK1 mutations. Another 6.3% (24/381) of the patients had 1 of 8 different PRSS1 mutations. Moreover, 1.3% of the patients (5/381) had 1 PRSS1 and 1 SPINK1 mutation. A total 49% (185/381) of the patients carried one or more mutations. Comprehensive testing of the CFTR, PRSS1, and SPINK1 genes identified genetic variants in nearly half of all subjects considered by their physicians as candidates for genetic testing. Comprehensive test identified numerous novel variants that would not be identified by standard clinical screening panels.
    Pancreas 10/2006; 33(3):221-7. · 2.95 Impact Factor
  • Genetics in Medicine - GENET MED. 01/2006; 8(9):557-562.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Characterization of CFTR mutations in the U.S. Hispanic population is vital to early diagnosis, genetic counseling, patient-specific treatment, and the understanding of cystic fibrosis (CF) pathogenesis. The mutation spectrum in Hispanics, however, remains poorly defined. A group of 257 self-identified Hispanics with clinical manifestations consistent with CF were studied by temporal temperature gradient electrophoresis and/or DNA sequencing. A total of 183 mutations were identified, including 14 different amino acid-changing novel variants. A significant proportion (78/85) of the different mutations identified would not have been detected by the ACMG/ACOG-recommended 25-mutation screening panel. Over one third of the mutations (27/85) occurred with a relative frequency >1%, which illustrates that the identified mutations are not all rare. This is supported by a comparison with other large CFTR studies. These results underscore the disparity in mutation identification between Caucasians and Hispanics and show utility for comprehensive diagnostic CFTR mutation analysis in this population.
    Journal of Molecular Diagnostics 05/2005; 7(2):289-99. · 3.95 Impact Factor
  • Journal of Molecular Diagnostics - J MOL DIAGN. 01/2005; 7(2):289-299.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accurate determination of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene is critical for genetic counselling and treatment of obstructive azoospermia. Of concern is that detection rates with routine CFTR mutation panels vary widely depending on patient ancestry; and such panels have limited value for azoospermic patients, who are more likely to carry rare mutations. An alternative approach offers comprehensive, CFTR mutation analysis by a DNA sequence method. We investigated whether this method could improve CFTR detection rates in men with obstructive azoospermia in a prospective study of men with obstructive azoospermia and their partners who were referred for genetic counselling and testing at one of two institutions. Sixteen patients with congenital absence of the vas deferens (CAVD, n = 14) or idiopathic obstructive azoospermia (n = 2) were studied. DNA from all patients was analysed for mutations by the DNA sequence method. In addition to this method, six men underwent CFTR analysis by a common 25 or 31 mutation panel coupled with poly T analysis. In 10 subjects, common mutation panel findings were inferred from DNA sequence method results. Overall, 12/16 (75%) azoospermic patients had one or more CFTR mutations and/or 5T alleles, including 12 mutations in 10 patients (two compound heterozygotes) and seven 5T alleles in six patients (one homozygote). The sequence method detected all mutations and three variants of unknown significance. By comparison, the common mutation panels detected only 3/12 mutations (25%) and 0/3 variants. The DNA sequence method detects more CFTR mutations than common mutation panels. Given the serious, clinical consequences of transmitting such mutations, this study underscores the importance of accurate, CFTR mutation detection in men with obstructive azoospermia and their partners.
    Human Reproduction 04/2004; 19(3):540-6. · 4.67 Impact Factor
  • Fertility and Sterility - FERT STERIL. 01/2003; 80:29-29.

Publication Stats

122 Citations
58.09 Total Impact Points

Institutions

  • 2004–2014
    • Ambry Genetics
      Aliso Viejo, California, United States
  • 2010
    • University of Arkansas for Medical Sciences
      • Department of Pediatrics
      Little Rock, Arkansas, United States
  • 2009
    • University of Alabama at Birmingham
      Birmingham, Alabama, United States
  • 2005
    • Stanford University
      • Department of Pathology
      Stanford, CA, United States